
3.1 Introduction

Chapter 3 Booting System

3.1 Introduction

 This chapter mainly describes the three assembly code files in boot/ directory listed in List

3-1. As mentioned in previous chapter, although these three files all use assembly language,

they use two different santaxes. bootsect.s was written in 086 assembly language something like

Intel assembly language format and will be compiled & linked using as86 and ld86. The other

two files use GNU-format assembler and its syntax is like AT&T syntax.

List 3-1 linux/boot/ directory

 Filename Size Last Modified Time(GMT) Description

 bootsect.s 5052 bytes 1991-12-05 22:47:58

 head.s 5938 bytes 1991-11-18 15:05:09

 setup.s 5364 bytes 1991-12-05 22:48:10

 In order to read these code, you should have some knowledge of 8086 assembly language and

know the architecture of 80x86 and howto programing in the x86 protected mode. That is to say,

before start reading the code, you had better first glance the knowledge mentioned. When reading,

we will detailed some of it in comments.

3.2 Main Functions

 Let's first describe the main executing flowchart of Linux booting. When your PC powers on,

x86 CPU will automatically enter into real mode and start running the code at address 0xffff0.

This address is usually in the ROM-BIOS. The PC's BIOS will do some detection of the machine

and start initialize the interrupt vectors at physical address 0. It, then, reads the first

sector from a bootable device into memory at absolute address 0x7c00 and jump to this place.

Generally, the booting device is floppy drive or harddisk drive.

 The foremost part of Linux (boot/bootsect.s) is written in 8086 assembly language and stored

in the first sector of booting device. It will be loaded at absolute address 0x7c00 (31Kb) in

memory by BIOS and moves to physical address 0x90000(576Kb) by itself when executing. Then it

reads 2Kb code that followed (boot/setup.s) into memory at address 0x902000 and the other parts

of the kernel (system module) to address 0x10000 (64Kb). Because the old Linux kernel is no

more than 0x80000 (512Kb) in size, it will never lay over bootsect and setup module begin at

0x90000. The setup program, afterwards, will move the system module to the beginning of memory.

Thus, the code address of system module is equal to the real physical address. This way, it

is easy to operate for the kernel code and data. Figure 3-1 clearly shows the dynamic locations

3.3 bootsect.s

of programs or modules in memory when booting. In the figure, virtical frames represents maps

of each program in memory at a time. At the loading period, the kernel will display “Loading...”

and transport control to the code in boot/setup.s. This is another real mode program.

Figure 3-1 The location of kernel in memory when booting

 The booting parts identify some properties and the type of VGA adapter in machine. If need,

it will request user to select display mode for the console and then move the whole system from

address 0x10000 to 0x0000. Entering protect mode and jump to the rest of the system at 0x0000.

The begin part of system module contains the head.s code. At this moment, all the running methods

have been setup: IDT and GDT were loaded. The processor and coprocessor was identified. Paging

method is also settled. The kernel calls the init/main.c program at last.

 Someone may ask, why not load the system module to absolute physical address zero directory?

This is because the setup program will use the BIOS interrupts for obtaining machine parameters

and the BIOS interrupt's vectors are just stored at the start area of the physical memory by

BIOS. So we have to move down the system module after we finished using BIOS interrupts to overlay

this area of the memory.

3.3 bootsect.s

3.3.1 Function description
 bootsect.s is disk booting code residented at the first sector of booting diskette (booting

sector, 0 cylinder, 0 head, first sector). After PC power on and ROM BIOS detection, the booting

1 2 3 4 5 6

0x7c00

0x0000

0x90000

0x10000

0xA0000

bootsect.s

setup.s

system module

head.s in system module

executing location line

0x90200

3.3 bootsect.s

sector was loaded at address 0x7c00 in memory. And then be moved to the address 0x90000 by itself.

The main purpose of this program is first load the setup module (compiled from setup.s) from

disk to the loaction 0x90200, just after bootsect code. Then it obtains the parameters from

disk parameter table for the current booting disk by using BIOS interrupt 0x13 and displays

the message “Loading system...” on screen. Afterwards, it loads the system module from disk

to the starting address 0x10000 in memory. Next, it will identify the device ID of root filesystem.

If not specified, it will recognize the type of disk by the sector number per track and store

the device number to root_dev. At last, it jump to the beginning of setup program.

3.3.2 Code Comments
Program 3-1linux/boot/bootsect.s

 1 !

 2 ! SYS_SIZE is the number of clicks (16 bytes) to be loaded.

 3 ! 0x3000 is 0x30000 bytes = 196kB, more than enough for current

 4 ! versions of linux

 5 !

 ! The size of system module after compiled. Ref. to the Program 2-1, L92. Here a maximen

 ! size is given.

 6 SYSSIZE = 0x3000 !

 7 !

 8 ! bootsect.s (C) 1991 Linus Torvalds

 9 !

 10 ! bootsect.s is loaded at 0x7c00 by the bios-startup routines, and moves

 11 ! iself out of the way to address 0x90000, and jumps there.

 12 !

 13 ! It then loads 'setup' directly after itself (0x90200), and the system

 14 ! at 0x10000, using BIOS interrupts.

 15 !

 16 ! NOTE! currently system is at most 8*65536 bytes long. This should be no

 17 ! problem, even in the future. I want to keep it simple. This 512 kB

 18 ! kernel size should be enough, especially as this doesn't contain the

 19 ! buffer cache as in minix

 20 !

 21 ! The loader has been made as simple as possible, and continuos

 22 ! read errors will result in a unbreakable loop. Reboot by hand. It

 23 ! loads pretty fast by getting whole sectors at a time whenever possible.

 24

 25 .globl begtext, begdata, begbss, endtext, enddata, endbss ! 定义了 6 个全局标识符；

 26 .text ! Code Segment.

 27 begtext:

 28 .data ! Data Segment.

 29 begdata:

 30 .bss ! Uninitialzed data Segment (Block Started by Symbol).

 31 begbss:

 32 .text ! Code Segment begins.

 33

 34 SETUPLEN = 4 ! nr of setup-sectors

 ! the sector nr occupied by setup program

 35 BOOTSEG = 0x07c0 ! original address of boot-sector. Seg address.

3.3 bootsect.s

 36 INITSEG = 0x9000 ! we move boot here - out of the way

 37 SETUPSEG = 0x9020 ! setup starts here

 38 SYSSEG = 0x1000 ! system loaded at 0x10000 (65536).

 39 ENDSEG = SYSSEG + SYSSIZE ! where to stop loading

 40

 41 ! ROOT_DEV: 0x000 - same type of floppy as boot.

 42 ! 0x301 - first partition on first drive etc

 43 ROOT_DEV = 0x306 ! Specifiy device occupied by root filesystem: Second hd, 1st partition.

 ! This is hd naming method used by old Linux. The detail values is:

 ! dev_no = (major<<8) + minor

 ! (Main devNo: 1-mem;2-floppy;3-hd;4-ttyx;5-tty;6-paral;7-unnamed pipe)

 ! 0x300 - /dev/hd0 - represents the first whole hd;

 ! 0x301 - /dev/hd1 - 1st hd, 1st partition;

 ! ...

 ! 0x304 - /dev/hd4 - 1st hd, 4th partition;

 ! 0x305 - /dev/hd5 - represents 2ed whole hd;

 ! 0x306 - /dev/hd6 - 2ed hd, 1st partition;

 ! ...

 ! 0x309 - /dev/hd9 - 2ed hd, 4th partition.

 ! The naming method was changed after Linux kernel 0.95.

 44

 45 entry start ! Tail the linker, the program starts here.

 46 start: ! L47-56 are used to move itself(bootsect) from current location

 ! 0x07c00(31k) to 0x90000(576Kb), 256 words totally. Then jump

 ! to the label 'go’to continue executing progrom.

 47 mov ax,#BOOTSEG ! Set seg ds = 0x7c0;

 48 mov ds,ax

 49 mov ax,#INITSEG ! Set seg es = 0x9000；

 50 mov es,ax

 51 mov cx,#256 ! Move conuter = 256 words；

 52 sub si,si ! Source addr. ds:si = 0x07C0:0x0000

 53 sub di,di ! Destination addr. es:di = 0x9000:0x0000

 54 rep ! Repeat until cx = 0

 55 movw ! Move one word

 56 jmpi go,INITSEG ! Indirect jumping. INITSEG is destination seg addr.

 ! From here on, CPU start executes code at 0x9000 seg.

 57 go: mov ax,cs ! Set ds, es, ss to new seg value (0x9000). As there are

 58 mov ds,ax ！stack operating (push,pop,call)，stack must be setup.

 59 mov es,ax

 60 ! put stack at 0x9ff00. ! sp point to 0x9ff00 (0x9000:0xff00)

 61 mov ss,ax

 62 mov sp,#0xFF00 ! arbitrary value >>512

 ! Because the code has been moved, we must set the location

 ! of stack again. sp can be any arbitrary value >>512 (0x90200).

 ! As the starting place 0x902000 will lay setup code and

 ! it occupies about 4 sectors. So the stack pointer sp must

 ! great than (0x200 + 0x200 * 4 + stack size)

 63

 64 ! load the setup-sectors directly after the bootblock.

 65 ! Note that 'es' is already set up.

 66

 67 load_setup:

 ! L68--77 are used to load setup code from the 2ed sector on disk to the location 0x90200

3.3 bootsect.s

 ! in memory, 4 sectors totally. If read encounter error, reset drive and try again. No return.

 ! INT 0x13 using method:

 ! Read sector:

 ! ah = 0x02 - read sector to mem; al = nr of sectors;

 ! ch = low 8 bits of cyl nr; cl = start sector(0-5 bits)，high 2 bits of cyl(6-7);

 ! dh = head no.; dl = drive no.(bit 7 must be set if devie is hd)

 ! es:bx -->points to data buf. If error encountered, set CF flag.

 68 mov dx,#0x0000 ! drive 0, head 0

 69 mov cx,#0x0002 ! sector 2, track 0

 70 mov bx,#0x0200 ! address = 512, in INITSEG

 71 mov ax,#0x0200+SETUPLEN ! service 2, nr of sectors

 72 int 0x13 ! read it

 73 jnc ok_load_setup ! ok - continue

 74 mov dx,#0x0000

 75 mov ax,#0x0000 ! reset the diskette

 76 int 0x13

 77 j load_setup

 78

 79 ok_load_setup:

 80

 81 ! Get disk drive parameters, specifically nr of sectors/track

 ! The following is the format of INT 0x13 for obtaining drive parameters:

 ! ah = 0x08 dl = drive no.(bit 7 must be set if devie is hd)

 ! Return info:

 ! If error encountered, set CF flag and ah = status code.

 ! ah = 0， al = 0， bl = drive type (AT/PS2)

 ! ch = low 8 bits of max track nr.

 ! cl = max sector nr/track(bit0-5)，high 2bits of max track nr.(bit6-7)

 ! dh = max head nr. dl = nr of drives

 ! es:di --> disk parameter table.

 82

 83 mov dl,#0x00

 84 mov ax,#0x0800 ! AH=8 is get drive parameters

 85 int 0x13

 86 mov ch,#0x00

 87 seg cs ! The operand of next instruction is in cs seg.

 88 mov sectors,cx ! Save sector nr per track

 89 mov ax,#INITSEG

 90 mov es,ax ! The es was changed when call int 0x13. here just re-set it

 91

 92 ! Print some inane message ! Display message('Loading system ...'cr,lf. Total 24 chars)

 93

 94 mov ah,#0x03 ! read cursor pos

 95 xor bh,bh

 96 int 0x10

 97

 98 mov cx,#24 ! 24 chars totally.

 99 mov bx,#0x0007 ! page 0, attribute 7 (normal)

100 mov bp,#msg1 ! point to string.

101 mov ax,#0x1301 ! write string, move cursor

102 int 0x10 !

103

104 ! ok, we've written the message, now

3.3 bootsect.s

105 ! we want to load the system (at 0x10000)

106

107 mov ax,#SYSSEG

108 mov es,ax ! segment of 0x010000 ! es = seg of system.

109 call read_it ! Read system module from disk. es is input parameter.

110 call kill_motor ! shut down drive motor, then we know the stats of drive.

111

112 ! After that we check which root-device to use. If the device is

113 ! defined (!= 0), nothing is done and the given device is used.

114 ! Otherwise, either /dev/PS0 (2,28) or /dev/at0 (2,8), depending

115 ! on the number of sectors that the BIOS reports currently.

 ! The meaning of two device file above is:

 ! The main device nr of floppy is 2, sub nr equals to TYPE*4 + NR. where NR is 0-3 coresponding

 ! to floppy drive A, B, C or D separatly. TYPE is drive type (2-->1.2Mb or 7-->1.44Mb, etc.)

 ! As 7*4 + 0 = 28, so /dev/PS0 (2,28) indicates the first drive with 1.44Mb type. Its device

 ! number is 0x021c. In the same way, /dev/at0 (2,8) indicates that the first drive is a 1.2M

 ! drive and device number is 0x0208.

116

117 seg cs

118 mov ax,root_dev

119 cmp ax,#0

120 jne root_defined

121 seg cs

 ! Load the sectors/track (SPT) saved at L88 into register. If SPT = 15, it indicates that

 ! the drive type is a 1.2Mb. If SPT = 18, then it means the drive type is 1.44Mb. The drive

 ! is the first drive of the machine because it is bootable.

122 mov bx,sectors

123 mov ax,#0x0208 ! /dev/ps0 - 1.2Mb

124 cmp bx,#15

125 je root_defined

126 mov ax,#0x021c ! /dev/PS0 - 1.44Mb

127 cmp bx,#18

128 je root_defined

129 undef_root: ! If we cann't identify the drive type, we are dead!

130 jmp undef_root

131 root_defined:

132 seg cs

133 mov root_dev,ax ! Save the checked root device.

134

135 ! after that (everyting loaded), we jump to

136 ! the setup-routine loaded directly after

137 ! the bootblock:

138

139 jmpi 0,SETUPSEG ! Jump to 0x9020:0000 (setup.s)

 !!!! This ends of the program !!!!

 ! Here are two subroutines

140

141 ! This routine loads the system at address 0x10000, making sure

142 ! no 64kB boundaries are crossed. We try to load it as fast as

143 ! possible, loading whole tracks whenever we can.

144 !

145 ! in: es - starting address segment (normally 0x1000)

3.3 bootsect.s

146 !

147 sread: .word 1+SETUPLEN ! sectors read of current track. we have already loaded

 ! 5 sectors. The bootsect occupied 1 sector, setup has 4.

148 head: .word 0 ! current head

149 track: .word 0 ! current track

150

151 read_it:

 ! Check the segment value. Data loaded from floppy must be in 64Kb aligment in memory.

 ! The bx register is used to point at the writing location within current segment

152 mov ax,es

153 test ax,#0x0fff

154 die: jne die ! es must be at 64kB boundary

155 xor bx,bx ! bx is starting address within segment

156 rp_read:

 ! Check to see if we have read in all data. Compare the current segment with #ENDSEG. Jump to

 ! label ok1_read if not equal, else return.

157 mov ax,es

158 cmp ax,#ENDSEG ! have we loaded all yet? ! 是否已经加载了全部数据？

159 jb ok1_read

160 ret

161 ok1_read:

 ! Calculate & verify sector number we should get from current floppy track.

 ! Check the total bytes read with 64Kb segment limitation to see if we can read the sectors

 ! in current track all together. If exceeded, then do a reverse calculate base on the maximum

 ! bytes we could read at this time (64Kb - offset in segment).

162 seg cs

163 mov ax,sectors ! Get sector number per track.

164 sub ax,sread ! minus sectors we already read.

165 mov cx,ax ! cx = ax = sectors not yet read in current track.

166 shl cx,#9 ! cx = cx * 512 bytes.

167 add cx,bx ! cx = cx + offset in current segment (bx)

 ! = total bytes read after the processing of this time.

168 jnc ok2_read ! Check 64Kb limit. If not exceed, then jump to ok2_read.

169 je ok2_read

170 xor ax,ax ! If so, then counting the maximum bytes we can read at this

171 sub ax,bx ! time (64Kb - offset in segment) and convert it to sector

172 shr ax,#9 ! number.

173 ok2_read:

174 call read_track

175 mov cx,ax ! cx = sector number we have read.

176 add ax,sread ! sector number we have read in current track.

177 seg cs

178 cmp ax,sectors ! If there are unread sectors in current track, then jump

179 jne ok3_read ! to label ok3_read.

 ! Read data under next disk head (head 1). If finished, then goto read the next track.

180 mov ax,#1

181 sub ax,head ! Check the current head.

182 jne ok4_read ! If is head 0, then get data under head 1

183 inc track ! else goto next track.

184 ok4_read:

185 mov head,ax ! Save the current head

186 xor ax,ax ! Clear sectors number already read within current track.

187 ok3_read:

3.3 bootsect.s

188 mov sread,ax ! Store the sector nr already read within current track.

189 shl cx,#9 ! Multiply 512 bytes

190 add bx,cx ! Modify the start point in current segment.

191 jnc rp_read ! If less than 64KB limit, then jump to rp_read (L156).

192 mov ax,es ! otherwise modify the current segment to read next segment.

193 add ax,#0x1000 ! Modify segment to point at the start location of next 64Kb.

194 mov es,ax

195 xor bx,bx ! Clear the offset value in the segment.

196 jmp rp_read ! Jump to rp_read (L156), continue reading.

197

 ! Read data in current track to the buffer pointed at by es:bx.

 ! al – sector numbers; es:bx – buffer location

198 read_track:

199 push ax

200 push bx

201 push cx

202 push dx

203 mov dx,track ! Get current track.

204 mov cx,sread ! Get sector number already read in current track.

205 inc cx ! cl = start sector.

206 mov ch,dl ! ch = current track.

207 mov dx,head !

208 mov dh,dl ! dh = current head.

209 mov dl,#0 ! dl = drive number (0 indicates first drive).

210 and dx,#0x0100 ! Disk head number will no more than 1.

211 mov ah,#2 ! ah = 2，read disk sector.

212 int 0x13

213 jc bad_rt ! If error, jump to bad_rt.

214 pop dx

215 pop cx

216 pop bx

217 pop ax

218 ret

 ! Execute drive reset operation (function 0 of int 0x13), then jump to read_track to try again.

219 bad_rt: mov ax,#0

220 mov dx,#0

221 int 0x13

222 pop dx

223 pop cx

224 pop bx

225 pop ax

226 jmp read_track

227

228 /*

229 * This procedure turns off the floppy drive motor, so

230 * that we enter the kernel in a known state, and

231 * don't have to worry about it later.

232 */

233 kill_motor:

234 push dx

235 mov dx,#0x3f2 ! Drive port of floppy adapter, write only.

236 mov al,#0 ! First drive, close FDC, disable DMA and int, close moter.

237 outb ! output al to port dx.

3.4 setup.s

238 pop dx

239 ret

240

241 sectors:

242 .word 0 ! Place used to store sector number per track (SPT).

243

244 msg1:

245 .byte 13,10 ! cr, lf

246 .ascii "Loading system ..."

247 .byte 13,10,13,10 ! total 24 charactors.

248

249 .org 508 ! Indicates the next instruction begins at addr 508.

250 root_dev:

251 .word ROOT_DEV ! Device nr of root filesystem (used in init/main.c).

252 boot_flag:

253 .word 0xAA55 ! Identifer of a valid hd.

254

255 .text

256 endtext:

257 .data

258 enddata:

259 .bss

260 endbss:

3.3.3 Infomation
 There are numerous materials about the description of bootsect.s on the Internet. A paper

written by Alessandro Rubini (rubini@linux.it) describe the steps to boot the Linux kernel

in a detailed way.

 bootsect.s program is executed in 386 real mode, so its relatively easy to understand. If

you still meet some issues here, then I suggest you to review the 80x86 assembly language and

80x86 computer architectures first.

3.4 setup.s

3.4.1 Function
 The main function of setup progam is to obtain the machine parameters by using ROM BIOS

interrupts and store them at begin address 0x90000 in memory (thus overlay the bootsect program),

see Table 3-1. These data will be used by many routines in kernel, especially by the terminal

programs, e.g. ttyio.c.

Table 3-1 Parameters obtained by setupprogram

Address Size(bytes) Name Description

0x90000 2 Cursor Location Column (0x00-left most), Row (0x00 - top most)

0x90002 2 Extended Memory
The size of extended memory begin from address 1Mb (in

Kb).

0x90004 2 Display Page Current display page.

3.4 setup.s

0x90006 1 Display Mode

0x90007 1 Char Columns

0x90008 2 ??

0x9000A 1 Display Memory
Display memory (0x00-64k, 0x01-128k, 0x02-192k,

0x03=256k)

0x9000B 1 Display Status 0x00-Color, I/O=0x3dX; 0x11-Mono,I/O=0x3bX

0x9000C 2 Property. Paras Property parameters of display adapter.

...

0x90080 16 Hd Paras Table Harddisk parameter table for first hd.

0x90090 16 Hd Paras Table Hardisk parameter table for second hd(zero if none)

0x901FC 2 Root Device Root filesystem device number.

 Then, this program moves the system module from address 0x10000-0x8ffff (Linus thought the

kernel size will never execcds 512Kb at that time) down to the absolute physical address 0x00000.

Next, the interrupt descripter table register (IDTR) and globle descripter table register (GDTR)

are loaded, A20 address line is opened, the two programmable interrupt controller (PIC) chips,

Intel 8259A, is reconfigured. The hardware interrupt identifer number is allocated within 0x20

- 0x2f. The last step is enter into 80x86 protected mode by setting the CPU control register

CR0 (also called Machine Status Word - MSW) and passed the executing to the head.s program

at the start of system module.

 In order to run head.s in 32 bits protected mode, this program setups a temporary interrupt

descripter table (IDT) and globle descripter table (GDT) at the end of the program. In the GDT,

kernel code segment descripter and data segment descripter are configured. These two kernel

code descripters will be re-configured in head.s program.

 As the protected running mode is vital for understanding the head.s program, now, lets first

have a simple introduction to it by comparing the different addressing methods between

real-address mode and 32 bits protected mode. The follow chapters will continue describing the

mechanism of it.

 In real-address mode, memory addressing use a pair of segment and offset values. The segment

value (or called segment selector) is stored in segment register like ds, es. Each segment

has fixed size in 64Kb. The offset in the segment is store in any register (or in memory) that

could be used for addressing. Thus, we can identify the location in memory by using the value

pair in segment and offset rigister: the 16-bit value in a segment selector is shifted left

by four bits to form the base address of a segment. The effective address is extended with four

high order zeros and added to the base to form a linear address as shown in Figure 3-2 (a).

In 80x86 protected mode, the segment register is no longer contains the base address of a

addressing segment, but a segment selector that indexes a segment descripter in a segment

descripter table (e.g. GDT). The indexed segment descripter provides the processor with the

data it needs to map a logical address into a linear address. The base field in a descripter

defines the segment base address, that is the location of the segment within the 4 gigabyte

linear address space.Unlike in real-address mode, the size of the segment can be changed through

3.4 setup.s

the limit field of the descripter, which defines the size of the segment. The addressing location

in memory, thus, indicated by the base address of a descripter that is indexed by segment selector

in the segment register and the offset in a register as shown in Figure 3-2 (b). There are many

other fields in a descripter that describe the property of the segment.

 By comparing with the real-adress mode, we know that in protected mode, the value of a segment

register is changed to a descripter selector, but the offset has the same meaning in both

modes.Therefore addressing in protected mode need a additional step to select the descripter

in a descripter table.

Figure 3-2 Addressing methods comparing between real-address mode and protected mode.

 Thereby, before entering protected mode, we must first setup the descripter talbes like

GDT and then using the instruction lgdt to tell processor the base address of the GDT table.

The base address of GDT is stored in register GDTR. Finally, set the protected mode flag in

machine status word to enter into protected mode.

 The format of a segment selector is shown in Figure 3-3 and the general format of segment descriptor
is shown in Figure 3-4 for quick reference. The format of interrupt gate descriptor is shown in Figure 3-5

Figure 3-3 The format of segment selector

TI

3 2 1 015

Index

Index - Descriptor Index

RPL - Request Privileg level

TI - Table Index.0-GDT,1-LDT

RPL

ds

si

ds

esi

gdtr

64kb

changeable

descripter

table

(a) Addressing in real-address mode (b) Addressing in protected mode

register register

3.4 setup.s

Figure 3-4 Segment descriptor format

Figure 3-5 The format of interrupt gate descriptor

3.4.2 Code Comments
Program 3-2 linux/boot/setup.s

 1 !

 2 ! setup.s (C) 1991 Linus Torvalds

 3 !

 4 ! setup.s is responsible for getting the system data from the BIOS,

 5 ! and putting them into the appropriate places in system memory.

 6 ! both setup.s and system has been loaded by the bootblock.

 7 !

 8 ! This code asks the bios for memory/disk/other parameters, and

 9 ! puts them in a "safe" place: 0x90000-0x901FF, ie where the

 10 ! boot-block used to be. It is then up to the protected mode

 11 ! system to read them from there before the area is overwritten

 12 ! for buffer-blocks.

 13 !

 14

 15 ! NOTE! These had better be the same as in bootsect.s!

 16

 17 INITSEG = 0x9000 ! we move boot here - out of the way

Offset bits

 31-16

Selector Offset bits

 15-0

(Reserved) 01 1 10DPLP

8 716 1524 23 0 31

Base address bits

15-0

Limit bits

 15-0

Base bits

23-16

ATYPESDPLPLimit bit

19-16

U Base bits

31-24

X D G

8 716 1524 23 0 31

 A - Accessed.

 S - System descriptor if set, else code, data or stack descriptor.

 DPL - Descriptor Privilege Level.

 P - Present.

 U - User can use this bit.

 X - Intel Reserved bit.

 D - Default size. If set, operans are 32 bits, else 16 bits.

 G - Granularity. If set, limit is measured by 4Kb, else 1 byte.

 TYPE - Segment type.

 000 Data, read only; 100 Code, execute only;

 001 Data, read/write; 101 Code, execute/read;

 010 Stack, read only; 110 Code, execute only, confirming;

 011 Stack, read/write; 111 Code, execute/read, confirming.

3.4 setup.s

 18 SYSSEG = 0x1000 ! system loaded at 0x10000 (65536).

 19 SETUPSEG = 0x9020 ! this is the current segment

 20

 21 .globl begtext, begdata, begbss, endtext, enddata, endbss

 22 .text

 23 begtext:

 24 .data

 25 begdata:

 26 .bss

 27 begbss:

 28 .text

 29

 30 entry start

 31 start:

 32

 33 ! ok, the read went well so we get current cursor position and save it for

 34 ! posterity.

 35

 ! Use BIOS int 0x10 function 0x03 to read cursor position and save it to address 0x90000.

 ! input: bh = page number;

 ! return: ch = start scan line; cl = end scan line;

 ! dh = row number (0x00 is top); dl = col number (0x00 is left).

 36 mov ax,#INITSEG ! this is done in bootsect already, but...

 37 mov ds,ax

 38 mov ah,#0x03 ! read cursor pos

 39 xor bh,bh

 40 int 0x10 ! save it in known place, con_init fetches

 41 mov [0],dx ! it from 0x90000.

 42

 43 ! Get memory size (extended mem, kB)

 ! Use BIOS int 0x15 function 0x88 to get extended memory size and save the word to 0x90002.

 ! Return: CF clear if successful

 ! AX = number of contiguous KB starting at absolute address 0x100000(1Mb)

 44

 45 mov ah,#0x88

 46 int 0x15

 47 mov [2],ax

 48

 49 ! Get video-card data:

 ! Get current video mode by using BIOS int 0x10 function 0x0f and store it.

 ! Return: Ah = number of char columns; al = display mode; bh = active page

 ! Active page number is stored at 0x90004 (one word), display mode is store at 0x90006,

 ! char columns is stored at 0x90007.

 50

 51 mov ah,#0x0f

 52 int 0x10

 53 mov [4],bx ! bh = display page

 54 mov [6],ax ! al = video mode, ah = window width

 55

 56 ! check for EGA/VGA and some config parameters

 ! Use BIOS int 0x10 alternate function: ah = 0x12, bl = 0x10 to get EGA/VGA info.

 ! Return:

 ! bh = video state

3.4 setup.s

 ! 0x00 - color mode in effect, I/O port 0x3dx

 ! 0x01 - mono mode in effect, I/O port 0x3bx

 ! bl = installed memory

 ! 0x00 - 64Kb; 0x01 - 128Kb; 0x02 - 192Kb; 0x03 - 256Kb

 ! ch = feature connector bits

 ! cl = switch settings (see the description at the end of the program)

 57

 58 mov ah,#0x12

 59 mov bl,#0x10

 60 int 0x10

 61 mov [8],ax ! 0x90008 = ??

 62 mov [10],bx ! 0x9000A = display mem; 0x9000B = display mode

 63 mov [12],cx ! 0x9000C = display adapter properties.

 64

 65 ! Get hd0 data

 ! Get hd0 parameter table info pointed at by BIOS int 0x41. Table for hd1 is immediately

 ! following the parameter table of hd0. BIOS int 0x46 also point at hd1's table. Table len

 ! is 16 bytes. These two table are stored at location 0x90080 and 0x90090 seperately.

 66

 67 mov ax,#0x0000

 68 mov ds,ax

 69 lds si,[4*0x41] ! get vector value of int 0x41 --> ds:si

 70 mov ax,#INITSEG

 71 mov es,ax

 72 mov di,#0x0080 ! transfer to address: 0x9000:0x0080 --> es:di

 73 mov cx,#0x10 ! total bytes transferred (16 bytes)

 74 rep

 75 movsb

 76

 77 ! Get hd1 data

 78

 79 mov ax,#0x0000

 80 mov ds,ax

 81 lds si,[4*0x46] ! get vector value of int 0x46 --> ds:si

 82 mov ax,#INITSEG

 83 mov es,ax

 84 mov di,#0x0090 ! transfer to address: 0x9000:0x0090 --> es:di

 85 mov cx,#0x10

 86 rep

 87 movsb

 88

 89 ! Check that there IS a hd1 :-) If not so, then clear the second table.

 ! Use BIOS int 0x13 function 0x15 (Get disk type) to check.

 ! Input: dl = drive number (0x8X for harddisk. 0x80 - hd0; 0x81 - hd1)

 ! Output: ah = type code.

 ! 0x00 - no such drive; 0x01 - floppy without change-line support;

 ! 0x02 - floppy (or other removable drive) with change-line support. 0x03 - hardisk.

 90

 91 mov ax,#0x01500

 92 mov dl,#0x81

 93 int 0x13

 94 jc no_disk1

 95 cmp ah,#3 ! It's a harddisk? (type =3 ?)

3.4 setup.s

 96 je is_disk1

 97 no_disk1:

 98 mov ax,#INITSEG ! There is no hd1, so clear the table for hd1

 99 mov es,ax

100 mov di,#0x0090

101 mov cx,#0x10

102 mov ax,#0x00

103 rep

104 stosb

105 is_disk1:

106

107 ! now we want to move to protected mode ...

108

109 cli ! no interrupts allowed !

110

111 ! first we move the system to it's rightful place

 ! The system module has been loaded by bootsect program from disk into memory start at address

 ! 0x10000(64Kb). Now we move it down to begin from physical address zero. The range to move

 ! is from 0x10000 to 0x8ffff, as Linus assume that the length of system module would not exceed

 ! 0x80000(512Kb) at that time.

112

113 mov ax,#0x0000

114 cld ! 'direction'=0, movs moves forward

115 do_move:

116 mov es,ax ! destination segment ! es:di=target addr (init to 0x0000:0x0)

117 add ax,#0x1000

118 cmp ax,#0x9000 ! Finished moving 64Kb start from seg 0x8000?

119 jz end_move

120 mov ds,ax ! source segment ! ds:si=source addr (init to 0x1000:0x0)

121 sub di,di

122 sub si,si

123 mov cx,#0x8000 ! mve 0x8000 words (64kbytes)

124 rep

125 movsw

126 jmp do_move

127

128 ! then we load the segment descriptors

 ! From here, we start enconter the operating of protected mode. Before entering protected

 ! mode, we must first setup two segment descripter tables: Globle descripter table and

 ! Interrupt descripter table.

 ! Instruction LIDT is used to load interrupt descripter table register(IDTR). It's operand is

 ! 6 bytes long. Bytes 0-1 is the length of descripter table; Bytes 2-5 is the base address

 ! in linear address space. Refer to the description in L219-220 and L223-224 below. Each

 ! item (8 bytes) in interrupt descripter table indicats the code info be called when a

 ! corresponding interrupt request happened, something like a int vector in real mode but

 ! contains more information.

 ! Instruction LGDT is used to load global descripter table register (GDTR). It's operand

 ! format is same as LIDT. Each item (8 bytes) in the table describes the information of

 ! a code or data (or TSS LDT etc) segment under protected mode, including the segment size

 ! limit (16 bits), base address (32 bits), priority level, existence, read/write permission

 ! and some other flags. Ref to L205-216.

 !

129

3.4 setup.s

130 end_move:

131 mov ax,#SETUPSEG ! right, forgot this at first. didn't work :-)

132 mov ds,ax ! ds points to the segment of setup program.

133 lidt idt_48 ! load idt with 0,0

134 lgdt gdt_48 ! load gdt with whatever appropriate

135

136 ! that was painless, now we enable A20

 ! Refer to the description about A20 signal line after this program. The I/O ports and

 ! commands used here are described in section related to kernel/chr_drv/keyboard.S

137

138 call empty_8042 ! wait for empty of input buffer.

 ! we can write port only when the input buffer is empty.

139 mov al,#0xD1 ! command write ! code 0xD1 indicates writing to 8042

140 out #0x64,al ! port P2. Bit 1 on P2 is used to control A20.

141 call empty_8042 ! wait for buffer empty to see if the privious

 ! command has been accepted.

142 mov al,#0xDF ! A20 on paras.

143 out #0x60,al ! data needs to be write to port 0x60.

144 call empty_8042 ! wait for A20 be enabled.

145

146 ! well, that went ok, I hope. Now we have to reprogram the interrupts :-(

147 ! we put them right after the intel-reserved hardware interrupts, at

148 ! int 0x20-0x2F. There they won't mess up anything. Sadly IBM really

149 ! messed this up with the original PC, and they haven't been able to

150 ! rectify it afterwards. Thus the bios puts interrupts at 0x08-0x0f,

151 ! which is used for the internal hardware interrupts as well. We just

152 ! have to reprogram the 8259's, and it isn't fun.

153

 ! 0x11 below indicates the start of initialize. It is a ICW1 command word represents

 ! edge trigger, multi 8259 chips and will send ICW4 at the end of the sequence.

154 mov al,#0x11 ! initialization sequence

155 out #0x20,al ! send it to 8259A-1

 ! The two words defined below are instructions represented in machine code, used for delay.

156 .word 0x00eb,0x00eb ! jmp $+2, jmp $+2 ! '$' represents current addr.

157 out #0xA0,al ! and to 8259A-2

158 .word 0x00eb,0x00eb

159 mov al,#0x20 ! start of hardware int's (0x20)

160 out #0x21,al ! Send to 8259A-1 chip, odd port.(ICW2)

161 .word 0x00eb,0x00eb

162 mov al,#0x28 ! start of hardware int's 2 (0x28)

163 out #0xA1,al ! Send to 8259A-2 chip.(ICW2)

164 .word 0x00eb,0x00eb

165 mov al,#0x04 ! 8259-1 is master. The IRQ2 of master chip is

166 out #0x21,al ! connected to the int line of of slave chip.(ICW3)

167 .word 0x00eb,0x00eb ！

168 mov al,#0x02 ! 8259-2 is slave. The INT line is connected to

169 out #0xA1,al ! the IRQ2 of master chip.(ICW3)

170 .word 0x00eb,0x00eb

171 mov al,#0x01 ! 8086 mode for both. Send ICW4 command word: 8086

172 out #0x21,al ! mode, normal EOI, need instruction to reset int.

173 .word 0x00eb,0x00eb

174 out #0xA1,al ！Send ICW4 to slave chip.

175 .word 0x00eb,0x00eb

3.4 setup.s

176 mov al,#0xFF ! mask off all interrupts for now

177 out #0x21,al

178 .word 0x00eb,0x00eb

179 out #0xA1,al

180

181 ! well, that certainly wasn't fun :-(. Hopefully it works, and we don't

182 ! need no steenking BIOS anyway (except for the initial loading :-).

183 ! The BIOS-routine wants lots of unnecessary data, and it's less

184 ! "interesting" anyway. This is how REAL programmers do it.

185 !

186 ! Well, now's the time to actually move into protected mode. To make

187 ! things as simple as possible, we do no register set-up or anything,

188 ! we let the gnu-compiled 32-bit programs do that. We just jump to

189 ! absolute address 0x00000, in 32-bit protected mode.

190

191 mov ax,#0x0001 ! protected mode (PE) bit !

192 lmsw ax ! This is it! !

193 jmpi 0,8 ! jmp offset 0 of segment 8 (cs)

 !! As we have moved the system module begin at the absolute address 0x0000, the jump

 !! instruction above will pass the CPU controls to the head.s code at the begin of

 !! system module. The segment selector (8) is used to select a segment descripter

 !! in an identified descripter table. Segment selector has 16 bits, bit 0-1 represents

 !! requested privilege level (RPL), bit 2 is a table indicator used to specify the

 !! refered descriptor table (0 - GDT, 1- LDT), bit 3-15 is INDEX field used to index

 !! a descripter in the talbe. A sepecified descripter address is:

 !! Table Base Address + INDEX * 8

 !! So segment selector 8 (0b0000,0000,0000,1000) means RPL=0, selects item 1 (INDEX=1)

 !1 within globle descripter table (GDT). This specified descripter indicates that the

 !! segment base address is 0 (see L209), so the instruction of L193 will jump to the

 !! beginning of system module.

194

195 ! This routine checks that the keyboard command queue is empty

196 ! No timeout is used - if this hangs there is something wrong with

197 ! the machine, and we probably couldn't proceed anyway.

 !! Only when the input buffer is empty (bit2 = 0 of status reg.), could we write to it.

198 empty_8042:

199 .word 0x00eb,0x00eb ! Delay a little while.

200 in al,#0x64 ! Read keyboard (8042) status port

201 test al,#2 ! is input buffer full?

202 jnz empty_8042 ! yes - loop

203 ret

204

 ! Here begins the global descripter table. It, now, contains 3 descripters.

 ! The first one is not used (4 zero words) but must be existed. The second one is kernel

 ! code segment descripter (L208-211). The third one is kernel data segment descripter.

205 gdt:

206 .word 0,0,0,0 ! dummy

207

 ! The offset at this location is 0x08 within GDT, and is used when load code segment reg.

208 .word 0x07FF ! 8Mb - limit=2047 (2048*4096=8Mb)

209 .word 0x0000 ! base address=0

210 .word 0x9A00 ! code read/exec

211 .word 0x00C0 ! granularity=4096, 386

3.4 setup.s

212

 ! The offset at this location is 0x10 within GDT, and is used when load data segment reg.

213 .word 0x07FF ! 8Mb - limit=2047 (2048*4096=8Mb)

214 .word 0x0000 ! base address=0

215 .word 0x9200 ! data read/write

216 .word 0x00C0 ! granularity=4096, 386

217

 ! Here is the operands for instruction LIDT (Load Interrupt Descriptor Table Register).

218 idt_48:

219 .word 0 ! idt limit=0

220 .word 0,0 ! idt base=0L

221

 ! Here is the operands for instruction LGDT (Load Global Descriptor Table Register).

222 gdt_48:

223 .word 0x800 ! gdt limit=2048, total 256 GDT entries

224 .word 512+gdt,0x9 ! gdt base = 0X9xxxx

 ! Two words above form a leaner address: 0x0009<<16 + 0x0200+gdt

 ! that is: 0x90200 + gdt(the offset of GDT table in this program, L205)

225

226 .text

227 endtext:

228 .data

229 enddata:

230 .bss

231 endbss:

3.4.3 Infomation
 In order to gathering the basic parameters of the machine, program setup invokes the BIOS

interrupt calls many times and start doing some I/O operating to the hardware ports. Below we

briefly describe these BIOS interrupts used and give a simple description about the A20 issue.

At the end of this section, we mentioned the Intel 32 bits protected mode again.

3.4.3.1 Current memory map
 After setup.s finished execution, the system module has been moved to the beginning of the

physical address 0x0000 in memory. Some machine parameters are stored starting at address

0x90000. The memory map at this moment is depicted in Figure 3-6.

3.4 setup.s

Figure 3-6 The memory map after end of setup.s execution

 At this moment, the golbal descriptor table contains three descriptors. The first one is not

used. The other two are kernel code and data segment descripters separately. The base address

in these two descriptors is point to the start of the memory (0x0000). Therefore, when setup.s

executes its last instruction: "jmpi 0,8", the CPU control is passed to the head.s code at the

beginning of system module. The operand value '8' is a segment selector indicating the segment

descriptor used. It indicates the code segment descriptor in global descriptor table in this

case. The operand value '0' is the offset in code segment.

3.4.3.2 BIOS display interrupt 0x10
 In Table 3-2 we list the details for function ah = 0x12 (obtaining display adapter info).

Table 3-2 Get vedio adapter infoamtion(function: ah = 0x12，bh = 0x10）

In/Out Info Register Descriptions

ah function number= 0x12, Get adapter information
Input info.

bh sub function number = 0x10

bh

Video state:

0x00 – color mode in effect (I/O port is 0x3dx);

0x01 – mono mode in effect (I/O port is 0x3bx);

Note that the value of x in port address is between 0x0 - 0xf.

bl
Installed memory:

00 = 64K, 01 = 128K, 02 = 192K, 03 = 256K

Return info

ch Feature connector bits:

bit(s) Description

0 Feat 1 line, state 2;

1 Feat 0 line, stat 2;

0x90200

0x00000

temp GDT talbe

system module

setup.s program

0x90000

head.s code

Machine paras.

Lib module

Memory Management

module (mm)

Kernel Module

main.c code

part of setup.s

Code Seg. Desc.

Data Seg. Desc.

 Overlayed the
bootsect.s

3.4 setup.s

2 Feat 1 line, stat 1;

3 Feat 0 line, stat 1;

4-7 unused(0).

cl

Video switch settings:

bit(s) Description

0 switch 1 off;

1 switch 2 off;

2 switch 3 off;

3 switch 4 off;

4-7 unused.

Values for switch settings on original EGA/VGA:

00h MDA/HGC;

01h-03h MDA/HGC;

04h CGA 40x25;

05h CGA 80x25;

06h EGA+ 40x25;

07h-09h EGA+ 80x25;

0Ah EGA+ 80x25 mono;

0Bh EGA+ 80x25 mono;

3.4.3.3 Hard disk parameter table ("INT 0x41")
 The vector corresponding to BIOS interrupt 0x41 is the address of first hard disk in the

machine. This address may be overridden by the hard disk controller's BIOS to support drive

formats unknown to the ROM BIOS. BIOSes which support four had drives may store the parameter

tables for drives 0x81--0x83 immediately following the parameter table pointed at by int 0x41.

The second drive (0x81) hard disk parameter table is also pointed at by int 0x46. The format

of fixed hard disk parameters is shown in Table 3-3.

Table 3-3 Format of hard disk parameters

Offset Size Name Description

0x00 word cyl number of cylinders.

0x02 byte head number of heads.

0x03 word start reducing write current cylinder (XT only, 0 for others).

0x05 word wpcom start write precompensation cylinder number (multiply 4)

0x07 byte maximum ECC burst length (XT only).

0x08 byte ctl

control byte (drive steps selection)

bit 0 unused;

bit 1 reserved (0) (disable IRQ);

bit 2 reserved (0) (no reset)

bit 3 set if more than 8 heads;

bit 4 always 0;

bit 5 set if manufacturer's defect map on max cylinder+1;

bit 6 disable ECC retries;

bit 7 disable access retries.

3.4 setup.s

0x09 byte standard timeout (XT only, 0 for others).

0x0A byte formatting timeout (XT and WD1002 only, 0 for others).

0x0B byte timeout for checking drive (XT and WD1002 only, 0 for others).

0x0C word lzone cylinder number of landing zone.

0x0E byte sect number of sectors per track.

0x0F byte reserved.

3.4.3.4 A20 Address Line
 In August 1981, IBM delivered the first IBM PC. It contains a Intel 8088 processor and has

only 20 address lines (A0 - A19). Therefore, its addressing range is in 0x000000-0x10ffef

(0xffff:0xffff) and was suitable for memory size only within several hundred kerobytes at that

time. When program access the address greater than 0x100000, for example 0x10ffef,it would wrap

to 0x00ffef silently and some programs did use this property for running. When IBM introduced

the PC/AT in 1985, it uses a Intel 80286 CPU which has 24 address lines and can address 16Mb

physical memory. In order to be 100% compatible with the original PC in real mode, IBM invented

a switch to enable/disable the 0x100000 address bit. Since the keyboard controller chip 8042

happened to have a spare pin (output port P2, bit 1, pin P21), that was used to contaol the

AND gate that disables this address bit. The signal is called A20, and if it is zero, bit 20

of all addresses is cleared.

 Since the default status of A20 address line is disabled at boot time, the operating system

has to do something to enable it. The enableing procedures are varient depending on the chipset

used for implementing this property by compatible PC manufactory. The classical method used

by most software is via the keyboard controller as used in setup.s program (L138-144).

 Some operating systems use the switching off and on of A20 as part of the standard procedure

to switch between real address mode and protected mode. Since the keyboard controller is

relatively very slow, a Fast Gate A20 Option was introduced, where I/O port 0x92 is used to

handle A20. Another way used by some systems is to read I/O port 0xee to enable A20, and write

to it to disable A20.

3.4.3.5 8259A Interrupt Controller Chip
 Intel 8259A is a programmable interrupt control chip. Each chip can handle 8 interrupt

request sources. On PC/AT and compatibles, two 8259A chips are used to handle 16 posible

interrupt sources IRQ0 -- IRQ15. One 8259A is called the "Master" with I/O address ranging from

0x20 to 0x3f, the other is called the "Slave" with I/O address ranges of 0xa0--0xbf. The Master's

INT is connected to CPU, the Slave's INT pin is connected to the Master's IRQ2 as shown in Figure

3-7.

3.4 setup.s

Figure 3-7 PC/AT nested connection 8259A controller system

 Under the controling bus controller, 8259A can be at programming or operating status. Before

normal operation can begin, each 8259A must be initialized to be ready to accept interrupt

requests from peripheral devices (IRQ0 -- IRQ15) using Initialization Command Words (ICWs).

During the operation, CPU can command the 8259A to operate in various modes through the Operation

Command Words (OCWs). From the selection of priority, 8259A will select the interrupt request

that has highest priority to serve and passed the request to CPU through the INT pin. When CPU

responding to the request, a interrupt number is sent to CPU from the data bus D7--D0. CPU,

thus, obtains the current interrupt vector corresponding to the interrupt number and executing

the related interrupt routine.

 Once the CPU has an identifying vector, it uses this number to select one of 256

programmer-defined interrupt handling routines. So we should write code to deal with each of

these cases. To choose the correct handler in protected mode, CPU will consults the IDT - the

Interrupt Descriptor Table. The IDT contains exactly 256 interrupt descriptors. After the CPU

acquires a interrupt vector, it uses that number as a direct index into the IDT. If a hardware

device passes a vector of 32, the 32th descriptor is used.

 In the Linux kernel code, the interrupt number corresponding to the peripheral device

interrupt request signal is programmed to start from int 32 to int 47 (0x20 --0x2f). Interrupt

number ranging from int 0 to int 31 is reserved to be used by CPU internally.

3.4.3.6 Intel CPU 32 bits protected mode
 Intel 32-bit CPU may runs under two different mode: the real-address mode and protected

mode. The protected mode is the natural 32-bit environment of the Intel 80X86 and support

multitasking operatin system, virtual memory management. see the reference materials for

detailed information.

IR0
IR1 INT
IR2
IR3 8259A
IR4 Master
IR5
IR6
IR7

A0
CS
 CAS2-0

Timer IRQ0
Keyboard IRQ1
Cascade IRQ2
Serial2 IRQ3
Serial1 IRQ4
Parall2 IRQ5
Floppy IRQ6
Parall1 IRQ7

Addr.0x20-0x3f

IR0 CAS2-0
IR1 INT
IR2
IR3 8259A
IR4 Slave
IR5
IR6
IR7

A0
CS

RealClock IRQ8
INT0AH IRQ9
Reserved IRQ10
Reserved IRQ11
PS2 Mouse IRQ12
FPU int IRQ13
Harddisk IRQ14
Reserved IRQ15

Addr.0xa0-0xbf

INTR

 CPU

Data D7-D0

3.5 head.s

3.5 head.s

3.5.1 Function
 The head.s is the first part of system module and this is the reason it gots its name. From

here, the kernel is totally running under the protected mode. The assembly language syntax of

head.s uses AT&T's format and compiled by GNU assembler. This is different from the Intel's

format.

 The most significant difference is that, while Intel's syntax uses 'op dest, src', AT&T syntax

uses 'op src, dest'. The easy way to distinguish these two kind of assembly syntax is to look

for the '%' symbols. AT&T names the registers like %eax, %ebx, etc. The other major difference

is that the operand size in AT&T syntax is clear from the instruction. For a 'inc' instruction

in Intel format, you have incb, incw and incl to use 8, 16 or 32 bits operands. If the size

is clear from the operands, you can just write 'inc', but if it's memory operand, then you should

indicates the operand size by instruction, for example, 'incl foo'.

 Immediate values are written with a leading symbol '$'. Thus, 'movl foo, %eax' copies the

contents of memory location foo into %eax. 'movl $foo, %eax' copies the value of foo. For example,

'movl 55, $eax' is to fetch from an absolute address, while 'movl $55, %eax' is to load an

immediate value to $eax.

 Addressing modes are written 'offset(base, index, scale)'. You may leave out anything

irrelevant. So '(%eax)' is legal, as is '-44(%ebx, %eax)', which is equivalent to '-44(%ebx,

%eax,1)'. Legal scales are 1, 2, 4 and 8.

 Actually, head.s is located at beginning of physical memory and its function is simple. It

first loads each data segment registers, reconfigures the interrupt descriptor table (IDT) with

256 descriptor items. Each item point to a same dummy interrupt routine by default. Then,

reinstalls the global descriptor table (GDT), checks whether the A20 address line is been enabled

by circlely comparing the containts of the location begin from physical address 0x000000 and

0x100000. If all values are same, it means the A20 line is not enabled and the system enter

dead cycling.

 Afterwards, the code checks to see if there is a math coprocessor in the system and set relating

flag bits in the control register CR0. Then, it sets up one page directory table and 4 page

tables used for memory management system of CPU begin from physical address 0x0000, this will

overlay the head.s program after it finishes its function. The page directory table (PDT)

occupies 1 memory page (4096 bytes) and the 4 page tables occupy 16Kb memory used for addressing

16Mb physical memory by the kernel code. At last, it sets up /init/main.c's entry point in the

stack and passed the control to it using a ret instruction.

3.5.2 Code Comments
Program 3-3 linux/boot/head.s

 1 /*

 2 * linux/boot/head.s

3.5 head.s

 3 *

 4 * (C) 1991 Linus Torvalds

 5 */

 6

 7 /*

 8 * head.s contains the 32-bit startup code.

 9 *

 10 * NOTE!!! Startup happens at absolute address 0x00000000, which is also where

 11 * the page directory will exist. The startup code will be overwritten by

 12 * the page directory.

 13 */

 14 .text

 15 .globl _idt,_gdt,_pg_dir,_tmp_floppy_area

 16 _pg_dir: # page directory will begin from here

 17 startup_32:

 # L18--22 are used to setup each data segment register.

 # Notice that here is in protected mode, so the immediate value operand '$0x10' of the following

 # instruction is a segment descriptor's selector. It indexed into GDT table's item 2, which

 # is a data segment descriptor of the kernel.

 # The following instructions are used to setup segment register to point at the kernel data

 # segment and setup the kernel stack area within the user_stack array which is pointed to by

 # stack_start at the end of the array. Then, reload IDTR and GDTR with new table pointers defined

 # at the end of this program. The contents of the two new descriptor tables are almost the

 # same except the limit size changed from 8Mb to 16Mb. So, Afterwards, we need reload those

 # data segment registers again.

 # stack_start is a long pointer defined at L69 in kernel/sched.c.

 18 movl $0x10,%eax

 19 mov %ax,%ds

 20 mov %ax,%es

 21 mov %ax,%fs

 22 mov %ax,%gs

 23 lss _stack_start,%esp # _stack_start --> ss:esp, setup kernel stack.

 24 call setup_idt

 25 call setup_gdt

 26 movl $0x10,%eax # reload all the segment registers

 27 mov %ax,%ds # after changing gdt. CS was already

 28 mov %ax,%es # reloaded in 'setup_gdt'

 29 mov %ax,%fs

 30 mov %ax,%gs

 31 lss _stack_start,%esp

 # L32-36 are used to check if A20 line is enabled. The adopted method is to write a arbitrary

 # value begin at the location 0x000000++ and compared it with the value at location 0x100000.

 # If they are the same then continue the comparisons until the find a difference or system

 # crashes. If A20 is not enabled, then we can not use the memory above address 0x100000.

 32 xorl %eax,%eax

 33 1: incl %eax # check that A20 really IS enabled

 34 movl %eax,0x000000 # loop forever if it isn't

 35 cmpl %eax,0x100000

 36 je 1b # '1b' means jump backward to the label 1 (L33)

 # If it's a '5f', then it means jump forward to label 5.

 37 /*

 38 * NOTE! 486 should set bit 16, to check for write-protect in supervisor

 39 * mode. Then it would be unnecessary with the "verify_area()"-calls.

3.5 head.s

 40 * 486 users probably want to set the NE (#5) bit also, so as to use

 41 * int 16 for math errors.

 42 */

 # The following lines is used to check the existence of math coprocessor. The method used is

 # to modify control register CR0 first, set MP flag (math present, bit 1) on assumption. Then

 # executes a math instruction. If an error occurred, means no math presented. So we have to

 # reset MP flag and setup EM (Emulate Math, bit 2) flag in the CR0.

 43 movl %cr0,%eax # check math chip

 44 andl $0x80000011,%eax # Save PG,PE,ET

 45 /* "orl $0x10020,%eax" here for 486 might be good */

 46 orl $2,%eax # set MP

 47 movl %eax,%cr0

 48 call check_x87

 49 jmp after_page_tables # Jump to L135

 50

 51 /*

 52 * We depend on ET to be correct. This checks for 287/387.

 53 */

 54 check_x87:

 55 fninit

 56 fstsw %ax

 57 cmpb $0,%al

 58 je 1f /* no coprocessor: have to set bits */

 59 movl %cr0,%eax

 60 xorl $6,%eax /* reset MP, set EM */

 61 movl %eax,%cr0

 62 ret

 # The following is a assembler directive used to pad the assembler's location counter to a

 # particular memory boundary. The number is the low-order zero bits the location counter

 # must have after advancement for a.out format. Here, '.align 2' means to advances the location

 # counter until it a multiple of 4.

 63 .align 2

 64 1: .byte 0xDB,0xE4 /* fsetpm for 287, ignored by 387 */ # 287 协处理器码。

 65 ret

 66

 67 /*

 68 * setup_idt

 69 *

 70 * sets up a idt with 256 entries pointing to

 71 * ignore_int, interrupt gates. It then loads

 72 * idt. Everything that wants to install itself

 73 * in the idt-table may do so themselves. Interrupts

 74 * are enabled elsewhere, when we can be relatively

 75 * sure everything is ok. This routine will be over-

 76 * written by the page tables.

 77 */

 # Although the descriptor in the IDT is 8 bytes same as in GDT, its format is different,

 # and be called gate descriptor. Bytes 0-1, 6-7 are offset in the segment, bytes 2-3 are

 # segment selector, bytes 4-5 are some of flags.

 78 setup_idt:

 79 lea ignore_int,%edx # Get effective address of ignore_int to edx.

 80 movl $0x00080000,%eax # Set selector 0x0008 into the high 16-bit of eax.

 81 movw %dx,%ax /* selector = 0x0008 = cs */

3.5 head.s

 # Set the low 16-bit of offset into eax. Now, eax contains

 # the low 4 bytes of a gate descriptor.

 82 movw $0x8E00,%dx /* interrupt gate - dpl=0, present */

 83 # Now, edx contains high 4 bytes of a gate descriptor.

 84 lea _idt,%edi # _idt is the address of IDT talbe.

 85 mov $256,%ecx

 86 rp_sidt:

 87 movl %eax,(%edi) # Store the dummy gate descriptor into the talbe.

 88 movl %edx,4(%edi)

 89 addl $8,%edi # edi points to next item in the table.

 90 dec %ecx

 91 jne rp_sidt

 92 lidt idt_descr # Load the IDT talbe register.

 93 ret

 94

 95 /*

 96 * setup_gdt

 97 *

 98 * This routines sets up a new gdt and loads it.

 99 * Only two entries are currently built, the same

100 * ones that were built in init.s. The routine

101 * is VERY complicated at two whole lines, so this

102 * rather long comment is certainly needed :-).

103 * This routine will beoverwritten by the page tables.

104 */

105 setup_gdt:

106 lgdt gdt_descr # See L234-238

107 ret

108

109 /*

110 * I put the kernel page tables right after the page directory,

111 * using 4 of them to span 16 Mb of physical memory. People with

112 * more than 16MB will have to expand this.

113 */

 # A page table is an array of 32-bit page specifiers. A page table is itself a page, and

 # thereofre contains 4 Kb memory or at most 1K entries. Two levels of tables are used to

 # address a page of memory. At the higher level is a page directory. The page directory

 # addresses up to 1K page tables of the second level. A page table of the second level

 # addresses up to 1K pages. All the talbes addressed by on page directory table, therefore,

 # can address 1M pages or 4G memory for entire physical address space of the 80386.

 # The physical address of the page directory table is stored in the register CR3, also

 # called page directory base register (PDBR).

 # Entries in either level of page tables have the same format. Bits 31-12 is the page frame

 # address specifies the physical starting address of a page. In a page directory, the page

 # frame address is the address of a page table. Bits 11-0 indicates the property of a page.

 # Bit 0, for example, is the present flag indicates whether a page table entry can be used

 # in address translation. Bits 2-1 are used for page-level protection (Read/Write,Supervisor).

114 .org 0x1000 # From the offset of the program, we reserve 4Kb space for page table 0

115 pg0:

116

117 .org 0x2000

118 pg1:

119

3.5 head.s

120 .org 0x3000

121 pg2:

122

123 .org 0x4000

124 pg3:

125

126 .org 0x5000 # Start offset address for floppy transfer erea.

127 /*

128 * tmp_floppy_area is used by the floppy-driver when DMA cannot

129 * reach to a buffer-block. It needs to be aligned, so that it isn't

130 * on a 64kB border.

131 */

132 _tmp_floppy_area:

133 .fill 1024,1,0 # Reserve 1024 items, 1 byte per item, filled with 0.

134

 # Several pushes bellow are used to prepare an environment for passing controls to the

 # kernel/main.c program. The first three pushes are used to push values cooresponding to

 # arguments envp, argv and argc for main(). $L6 is the return address for main.c, $_main

 # is the address of main. When execute instruction 'ret' at L218, the address of main

 # is popped and the control will be transfer to main.c program.

135 after_page_tables:

136 pushl $0 # These are the parameters to main :-)

137 pushl $0

138 pushl $0

139 pushl $L6 # return address for main, if it decides to.

140 pushl $_main

141 jmp setup_paging # Jump to L198.

142 L6:

143 jmp L6 # main should never return here, but

144 # just in case, we know what happens.

145

146 /* This is the default interrupt "handler" :-) */

147 int_msg:

148 .asciz "Unknown interrupt\n\r"

149 .align 2

150 ignore_int:

151 pushl %eax

152 pushl %ecx

153 pushl %edx

154 push %ds # Notice that although the ds, es, etc are 16-bit register,

 # they still occupy 4 bytes each in stack space.

155 push %es

156 push %fs

157 movl $0x10,%eax # Set to point to kernel data segment.

158 mov %ax,%ds

159 mov %ax,%es

160 mov %ax,%fs

161 pushl $int_msg # Push the argument for calling printk() function.

162 call _printk # printk() is in /kernel/printk.c

163 popl %eax

164 pop %fs

165 pop %es

166 pop %ds

3.5 head.s

167 popl %edx

168 popl %ecx

169 popl %eax

170 iret

171

172

173 /*

174 * Setup_paging

175 *

176 * This routine sets up paging by setting the page bit

177 * in cr0. The page tables are set up, identity-mapping

178 * the first 16MB. The pager assumes that no illegal

179 * addresses are produced (ie >4Mb on a 4Mb machine).

180 *

181 * NOTE! Although all physical memory should be identity

182 * mapped by this routine, only the kernel page functions

183 * use the >1Mb addresses directly. All "normal" functions

184 * use just the lower 1Mb, or the local data space, which

185 * will be mapped to some other place - mm keeps track of

186 * that.

187 *

188 * For those with more memory than 16 Mb - tough luck. I've

189 * not got it, why should you :-) The source is here. Change

190 * it. (Seriously - it shouldn't be too difficult. Mostly

191 * change some constants etc. I left it at 16Mb, as my machine

192 * even cannot be extended past that (ok, but it was cheap :-)

193 * I've tried to show which constants to change by having

194 * some kind of marker at them (search for "16Mb"), but I

195 * won't guarantee that's all :-()

196 */

 # One page directory table and 4 second level page table are stored begin from physical

 # memory 0x000. The page directory table are shared by all tasks (processes) in the

 # system, but the 4 page tables are used by kernel code only. Page tables used by new

 # process is to be created within the main memory area (MMA) of the system.

197 .align 2

198 setup_paging: # First clear the area for 5 pages

199 movl $1024*5,%ecx /* 5 pages - pg_dir+4 page tables */

200 xorl %eax,%eax

201 xorl %edi,%edi /* pg_dir is at 0x000 */

202 cld;rep;stosl

 # L203-206 are used to setup items in the page directory table for the kernel code. As the

 # kernel has only 4 page tables, we need only setup 4 items in page directory table now.

 # '$pg0+7' represents 0x00001007, is the first entry in pg_dir table. The address of it, thus,

 # is 0x00001007 & 0xfffff000 = 0x1000. The property of it is 0x00001007 & 0x00000fff = 0x7,

 # means the page is exist, user can read/write.

203 movl $pg0+7,_pg_dir /* set present bit/user r/w */

204 movl $pg1+7,_pg_dir+4 /* --------- " " --------- */

205 movl $pg2+7,_pg_dir+8 /* --------- " " --------- */

206 movl $pg3+7,_pg_dir+12 /* --------- " " --------- */

 # L207-212 are used to fill up all entries in 4 kernel page tables.

 # Total entries are 4 * 1024 = 4096 (0x0 - 0xfff). They can map 4096 * 4Kb = 16 Mb physical

 # memory. The contents of each entry is: The physical address mapped + flags of this page (0x7).

 # The processing method is backward fill in the entry begin from the last entry in the last

3.5 head.s

 # page table. The location of last entry in a table is at offset 1023 * 4 = 4092 in the table.

 # So, the last entry location in the last page table is $pg3 + 4092 and its corresponding

 # physical address is 0xfff000, plus property flags we get 0xfff007.

207 movl $pg3+4092,%edi # edi points to last entry in last page table.

208 movl $0xfff007,%eax /* 16Mb - 4096 + 7 (r/w user,p) */

209 std # Set direction flag. edi decreases 4 bytes each.

210 1: stosl /* fill pages backwards - more efficient :-) */

211 subl $0x1000,%eax # Decrease address 0x1000 after fill one entry

212 jge 1b # If less than 0, then all finished.

 # Set the page directory base address register CR3.

213 xorl %eax,%eax /* pg_dir is at 0x0000 */

214 movl %eax,%cr3 /* cr3 - page directory start */

 # Set PG flag to use paging (set bit 31 of CR0).

215 movl %cr0,%eax

216 orl $0x80000000,%eax # add PG flag.

217 movl %eax,%cr0 /* set paging (PG) bit */

218 ret /* this also flushes prefetch-queue */

 # At this point, the CPU passed the control to init/main.c program. This program is end.

219

220 .align 2

221 .word 0

222 idt_descr: # 6 bytes operand for lidt instruction (limit, base)

223 .word 256*8-1 # idt contains 256 entries

224 .long _idt

225 .align 2

226 .word 0

227 gdt_descr: # 6 bytes operand for lgdt instruction (limit, base)

228 .word 256*8-1 # so does gdt (note that that's any

229 .long _gdt # magic number, but it works for me :^)

230

231 .align 3

232 _idt: .fill 256,8,0 # idt is uninitialized. 256 items, 8 bytes per, filled 0

233

 # The following is the contents of global descriptor table (GDT). The first descriptor (L234)

 # is a NULL descriptor (reserved and not used). The second (L235) is for kernel code segment.

 # The third (L236) is for kernel data segment. The fourth (L237) is for system segment but

 # not used in this kernel. The remaining 252 descriptors is used for each process or task.

 # (0-nul, 1-cs, 2-ds, 3-sys, 4-TSS0, 5-LDT0, 6-TSS1, 7-LDT1, 8-TSS2 etc ...)

234 _gdt: .quad 0x0000000000000000 /* NULL descriptor */

235 .quad 0x00c09a0000000fff /* 16Mb */ # code seg, 0x08，limit 16Mb

236 .quad 0x00c0920000000fff /* 16Mb */ # data seg, 0x10，limit 16Mb

237 .quad 0x0000000000000000 /* TEMPORARY - don't use */

238 .fill 252,8,0 /* space for LDT's and TSS's etc */

3.5.3 Information
3.5.3.1 Memory map after end of head.s
 After the end of execution of head.s, the page directory table and second level page tables

is setted up. The IDT and GDT table are replaced with new one which is slightly modified. In

addition, a buffer for floppy is also installed. At this moment, the memory map of system module

is shown in Figure 3-8.

3.5 head.s

Figure 3-8 Memory map of system module after the end of head program

3.5.3.2 Intel 32-bit protected mode
 The key to the understanding of head.s program is the familiar with protected mode running

mechanism which is also the important part for the remaining programs. In order to be comapatible

with 8086 CPU, the protected mode of 80x86 has been handled complicatedly. When runs in protected

mode, CPU uses the value in a segment register as an selector to a descriptor table. The base

address of the descriptor is kept in its base register like, for example, GDTR for GDT and IDTR

for IDT.

 For the different usage aspect, the descriptor tables have three types: global, local, and

interrupt. There must be exactly one GDT and one IDT while the CPU is running in protected mode.

The system programmer can, if wanted, have others defined in memory, on reserve, but only one

of each can be considered active at any mement -- the ones pointed to by the GDTR and IDTR

registers. Although we can also define maxmum 8192 local descriptor tables, but only one is

considered active at a time.

 Figure 3-9 demonstrate the descriptor table used in Linux kernel. Each task occupies two

descriptors in GDT. LDT0 is the segment descriptor occupied by local descriptor table (LDT)

for the first task. TSS0 is the segment descriptor occupied by the Task Status Segment for the

first task. Each LDT contains three descriptors used to describe the code and data segment of

the task. As with the GDT, the first descriptor is not used. When the DS register contains the

selector of first task, DS:ESI will point to the location in the data segment of the task.

0x2000

0x1000

0x0000

0x3000

0x4000

0x5000

system module

lib

fs

mm

kernel

main.c

gdt(2k)

idt(2k)

part of head.s

floppy buffer(1k)

page table3(4k)

page table2(4k)

page table1(4k)

page table0(4k)

page directory(4k)

head.s code

3.6 Summary

Figure 3-9 Descriptor tables used in Linux kernel

3.6 Summary

 The bootsect program is mainly used to load the setup code and system module from disk into

memory. The head program is located ath the very beginning of system module. When moves itself

and setup code to the upper location ox 0x90000 and 0x90200, bootsect tranfer the executing

control to setup code.

 The setup program code is used to get some parameters of the machine by using ROM BIOS

interrupt and store them at the location begin from 0x90000 in memory, overwritten the bootsect

code. Then, it moves the system module to the physical memory begin from the absolute 0x0000.

Afterwards, it loads the base address of GDT into GDTR, reconfigured the interrupt chips and,

at last, enabling the running in protected mode and transfer the controls to the head code located

at the start of system module.

 The head code in the system module is used to initialize the interrupt descriptor items

in IDT, check the enableing of A20 line, test if there is a math copprocessor in machine and

then setup the page directory table and second level page tables for the kernel. At the end,

it jumps to the main code in the system module to continue the kernel initializations.

00000000

DS:Limit

DS:0

Data segment

LDT

GDT

Total 256 items

TSS2 descriptor

LDT1 descriptor

TSS1 descriptor

LDT0 descriptor

TSS0 descriptor

SYS (Not used)

Kernel Data desc.

Kernel Code desc.

(NULL)

LDT2 descriptor

LDTn descriptor

TSSn descriptor

Data Item

Data seg descriptor

Code seg descriptor

(NULL)

DS:ESI

LDTR

GDTR

CS

ESI

DS

