The LiNUX Users’ Guide

Copyright (©) 1993,1994 Larry Greenfield

All you need to know to start using LINUX, a free Unix clone. This manual covers the basic Unix
commands, as well as the more specific LINUX ones. This manual is meant for the beginning Unix user,
although it may be useful for more experienced users for reference purposes.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 1

UNIX is a trademark of Unix System Labratories

MS-DOS and MicroSoft Windows are trademarks of MicroSoft Corporation

0S/2 and Operating System/2 are trademarks of IBM

LINUX is not a trademark, and has no connection to UNIX or to Unix System Labratories.

Please bring all unacknowledged trademarks to the attention of the author.

Copyright (©) 1993 Larry Greenfield
427 Harrison Avenue

Highland Park, NJ

08904

greenfie@gauss.rutgers.edu

The LINUX Users’ Guide may be reproduced and distributed in whole or in part, subject to the

following conditions:

0. The copyright notice above and this permission notice must be preserved complete on all

complete or partial copies.

1. Any translation or derivative work of The LINUX Users’ Guide must be approved by the author

in writing before distribution.

2. If you distribute The LINUX Users’ Guide in part, instructions for obtaining the complete
version of The LINUX Users’ Guide must be included, and a means for obtaining a complete

version provided.

3. Small portions may be reproduced as illustrations for reviews or quotes in other works without

this permission notice if proper citation is given.

4. The GNU General Public License referenced below may be reproduced under the conditions

given within it.

Exceptions to these rules may be granted for various purposes: Write to Larry Greenfield, at
the above address, or email greenfie@gauss.rutgers.edu, and ask. These restrictions are here to

protect us as authors, not to restrict you as computer users.

i ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

These conventions should be obvious, but we’ll include them here for the pedantic.

Bold Used to mark new concepts, WARNINGS, and keywords in a language.

wtalics Used for emphasis in text, and occasionally for quotes or introductions at the be-
ginning of a section. Also used to indicate commands for the user to type when

showing screen interaction (see below).

slanted Used to mark meta-variables in the text, especially in representations of the

command line. For example,
1s -1 foo
where foo would “stand for” a filename, such as /bin/cp.
Typewriter Used to represent screen interaction, as in

$ 1s -1 /bin/cp
-ruxr-xr-x 1 root wheel 12104 Sep 25 15:53 /bin/cp

Also used for code examples, whether it is “C” code, a shell script, or something
else, and to display general files, such as configuration files. When necessary for

clarity’s sake, these examples or figures will be enclosed in thin boxes.

Key Represents a key to press. You will often see it in this form:
Press to continue.
& A diamond in the margin, like a black diamond on a ski hill, marks “danger” or

“caution.” Read paragraphs marked this way carefully.

Acknowledgements

The author would like to thank the following people for their invaluable help either with LiNUX
itself, or in writing The LINUX Users’ Guide:
Linus Torvalds for providing something to write this manual about.

Karl Fogel has given me much help with writing my LINUX documentation and wrote Chapter 7
and Chapter 8.

Maurizio Codogno wrote much of Chapter 9.

The fortune program for supplying me with many of the wonderful quotes that start each chap-

ter. They cheer me up, if no one else.

1l

v

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

Contents

1 Introduction 3
1.1 Who Should Read This Book 3
1.1.1 What You Should Have Done Before Reading This Book 3

1.2 How to Avoid Reading This Book 4
1.3 How to Read This Book 4
1.4 LINUX Documentation L 5
1.4.1 Other LINUX Books 5

1.4.2 What’s the Linux Documentation Project? 5

1.5 Operating Systems 5

2 What’s Unix, anyway? 7
2.1 Unix History 7
2.2 LINUX History 8
221 LINUX Now 9

2.2.2 Trivial LINUX Matters 9

2.2.3 Commercial Software in LINUX 9

3 Getting Started 11
3.1 Starting to Use Your Computer L o 11
3.1.1 Power to the Computer 11

3.1.2 LiNux Takes Over 12

3.1.3 The User Acts 13

3.2 Leaving the Computer 14
3.2.1 Turning the Computer Off L oo 14

3.3 Kernel Messages L. e 15

vi ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

3.3.1 Starting Messageso e
3.3.2 Running Messages e

4 The Unix Shell

4.1 Unix Commands e
41.1 A Typical Unix Command
4.2 Helping Yourself
4.3 Storing Informationo Lo
4.3.1 Looking at Directories with 1s
4.3.2 The Current Directory and ecd
4.3.3 Using mkdir to Create Your Own Directories
4.4 Moving Information
441 cpLlikeaMonk
442 Pruning Back withrm
443 A Forklift Can Be Very Handy

5 Working with Unix

5.1 Wildcards oo
5.1.1 What Really Happens?
5.1.2 The Question Mark

5.2 Time Saving with bash
5.2.1 Command-Line Editing o oo
5.2.2 Command and File Completion

5.3 The Standard Input and The Standard Qutput
5.3.1 Unix Concepts
5.3.2 Output Redirection
5.3.3 Input Redirection
5.3.4 Solution: The Pipe

5.4 Multitasking 0oL
54.1 The Basics
5.4.2 What Is Really Going On Here?

5.5 Virtual Consoles: Being in Many Places at Once

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

6 Powerful Little Programs

6.1
6.2
6.3
6.4
6.5

The Power of Unix e e

Commands to Operate on File Attributes

Commands to Operate of File Contents

7 Editing files with Emacs

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9
7.10

7.11
7.12
7.13

What’s emacs?
Editing Many Files at Once o Lo
Ending an Editing Session
The Meta Key e
Cutting, Pasting, Killing and Yanking
Searching and Replacing oL L
What’s Really Going On Here?
Asking Fmacs for Help0
Specializing Buffers: Modes oL oo
Programming Modes
7.10.1 CMode o
7.10.2 Scheme Mode L
7.10.3 Mail Mode 0oL
Being Even More Efficient
Customizing Emacs 0 .. o

Finding Out More e

8 I Gotta Be Me!

8.1

8.2
8.3

Shell Customization 0
8.1.1 Aliasing L
8.1.2 Environment Variableso oL
X Windows Init Files00 o
Other Init Files o 0 0 00
8.3.1 The Emacs Init File o oo
83.2 FTP Defaults0 o

vil

43
43
43
44
45
45

49
49
51
52
52
53
54
99
96
56
57
57
98
59
59
60
64

viil

9

10

A

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

8.3.3 Allowing Easy Remote Access to Your Account 81
8.3.4 Mail Forwarding L 83
8.4 Seeing Some Exampleso oL oL 83
Funny Commands 85
9.1 {find, the file searcher 85
9.1.1 Generalities L 85
9.1.2 EXpressions 86
9.1.3 Options 86
914 Tests L oL 87
9.1.5 Actlons e 88
9.1.6 Operators L 89
9.1.7 Examples 90
9.1.8 Alast word oL 91
9.2 tar, the tape archiver 91
9.2.1 Introduction e 91
9.2.2 Main options L 91
9.2.3 Modifierso 91
9.24 Examples 91
9.3 dd, the data duplicator L 91
9.3.1 Options 92
9.3.2 Examples 93
9.4 sort,thedatasorter 94
9.4.1 Introduction oL 94
9.4.2 Options 94
943 Examples 94
Errors, Mistakes, Bugs, and Other Unpleasantries 95
10.1 Avoiding Errors oL 95
10.2 Not Your Fault00 o 96
10.2.1 When Is There a Bug L 96
10.2.2 Reportingabug L 97

The GNU General Public License 99

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 1

B The GNU Library General Public License 107

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

Chapter 1

Introduction

How much does it cost to entice a dope-smoking Unix system guru to Dayton?
Brian Boyle, Uniz World’s First Annual Salary Survey

1.1 Who Should Read This Book

Are you someone who should read this book? Do you want to learn Unix? Have you just gotten
LiNUX from somewhere, installed it, and want to know what to do next?

If you have this book, the answer to these questions is probably “yes.” Anyone who has LINUX,
the free Unix clone written by Linus Torvalds, on their PC but doesn’t know what to do next should
read this book. In this book, we’ll cover most of the basic Unix commands, as well as some of the
more advanced ones. We’ll also talk about GNU Emacs, a powerful editor, and several other large

Unix applications.

1.1.1 What You Should Have Done Before Reading This Book

This book relies on a few things that the author can’t control. First of all, this book, as do most
Unix books, assumes that you have access to a Unix system. More importantly, this Unix system
should be an Intel PC running LINUX. This requirement isn’t necessary, but when versions of Unix
differ, I’ll be doing what LINUX expects—nothing else.

LiNUX is available in many forms, called distributions. It is hoped that you’ve found a complete
distribution such as SoftLanding Linux Systems or the MCC-Interim release and have installed it.
There are differences between the various distributions of LINUX, but for the most part they’re small
and unimportant. (Occasionally in this book you’ll find places that seem a little off. If you do, it’s
probably because you’re using a different distribution than I am. The author is interested in all such

cases.)

If you’re the superuser (the maintainer, the installer) of the system, you also should have created

a normal user account for yourself. Please consult the installation manual(s) for this information. If

3

4 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

you aren’t the superuser, you should have obtained an account from the superuser. Also, you should
have some time and patience. Learning LINUX isn’t easy—most people find learning the Macintosh

Operating System is easier. However, many people feel that LINUX is more powerful.

Also, this book assumes that you are moderately familiar with some computer terms. Although
this requirement isn’t necessary, it makes reading the book easier. You should know about computer
terms such as ‘program’ and ‘execution’. If you don’t, you might want to get someone’s help with

learning Unix.

1.2 How to Avoid Reading This Book

The best way to learn about almost any computer program is at your computer. Most people find
that reading a book without using the program isn’t very beneficial. Thus, the best way to learn
Unix and LINUX is by using them. Use them for everything you can. Experiment. Don’t be afraid—
1t’s always possible to mess things up, but you can always reinstall. For better or for worse, though,
Unix 1sn’t as intuitively obvious as some other operating systems. Thus, you will probably end up

reading at least the first couple of chapters in this book.

1.3 How to Read This Book

The suggested way of learning Unix is to read a little, then to play a little. I suggest the first X
chapters—after them, the rest of the book can be read in almost any order. Keep playing until
you're comfortable with the concepts, and then start skipping around in the book. Youll find a
variety of topics are covered, some of which you might find interesting. After a while, you should
feel confident enough to start using commands without knowing what they should do. This is a
good thing.

What most people regard as Unix is the Unix shell, a special program that interprets commands.
In practice, this is a fine way of looking at things, but you should be aware that Unix really consists
of many more things, or much less. (Depending on how you look at it.) This book tells you about
how to use the shell, programs that Unix usually comes with, and some programs Unix doesn’t

always come with.

The current chapter is a meta-chapter—it discusses this book and how to apply this book to

getting work done. The other chapters contain:

Chapter 2 discusses where Unix and LINUX came from, and where they might be going. It also
talks about the Free Software Foundation and the GNU Project.

Chapter 3 talks about how to start and stop using your computer, and what happens at these
times. Much of it deals with topics not needed for using LINUX, but still quite useful and

interesting.

Chapter 4 introduces the Unix shell. This is where people actually do work, and run programs.

It talks about the basic programs and commands you must know to use Unix.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 5

1.4 LiNnuxX Documentation

This book, The LINUX Users’ Guide, is intended for the Unix beginner. Luckily, the Linux Docu-

mentation Project is also writing books for the more experienced users.

1.4.1 Other LINUX Books

The other books include Installation and Getting Started, a guide on how to aquire and install
Linux, The LINUX System Adminstrator’s Guide, how to organize and maintain a LINUX system,
and The LINUX Kernel Hackers’ Guide, a book about how to modify LINUX. The LINUX Network

Admanistration Guide talks about how to install, configure, and use a network connection.

1.4.2 What’s the Linux Documentation Project?

Like almost everything associated with LINUX, the Linux Documentation Project is a collection
of people working across the globe. Originally organized by Lars Wirzenius, the Project is now
coordinated by Matt Welsh with help from Michael K. Johnson.

It is hoped that the Linux Documentation Project will supply books that will meet all the needs
of documenting LINUX at some point in time. Please tell us if we’ve suceeded or what we should

improve on.

1.5 Operating Systems

An operating system’s primary purpose i1s to support programs that actually do the work. An
operating system is not the tool that does the work, it’s the tool that supports the work. It’s
tempting to just want to modify the operating system for its own sake, and if you feel this way
often, I suggest you find a copy of The LINUX Kernel Hackers’ Guide.

Operating systems (OS, for short) can be simple and minimalist, like DOS, or big and complex,
like OS/2 or VMS.! Unix tries to be a middle ground. While it supplies more resources and does

more then early operating systems, it doesn’t try to do everything like some other operating systems.

The original design philosophy? for Unix was to distribute functionality into small parts, the
programs. That way, you can relatively easily achieve new functionality and new features by com-
bining the small parts (programs) in new ways. And if new utilities appear (and they do), you can
integrate them into your old toolbox. Unfortunately, programs grow larger and more feature-packed
on Unix as well these days, but some of the flexibility, interoperability is there to stay. When I write
this document, for example, I’'m using these programs actively; fvwm to manage my “windows”,
emacs to edit the text, IWIRX to format it, xdvi to preview it, dvips to prepare it for printing and

I Apologies to DOS, 0S/2, and VMS users. I've used all three, and each have their good points.
2Was mostly determined by the type of hardware Unix was to run on. By sheer accident, the resulting operating

system turned out to be very useful on other hardware.

6 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

then lpr to print it. If T got a new, better dvi previewer tommorow, I could use it instead of xdvi

without changing the rest of my setup.

The key part of an operating system is called the “kernel.” In many operating systems, like
Unix, OS/2, or VMS, the kernel supplies functions for running programs to use, and schedules them
to be run. It basically says program A can get so much time, program B can get this much time,
etc. One school of thought says that kernels should be very small, and not supply a lot of resources,
depending on programs to pick up the work. This allows the kernel to be small and fast, but may
make programs bigger. Kernels designed like this are called micro-kernels. Another group of people
believe that bigger kernels are better and make more efficent operating systems. Some versions of
Unix are designed like this, including LINUX. One ironic thing to note here is that micro-kernels
aren’t necessarily smaller then macro-kernels—it’s the philosophy that separates the two.

When you’re using an operating system, you want to minimize the amount of work you put into
getting your job done. Unix supplies many tools that can help you, but only if you know what these
tools do. Spending an hour trying to get something to work and then finally giving up isn’t very
productive. Hopefully, you already know how to use the correct tools—that way, you won’t use the

hammer to try and tighten a screw.

The moral of the story? Don’t change the way you work to suit the operating system, but be
aware of the operating system. Don’t wish for a tool that isn’t in your box, use the tools in your

box to make a new one.

Chapter 2
What’s Unix, anyway?

Ken Thompson has an automobile which he helped design. Unlike most automobiles, 1t
has neither speedometer, nor gas gage, nor any of the numerous idiot lights which plague
the modern driver. Rather, if the driver makes any mistake, a giant “7?” lights up in the
center of the dashboard. “The experienced driver,” he says, “will usually know what’s

wrong.”

2.1 Unix History

In 1965, Bell Telephone Laboratories (Bell Labs, a division of AT&T) was working with General
Electric and Project MAC of MIT to write an operating system called Multics. To make a long
story slightly shorter, Bell Labs decided the project wasn’t going anywhere and broke out of the
group. This, however, left Bell Labs without a good operating system.

Ken Thompson and Dennis Ritchie decided to sketch out an operating system that would meet
Bell Labs’ needs. When Thompson needed a development environment (1970) to run on a PDP-7, he

implemented their ideas. As a pun on Multics, Brian Kernighan gave the system the name UNIX.

Later, Dennis Ritchie invented the “C” programming language. In 1973, UNIX was rewritten in
C, which would have a major impact later on. In 1977, UNIX was moved to a new machine, away
from the PDP machines it had run on previously. This was aided by the fact UNIX was written in
C.

Unix was slow to catch on outside of academic institutions but soon was popular with businesses
as well. The Unix of today is different from the Unix of 1970. It has two major versions: System
V, from Unix System Laboratories (USL), a subsiderary of Novell'; and BSD, Berkeley Software
Distribution. The USL version is now up to its forth release, or SVR4?, while BSD’s latest version is

4.4. However, there are many different versions of Unix besides these two. Most versions of Unix are

1Tt was recently sold to Novell. Previously, USL was owned by AT&T.

2System five, revision four.

8 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

developed by software companies and derive from one of the two groupings. Recently, the versions

of Unix that are actually used incorporate features from both of them.

USL is a company that was ‘spun off’ from AT& T, and has taken over the maintenance of UNIX
since it stopped being a research item. Unix now is much more commericial than it once was, and

the licenses cost much more.

Please note the difference between Unix and UNIX. When I say “Unix” I am talking about Unix
versions in generally, whether or not USL is involved in them. “UNIX” is the current version of

Unix from USL. The distinction is because UNIX is a trademark of Unix System Laboratories.
Current versions of UNIX for Intel PCs cost between $500 and $2000.

2.2 LiNnux History

LiNUX was written by Linus Torvalds, and has been improved by countless numbers of people
around the world. It is a clone, written entirely from scratch, of the Unix operating system. Neither
USL, nor the University of California, Berkeley, was involved in writing LINUX. One of the more
interesting facts about LINUX is that development simulataneously occurs around the world. People

from Austrialia to Finland contributed to LINUX, and hopefully will continue to contribute.

LINUX began with a project to explore the 386 chip. One of Linus’s earlier projects was a program
that would switch between printing AAAA and BBBB. This later evolved to LINUX.

LINUX has been copyrighted under the terms of the GNU General Public License (GPL). This
is a license written by the Free Software Foundation (FSF) that is designed to prevent people from
restricting the distribution of software. In brief it says that although you can charge as much as you’d
like for giving a copy away, you can’t prevent the person you sold it to from giving it away for free. It
also means that the source code® must also be available. This is useful for programmers. The license

also says that anyone who modifies the program must also make his version freely redistributable.

LINUX supports most of the popular Unix software, including The X Window System. This is a
rather large program from MIT allowing computers to create graphical windows, and is used on many
different Unix platforms. LINUX is mostly System V, mostly BSD compatible and mostly POSIX-1
(a document trying to standardize operating systems) compliant. LINUX probably complies with
much of POSIX-2, another document from the IEEE to standardize operating systems. It’s a mix
of all three standards: BSD, System V, and POSIX.

Many of the utilities included with LINUX distributions are from the Free Software Foundation
and are part of GNU Project. The GNU Project 1s an effort to write a portable, advanced operating
system that will look a lot like Unix. “Portable” means that it will run on a variety of machines, not
just Intel PCs, Macintoshes, or whatever. LINUX is not easily ported (moved to another computer

architechure) because it was written only with the 80386 in mind.

Of course, Torvalds isn’t the only big name in LINUX’s development. The following people also

deserve to be recognized:

3The instructions that people write, as distinct from zeros and ones.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 9

H. J. Lu has maintained gcc and the LINUX C Library, two items needed for programming.

Of course, I must have missed people in the above list. Sincere thanks and apologies go out to

anyone not mentioned here—there must be dozens if not hundreds of you!

2.2.1 LINUX Now

Currently, LINUX is not yet at version 1.0, but as of this writing, is on version “0.99p10”. (That’s
from July 3rd, 1993!) However, it is evolving fast and people expect version 1.0 before the next ice

age! That’s a real good sign, and many people in the LINUX community are looking forward to it.

The items changing the fastest in LINUX right now are TCP/IP support* and bug fixes. LINUX
is a large system and unfortunately contains bugs which are found and then fixed. Although some
people still experience bugs regularly, it is normally because of non-standard or faulty hardware;

bugs that effect everyone are few and far between.

Of course, those are just the kernel bugs. Bugs can be present in almost every facet of the
system, and inexperienced users have trouble seperating different programs from each other. For
instance, a problem might arise that all the characters are some type of gibberish—is it a bug or a
“feature”? Surprisingly, this is a feature—the gibberish is caused by certain control sequences that
somehow appeared/footnoteHowever, because you have all the source code, you can easily disable
this particular escape sequence and recompile the kernel.. Hopefully, this book will help you to tell

the different situations apart.

2.2.2 Trivial LINux Matters

Before we embark on our long voyage, let’s get the ultra-important out of the way.
Question: Just how do you pronounce LINUX?

Answer: According to Linus, it should be pronounced with a short 4 sound, like prInt, mln-
Imal, etc. LINUX should rhyme with Minix, another Unix clone. It should not be pronounced like
(American pronounciation of) the “Peanuts” character, Linus, but rather LIH-nucks. And the u is

sharp as in rule, not soft as in ducks.

2.2.3 Commercial Software in LINUX

For better or for worse, there is now commercial software available for LINUX. Although it isn’t a
fancy word processing application, Motif is a package that must be payed for, and the source isn’t
given out. Motif is a user interface for The X Window System that vaguely resembles MicroSoft

Windows.

For any readers interested in the legalities of LINUX, this is allowed by the LINUX license. While
the GNU General Public License (reproduced in Appendix A) covers the LINUX kernel, the GNU

4That's a form of networking. More on that later.

10 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

Library General Public License (reproduced in Appendix B) covers most of the computer code

applications depend on.

Please note that those two documents are copyright notices, and not licenses to use. They do
not regulate how you may use the software, merely under what circumstances you can copy it and
any derivative works. Also, copyright notices are enforced by lawsuits by the copyright holders,
either the Free Software Foundation or Linus Torvalds. In general, this means you can’t go wrong
if you obey the spirit of what they’re asking—they probably won’t sue you and all will be well.
(Unless the rights get sold.) Tt’s also a good idea not to think up schemes to get around these two

copyrights—it’s almost definitely possible, but merely causes grief to all parties involved.

Chapter 3

Getting Started

This login session: $13.99, but for you $11.88.

3.1 Starting to Use Your Computer

You may have previous experience with MS-DOS or other single user operating systems, such as
0S/2 or the Macintosh. In these operating systems, you didn’t have to identify yourself to the
computer before using it; it was assumed that you were the only user of the system and could access
everything. Well, Unix is a multi-user operating system—mnot only can more than one person use it

at a time, different people are treated differently.!

To tell people apart, Unix needs a user to identify him or herself? by a process called logging
in. You see, when you first turn on the computer, several things happen. Since this guide is geared

towards LINUX, Ill tell you what happens during the LINUX boot-up sequence.

Please note that if you’re using LINUX on some type of computer besides an Intel PC, some
things in this chapter won’t apply to you. Mostly, they’ll be in Sections 3.1.1 and 3.1.2. (Some parts
of Section 3.1.2 will pertain.)

3.1.1 Power to the Computer

The first thing that happens when you turn an Intel PC on is that the BIOS executes. BIOS stands
for Basic Input/Output System. It’s a program permenantly stored in the computer on read-only
chips, normally. For our purposes, the BIOS can never be changed. It performs some minimal tests,
and then looks for a floppy disk in the first disk drive. If it finds one, it looks for a “boot sector” on
that disk, and starts executing code from it, if any. If there is a disk, but no boot sector, the BIOS
will print a message like:

1 Discrimination? Perhaps. You decide.
2From here on in this book, I shall be using the mascaline pronouns to identify all people. This is the standard

English convention, and people shouldn’t take it as a statement that only men can use computers.

11

12 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

Non-system disk or disk error

Removing the disk and pressing a key will cause the boot process to continue.

If there isn’t a floppy disk in the drive, the BIOS looks for a master boot record (MBR) on the
hard disk. It will start executing the code found there, which loads the operating system. On LINUX
systems, LILO, the LInux LOader, can occupy the MBR, position, and will load LINUX. For now,
we’ll assume that happens and that LINUX starts to load. (Your particular distribution may handle
booting from the hard disk differently. Check with the documentation included in that distribution.
Another good reference is the LILO documentation, [1].)

3.1.2 LiNnux Takes Over

After the BIOS passes control to LILO, LILO passes control to LINUX. (This is under normal
circumstances. It is also possible for LILO to call DOS or some other PC operating system.) The
first thing that LINUX does once it starts executing is changes to protected mode. The 803863 CPU
that controls your computer has two modes (for our purposes) called real mode and protected mode.
DOS runs in real mode, as does the BIOS. However, for more advances operating systems, it is

necessary to run in protected mode. Therefore, when LINUX boots, it discardes the BIOS.

LiNUX then looks at the type of hardware it’s running on. It wants to know what type of hard
disks you have, whether or not you have a bus mouse, whether or not you’re on a network, and other
bits of trivia like that. LINUX can’t remember things between boots, so 1t has to ask these questions
each time it starts up. Luckily, it isn’t asking you these questions—it is asking the hardware! The
part of LINUX asking these questions is the kernel. During boot-up, the LINUX kernel will print

variations on several messages. You can read about the messages in Section 3.3.

The kernel merely manages other programs, so once it is satisfied everything is okay, it must
start another program to do anything useful. The program the kernel starts is called init . (Notice
the difference in font. Things in that font are usually the names of programs, files, directories, or
other computer related items.) After the kernel starts init, it never starts another program. The
kernel becomes a manager and a provider, not a active program.

So to see what the computer i1s doing after the kernel boots up, we’ll have to examine init.
init goes through a complicated startup sequence that isn’t the same for all computers. For LINUX
there are many versions of init, and each does things its own way. It also matters whether your
computer is on a network, or what distribution you used to install LINUX. Some things that might

happen once init is started:

e The file systems might be checked. What is a file system, you might ask? A file system is
the layout of files on the hard disk. It let’s Unix know which parts of the disk are already
used, and which aren’t. Unfortunately, due to various factors such as power losses, what the
file system information thinks is going on in the rest of the disk and the actually layout of the
rest of the disk are in conflict. A special program, called fsck, can find these situations and
hopefully correct them.

3When I refer to the 80386, I am also talking about the 80486 unless I specifically say so. Also, I'll be abbreviating
80386 as 386.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 13

e Special routing programs for networks are run.
e Temporary files left by some programs may be deleted.

e The system clock can be correctly updated. This is trickier then one might think, since Unix,
by default, wants the time in GMT and your CMOS clock, a battery powered clock in your

computer, is probably set on local time.

After init is finished with its duties at boot-up, it goes on to its regularly scheduled activities.
init can be called the parent of all processes on a Unix system. A process is simple a running
program; since any one program can be running more than once, there can be two or more processes
for any particular program. (Processes can also be sub-programs, but that isn’t important right

now.) There are as many processes operating as there are programs.

In Unix, a process, an instance of a program, is created by a system call, a service provided by
the kernel, called fork. init forks a couple of processes, which in turn fork some of their own.
On your LINUX system, what init runs are several instances of a program called getty. getty will

be covered 1n. ..

3.1.3 The User Acts

getty performs a fairly simple function. It merely has to prompt the user to log in. This process,
knowing as “logging in”, is Unix’s way of knowing that users are authorized to use the system. It
asks for an account name and password. An account name is normally similar to your regular name;
you should have already received one from your system administrator, or created your own if you
are the system administrator. (Information on doing this should be available in Installation and
Getting Started or The LINUX System Adminstrator’s Guide.)

When getty first starts up, it displays a message of greeting or some such idea. It is up to
the system adminstrator what message, if any, 1t displays. You should see, after all the boot-up

procedures are done, something like the following:

Welcome to the mousehousge. Please, have gome cheesge.
mousehouse login:

This is, of course, your invitation to login. Throughout this manual, we’ll be using the fictional
(or not so fictional, depending on your machine) user larry. Whenever you see larry, you should
be substituting your own account name. Account names are usually based on real names; bigger,
more serious Unix systems will have accounts using the user’s last name, or some combination of
first and last name, or even some numbers. Possible accounts for Larry Greenfield might be: larry,

greenfie, 1greenfi, 1g19.

mousehouse is, by the way, the “name” of the machine I'm working on. It is possible that when
you installed LINUX, you were prompted for some very witty name. It isn’t very important, but

whenever it comes up, I’ll be using mousehouse or, rarely, lionsden.

14 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

After entering larry, I'm faced with the following:

mousehouse login: larry

Password:

What LINUX is asking for is your password. When you type in your password, you won’t be
able to see what you type. Type carefully: it is possible to delete, but you won’t be able to see
what you are editing. Don’t type too slowly if people are watching—they’ll be able to learn your

password. If you mistype, you’ll be presented with another chance to login.

If you've typed your login name and password correctly, a short message will appear, called
the message of the day. This could say anything—the system adminstrator decides what it should
be. After that, a prompt appears. A prompt is just that, something prompting you for the next

command to give the system. It should look like this:
/home/larryit

You’ll be seeing a lot of this. Commands will be introduced in the next chapter.

3.2 Leaving the Computer

Do not just turn off the computer! You risk losing valuable datal!

Unlike most versions of DOS, it’s a bad thing to just hit the power switch when you’re done
using the computer. It is also bad to reboot the machine (with the reset button) without first
taking proper precautions. LINUX, in order to improve performance, caches the disk. This means
it temporarily stores part of the permanent storage in RAM. The idea of what LINUX thinks the
disk should be and what the disk actually contains is syncronized every 30 seconds. In order to turn
off or reboot the computer, you’ll have to go through a procedure telling 1t to stop caching disk

information.

If you’re done with the computer, but are logged in (you’ve entered a username and password),
first you must logout. To do so, enter the command logout. All commands are sent by pressing
the key marked “Enter” or “Return”. Until you hit enter, nothing will happen, and you can delete
what you’ve done and start over.

/home/larry# logout
Welcome to the mousehousge. Please, have gome cheesge.

mousehouse login:

Now another user can login.

3.2.1 Turning the Computer Off

If this 1s a single user system, you might want to turn the computer off when you’re done with it.

To do so, you’ll have to log into a special account called root. The root account is the system

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 15

adminstrator’s account and can access any file on the system. If you’re going to turn the computer
off, get the password from the system adminstrator. (In a single user system, that’s you! Make sure

you know the default root password.) Login as root:

mousehouse login: root

Password:

Linux, version 0.99pl10.

/# shutdown now

*kkkkkkkkkkk GET THE SHUTDOWN MESSAGE CORRECT #kkkkkkkkkk

The command shutdown now prepares the system to be reset or turned off. After it displays
a message saying it is safe to, do either. You must go through this procedure, however. You risk

losing work that you’ve done if you don’t.

3.3 Kernel Messages

The messages printed by the kernel vary from machine to machine, and from kernel version to
version. The version of LINUX that is discussed in this section is “0.99.10”. (Please note that this is
a big book, and LINUX develops quickly. Versions in other sections might be different. Usually, this

distinction is unimportant.)

3.3.1 Starting Messages

When LINUX first starts up, it writes many messages to the screen which you might not be able
to see. LINUX maintains a special file, called /proc/kmsg, which stores all these messages for later
viewing, and I’ve included a sample startup sequence here.

e The first thing LINUX does i1s decides what type of video card and screen you have, so it can
pick a good font size. (The smaller the font, the more that can fit on the screen on any one

time.) LINUX may ask you if you want a special font, or it might have had a choice compiled

lIl.4

Console: colour EGA+ 80x25, 8 virtual consolesg Serial driver versgion

In this example, the machine owner decided he wanted the standard, large font at compile
time. Also, note the misspelling of the word “color.” Linus evidentally learned the wrong

version of English.

e LINUX has now switched to protected mode, and the serial driver has started to ask questions
about the hardware. A driver is a part of the kernel that controls a device, usually a peripheral.

4 “Compiled” is the process by which a computer program that a human writes gets translated into something the

computer understands. A feature that has been “compiled in” has been included in the program.

16

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

Serial driver version 3.95 with no serial options enabled
tty00 at 0x03f8 (irq = 4) is a 16450
tty0l at 0x02f8 (irq = 3) is a 16450
tty02 at 0x03e8 (irq = 4) is a 16450

Here, it found 3 serial ports. A serial port is the equivalent of DOS COM ports, and is a device
normally used with modems and mice. Actually, when the serial driver first starts up, 1t only

finds out how many ports there are—the other information are defaults.

What it is trying to say is that serial port 0 (COM1) has an electronic address of 0x03£8. When
it interrupts the kernel, usually to say that it has data, it uses IRQ 4. An IR(Q is another means
of a peripheral talking to the software. Each serial port also has a controller chip. The usual
one for a port to have is a 16450; other values possible are 8250 and 16550. The differences
are beyond the scope of this book.

Next comes the parallel port driver. A parallel port is normally connected to a printer, and
the names for the parallel ports (in LINUX) start with 1p. 1p stands for Line Printer, although
it could be a laser printer.

lp_init: 1p0 exists (0), using polling driver
That message says 1t has found one parallel port, and is using the standard driver for it.
The LINUX kernel also tells you a little about memory usage:

Memory: 7296k/8192k available (384k kernel code, 384k reserved, 128k data)

This said that the machine had 8 megabytes of memory. Some of this memory was reserved
for the kernel—just the operating system. The rest of it could be used by programs. Please
note that the 8 megabytes the kernel talks about here is very fast memory called “RAM” for

random access memory. This memory is lost once you turn your machine off.

The other type of “memory” is general called a hard disk. It’s like a large floppy disk perme-

nantly in your computer—the contents stay around even when the power is off.

The kernel now moves onto looking at your floppy drives. In this example, the machine has
two drives. In DOS, drive “A” is a 5 1/4 inch drive, and drive “B” is a 3 1/2 inch drive. LINUX
calls drive “A” £d0, and drive “B” £d1.

Floppy drive(s): f£d0 is 1.2M, fdl is 1.44M
floppy: FDC version 0x90

Now LINUX moves onto less needed things, such as network cards. The following should be
described in The LINUX Networking Guide, and is beyond the scope of this document.?

SLIP: version 0.7.5 (4 channels): OK

plip.c:v0.04 Mar 19 1993 Donald Becker (becker@super.org)

plip0: using parallel port at Ox3bc, IRQ 5.

plipl: using parallel port at 0x378, IRQ 7.

plip2: using parallel port at 0x278, IRQ 2.

8390.¢:v0.99-10 5/28/93 for 0.99.6+ Donald Becker (becker@super.org)

5This may change in latter ‘versions’ of this book.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 17

WD80x3 ethercard probe at 0x280: FF FF FF FF FF FF not found (0x7£8).
3c503 probe at 0x280: not found.

8390 ethercard probe at 0x280 failed.

HP-LAN ethercard probe at 0x280: not found (nothing there).

No ethernet device found.

d10: D-Link pocket adapter: probe failed at 0x378.

e The next message you normally won’t see as the machine boots up. LINUX supports a FPU,
a floating point unit. This is a special chip (or part of a chip, in the case of a 80486DX CPU)
that performs arithmetic dealing with non-whole numbers. Some of these chips are bad, and
when LINUX tries to identify these chips, the machine “crashes”. That is to say, the machine
stops functioning. If this happens, you'll see:

You have a bad 386/387 coupling.
Otherwise, you’ll see:
Math coprocessor using exception 16 error reporting.
if you’re using a 486DX. If you are using a 386 with a 387, you’ll see:
Math coprocessor using irql3 error reporting.
If you don’t have any type of math coprocessor at all, you’ll see:
What will they see?

o The kernel also scans for any hard disks you might have. If it finds any (and it should) it’ll look
at what partitions you have on them. A partition is a logical seperation on a drive that is used
to keep operating systems from interfering with each other. In this example, the computer
had one hard disk (hda) with four partitions.

Partition check:
hda: hdal hda2 hda3 hda4

e Finally, LINUX mounts the root partition. The root partition is the disk partition where
the LINUX operating system “lives”. When LINUX “mounts” this partition, it is making the
partition available for use by the user.

VFS: Mounted root (ext filesystem).

3.3.2 Running Messages

The LINUX kernel occasionally sends messages to your screen. The following is a list of some of
these messages and what they mean. Frequently, these messages indicate something is wrong. Some
of these messages are critical, which means the operating system (and all your programs!) stops
working. When these messages occur, you should write them down and what you where doing at

the time, and send them to Linus. You should see Section 10.2.2.

Luckily, some of these messages are merely informational—hopefully, you’ll see them more often!

18

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

Adding Swap: 10556k swap-space
1p0 on fire
***kkkkk+ OBVIOUSLY INCOMPLETE

Chapter 4

The Unix Shell

A UNIX saleslady, Lenore,
Enjoys work, but she likes the beach more.
She found a good way

To combine work and play:

She sells C shells by the seashore.

4.1 Unix Commands

When you first log into a Unix system, you are presented with something that looks like the following:
/home/larryit

This is called a prompt. As its name would suggest, it is prompting you to enter a command.
Every Unix command is a sequence of letters, numbers, and characters. There are no spaces,
however. Thus, valid Unix commands include mail, cat, and CMU_is_Number-5. Some characters
aren’t allowed—that’s covered later. Unix is also case-sensitive. This means that cat and Cat are

different commands.

Case sensitivity is a very personal thing. Some operating systems, such as OS/2 or Windows
NT are case preserving, but not case sensitive. In practice, Unix rarely uses the different cases. It

1s unusual to have a situation where cat and Cat are different commands.

The prompt is displayed by a special program called the shell. The MS-DOS shell is called
COMMAND.COM, and is very simple compared to most Unix shells. Shells accept commands, and run
those commands. They can also be programmed in their own language, and programs written in

that language are called “shell scripts”.

There are two major types of shells in Unix, Bourne shells, and C shells. Bourne shells are named
after their inventor, Steven Bourne. There are many implementations of this shell, and all those

specific shell programs are called Bourne shells. Another class of shells, C shells (originally imple-

19

20 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

mented by Bill Joy), are also common. Traditionally, Bourne shells have been used for compatibility,

and C shells have been used for interactive use.

LINUX comes with a Bourne shell called bash, written by the Free Software Foundation. bash
stands for Bourne Again Shell, one of the many bad puns in Unix. It is an advanced Bourne shell,

with many features commonly found in C shells, and is the default.

When you first login, the prompt is displayed by bash, and you are running your first Unix
program, the bash shell.

4.1.1 A Typical Unix Command

The first command to know is cat. To use it, type cat, and then :

/home/larry# cat

If you now have a cursor on a line by itself, you’ve done the correct thing. There are several

variances you could have typed—some would work, some wouldn’t.

e If you misspelled cat, you would have seen

/home/larry# ct
ct: command not found
/home/larryit

Thus, the shell informs you that it couldn’t find a program named “ct” and gives you another

prompt to work with. Remember, Unix 1s case sensitive: CAT is a misspelling.
e You could have also placed whitespace before the command, like this:!
/home/larry#,,uucat
This produces the correct result and runs the cat program.
e You might also press return on a line by itself. Go right ahead—it does absolutely nothing.
I assume you are now in cat. Hopefully, you’re wondering what it is doing. For all you hopefuls,

no, it is not a game. cat 1s a useful utility that won’t seem useful at first. Type anything, and hit

return. What you should have seen is:

/home/larry# cat
Help! I'm stuck in a Linux program!

Help! I’m stuck in a Linux program!

(The slanted text indicates what the user types.) What cat seems to do is echo the text right
back at yourself. This is useful at times, but isn’t right now. So let’s get out of this program and

move onto commands that have more obvious benefits.

1The ¢ ’ indicates that the user typed a space.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 21

To end many Unix commands, type |Ctr|—d |2. |Ctr|—d |is the end-of-file character, or EOF for

short. Alternatively, it stands for end-of-text, depending on what book you read. T’ll refer to it as
an end-of-file. Tt is a control character that tells Unix programs that you (or another program) is

done entering data. When cat sees you aren’t typing anything else, 1t terminates.

For a similar idea, try the program sort. As its name indicates, it is a sorting program. If you
type a couple of lines, then press , it will output those lines in a sorted order. By the way,
these types of programs are called filters, because they take in text, filter it, and output the text
slightly differently. (Well, cat is a very basic filter and doesn’t change the input.) We will talk more
about filters later.

4.2 Helping Yourself

The man command displays reference pages for the command/footnoteOr system call, subroutine,

file format etc. you spesify. For example;
$ man cat
cat (1) cat (1)

NAME

cat - Concatenates or displays files

SYNOPSIS
cat [-benstuvAET] [--number] [--number-nonblank] [--squeeze-blank]
[--show-nonprinting] [--show-ends] [--show-tabs] [--show-all]
[--help] [--version] [file...]

DESCRIPTION

This manual page documents the GNU version of cat ...

There’s about one full page of information about cat. Try it. Don’t expect to understand it,
though. It assumes quite some Unix knowledge. When you’ve read the page, there’s probably a little
black block at the bottom of your screen, reading ——more-—, Line 1 or something similar. This is

the more-prompt, and you’ll learn to love it.

Instead of just letting the text scroll away, man stops at the end of each page, waiting for you
to decide what to do now. If you just want to go on, press and you’ll advance a page. If
you want to exit (quit) the manual page you are reading, just press T ou’ll be back at the shell

prompt, and 1t’ll be waiting for you to enter a new command.

There’s also a keyword function in man. If you for example type man -k signal, you'll get a
listing of all commands, system calls, and other documented parts of Unix that have the word signal
in their short description. This can be very useful when you’re looking for a tool to do something,

but you don’t know it’s name—or if it even exists!

?Hold down the key labeled “Ctrl” and press “d”, then let go.

22 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

4.3 Storing Information

Filters are very useful once you are an experienced user, but they have one small problem. How do
you store the information? Surely you aren’t expected to type everything in each time you are going

to use the program! Of course not. Unix provides files and directories.

A directory is like a folder: it contains pieces of paper, or files. A large folder can even hold
other folders—directories can be inside directories. In Unix, the collection of directories and files is
called the file system. Initially, the file system consists of one directory, called the “root” directory.
Inside this directory, there are more directories, and inside those directories are files and yet more

directories.?

Each file and each directory has a name. It has both a short name, which can be the same as
another file or directory somewhere else on the system, and a long name which is unique. A short
name for a file could be joe, while it’s “full name” would be /home/larry/joe. The full name is
usually called the path. The path can be decode into a sequence of directories. For example, here

is how /home/larry/joe is read:

/home/larry/joe
First, we are in the root directory.
This signifies the directory called home. It 1s inside the root directory.
This is the directory larry, which is inside home.
joe is inside larry. A path could refer to either a directory or a filename,
so joe could be either. All the items before the short name must be directories.

An easy way of visualizing this 1s a tree diagram. To see a diagram of a typical LINUX system,
look at Figure 4.1. Please note that this diagram isn’t complete—a full LINUX system has over 8000
files'—and shows only some of the standard directories. Thus, there may be some directories in
that diagram that aren’t on your system, and your system almost certainly has directories not listed
there.

4.3.1 Looking at Directories with 1s

Now that you know that files and directories exist, there must be some way of manipulating them.
Indeed there is. The command 1s is one of the more important ones. It lists files. If you try 1ls as

a command, you’ll see:

/home/larry# 1s
/home/larryit

That’s right, you’ll see nothing. Unix is intensionally terse: it gives you nothing, not even “no
files” if there aren’t any files. Thus, the lack of output was 1s’s way of saying it didn’t find any files.

But I just said there could be 8000 or more files lying around: where are they? You’ve run into
the concept of a “current” directory. You can see in your prompt that your current directory is

3There may or may not be a limit to how “deep” the file system can go. You can easily have directories 10 levels

down.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

Figure 4.1: A typical (abridged) Unix directory tree.

/—T1—bin
—dev
—etc
—home larr
T samy
—1lib
L proc
—tmp
—usr —— X386
— bin
—emacs
—etc
—g+-+-include
—include
—1lib
—local bin
emacs
ete
lib
—1man
—spool
—Ssrc linux
L—tmp

23

/home/larry, where you don’t have any files. If you want a list of files of a more active directory,

try the root directory:

/home/larry# 1s /

bin etc install mnt root user var
dev home 1ib proc tmp usr vmlinux
/home/larryit

In the above command, “1s /7, the directory is a parameter. The first word of the command is

the command name, and anything after it is a parameter. Some commands have special parameters

called options or switches. To see this, try:

/home/larry# 1s -F /

bin/ etc/ install/ mnt/ root/ user/ var@
dev/ home/ lib/ proc/ tup/ usr/ vmlinux
/home/larryit

24 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

The -F is an option that lets you see which ones are directories, which ones are special files,
which are programs, and which are normal files. Anything with a slash is a directory. We’ll talk

more about 1s’s features later. It’s a surprisingly complex program!

Now, there are two lessons to be learned here. First, you should learn what 1s does. Try a few
other directories that are shown in Figure 4.1, and see what they contain. Naturally, some will be
empty, and some will have many, many files in them. I suggest you try 1s both with and without

the -F option. For example, 1s /usr/local looks like:

/home/larry# 1s /usr/local
archives bin emacs etc ka9q 1ib tcl
/home/larryit

The second lesson is more general. Many Unix commands are like 1s. They have options, which
are generally one character after a dash, and they have parameters. Occasionally, the line between
the two isn’t so clear.

Unlike 1s, some commands require certain parameters and/or options. To show what commands
generally look like, we’ll use the following form:

1s [-arF] [directory]

That’s a command template and you’ll see it whenever a new command is introduced. Anything
contained in brackets (“[” and “|”) is optional: it doesn’t have to be there. Anything slanted should

usually be changed before trying the command. You’ll rarely have a directory named directory.

4.3.2 The Current Directory and cd

Using directories would be cumbersome if you had to type the full path each time you wanted to
access a directory. Instead, Unix shells have a feature called the “current” or “present” or “working”
directory. Your setup most likely displays your directory in your prompt: /home/larry. If it doesn’t,

try the command pwd, for present working directory.

mousehouse>pud
/home/larry

mousehouse>

As you can see, pud tells you your current directory*—a very simple command. Most commands
act, by default, on the current directory, such as 1s. We can change our current directory using cd.

For instance, try:

/home/larry# cd /home

/home# 1s -F

larry/ sam/ shutdown/ steve/ userl/
/home#

4You'll see all the terms in this book: present working directory, current directory, or working directory. I prefer

“current directory”, although at times the other forms will be used for stylistic purposes.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 25

A generic template looks like:
cd [directory]

If you omit the directory, you're returned to your home, or original, directory. Otherwise, cd

will change you to the specified directory. For instance:

/homett cd
/home/larry# cd /
/# cd home

/home#t cd /usr
/usr#t cd local/bin
/usr/local/bintt

As you can see, cd allows you to give either absolute or relative pathnames. An “absolute” path
starts with / and specifies all the directories before the one you wanted. A “relative” path is in
relation to your current directory. In the above example, when I was in /usr, I made a relative

move to local/bin—1local is a directory under usr, and bin is a directory under local!

” W

. . The directory .

W

There are two directories used only for relative pathnames: and “..

” 1s the parent directory. These are “shortcut” directories.

refers to the current directory and “..
They exist in every directory, but don’t really fit the “folder in a folder” concept. Even the root

directory has a parent directory—it’s its own parent!

The file ./chapter-1 would be the file called chapter-1 in the current directory. Occasion-
ally, you need to put the “./” for some commands to work, although this is rare. In most cases,

./chapter-1 and chapter-1 will be identical.

The directory “..” is most useful in backing up:

/usr/local/bin#t cd ..
/usr/local# 1s -F

archives/ bin/ emacs@ etc/ ka%9q/ lib/ tcl@
/usr/local# 1ls -F ../src

cweb/ linux/ xmris/

/usr/local#

In this example, I changed to the parent directory using cd .., and I listed the directory
/usr/src from /usr/local using ../src. Note that if I was in /home/larry, typing 1s -F ../src
wouldn’t do me any good!

One other shortcut for lazy users: the directory / is your home directory:

/usr/local# 1s -F 7/
/usr/local#

You can see at a glance that there isn’t anything in your home directory! Actually, / will

become more useful as we learn more about how to manipulate files.

26 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

4.3.3 Using nkdir to Create Your Own Directories

Creating your own directories is extremely simple under Unix, and can be a useful organizational
tool. To create a new directory, use the command mkdir. Of course, mkdir stands for make

directory.
nmkdir directory

Let’s do a small example to see how this works:

/home/larry# 1s -F
/home/larry# mkdir report-1993
/home/larry# 1s -F
report-1993/

/home/larry# cd report-1993
/home/larry/report-1993#

mkdir can actually take more than one parameter, and you can specify either the full pathname

or a relative pathname; report-1993 in the above example is a relative pathname.

/home/larry/report-1993# mkdir /home/larry/report-1993/chapl ~/report-1993/chap2
/home/larry/report-1993# 1ls -F

chapl/ chap2/

/home/larry/report-1993#

Finally, there is the opposite of mkdir, rmdir for remove directory. rmdir works exactly as you
think 1t should work:

rmdir directory

An example of rmdir is:

/home/larry/report-1993# rmdir chapl chap3
rmdir: chap3: No such file or directory
/home/larry/report-1993# 1ls -F

chap2/

/home/larry/report-1993# cd ..
/home/larry# rmdir report-1993

rmdir: report—1993: Directory not empty
/home/larryit

As you can see, rmdir will refuse to remove a non-existant directory, as well as a directory that
has anything in it. (Remember, report-1993 has a subdirectory, chap2, in it!) There is one more
interesting thing to think about rmdir: what happens if you try to remove your current directory?
Let’s find out:

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 27

/home/larry# cd report-1993
/home/larry/report-1993# 1ls -F
chap2/

/home/larry/report-1993# rmdir chap?
/home/larry/report-1993# rmdir .
rmdir: .: Operation not permitted
/home/larry/report-1993#

Another situation you might want to consider is what happens if you try to remove the parent
of your current directory. In fact, this isn’t even a problem: the parent of your current directory

isn’t empty, so it can’t be removed!

4.4 Moving Information

All of these fancy directories are very nice, but they really don’t help unless you have some place to
store you data. The Unix Gods saw this problem, and they fixed it by giving the users “files”. We

will learn more about creating and editing files in the next few chapters.

The primary commands for manipulating files under Unix are cp, mv, and rm. Respectively, they

stand for copy, move, and remove.

4.4.1 cp Like a Monk

cp 18 a very useful utility under Unix, and extremely powerful. It enables one person to copy more

information in a second than a fourteenth century monk could do in a year.

Be careful with cpif you don’t have a lot of disk space. No one wants to see Error saving--disk full.

cp can also overwrite existing files—I’ll talk more about that danger later.

The first parameter to cp is the file to copy—the last is where to copy it. You can copy to either
a different filename, or a different directory. Let’s try some examples:

/home/larry# 1s -F /etc/rc
/etc/rc

/home/larry# cp /etc/rc .
/home/larry# 1s -F

rc

/home/larry# cp rc frog
/home/larry# 1s -F

frog rc

/home/larryit

The first cp command I ran took the file /etc/rc, which contains commands that the Unix
system runs on boot-up, and copied 1t to my home directory. cp doesn’t delete the source file, so I
didn’t do anything that could harm the system. So two copies of /etc/rc exist on my system now,

both named rc, but one is in the directory /etc and one is in /home/larry.

28 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

Then I created a third copy of /etc/rc when I typed cp rc frog—the three copies are now:
/etc/rc, /home/larry/rc and /home/larry/frog. The contents of these three files are the same,

even 1f the names aren’t.

The above example illustrates two uses of the command cp. Are there any others? Let’s take a

look:

e cp can copy files between directories if the first parameter is a file and the second parameter

is a directory.

e It can copy a file and change it’s name if both parameters are file names. Here is one danger
of cp. If I typed cp /etc/rc /etc/passud, cp would normally create a new file with the
contents identical to rc and name it passwd. However, if /etc/passwd already existed, cp

would destroy the old file without giving you a chance to save it!
e Let’s look at another example of cp:

/home/larry# 1s -F

frog rc

/home/larry# mkdir rc_version
/home/larry# cp frog rc rc_version
/home/larry# 1s -F

frog rc rc_version/
/home/larry# 1s -F rc_version

frog rc

/home/larryit

How did I just use cp? Evidentally, cp can take more than two parameters. What the above
command did is copied all the files listed (frog and rc) and placed them in the rc_version
directory. In fact, cp can take any number of parameters, and interprets the first n — 1

parameters to be files to copy, and the n*" parameter as what directory to copy them too.

You cannot rename files when you copy more than one at a time—they always keep their short
name. This leads to an interesting question. What if I type cp frog rc toad, where frog

and rc exist and toad isn’t a directory? Try it and see.

One last thing in this section—how can you show the parameters that cp takes? After all, the

parameters can mean two different things. When that happens, we’ll have two different lines:

cp source destination-name
cp filel file2 ... fileN destination-directory

4.4.2 Pruning Back with rm

Now that we’ve learned how to create millions of files with cp (and believe me, you’ll find new ways
to create more files soon), it may be useful to learn how to delete them. Actually, it’s very simple:

the command you're looking for is rm, and it works just like you’d expect.

Any file that’s a parameter to rm gets deleted:

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

rm file] file2 ... fileN

For example:

/home/larry# 1s -F

frog rc rc_version/
/home/larry# rm frog toad rc

rm: toad: No such file or directory
/home/larry# 1s -F

rc_version/

/home/larryit

29

As you can see, rm is extremely unfriendly. Not only does it not ask you for confirmation, but
it will also delete things even if the whole command line wasn’t correct. This could actually be

dangerous. Consider the difference between these two commands:

/home/larry# 1s -F

toad frog/

/home/larry# 1ls -F frog
toad

/home/larry# rm frog/toad
/home/larryit

and this

/home/larry# rm frog toad
rm: frog is a directory
/home/larry# 1s -F

frog/

/home/larryit

As you can see, the difference of one character made a world of difference in the outcome of the

command. It is vital that you check your command lines before hitting !

4.4.3 A Forklift Can Be Very Handy

Finally, the other file command you should be aware of 1s mv. mv looks a lot like cp, except that it

deletes the original file after copying it. Thus, it’s a lot like using cp and rm together. Let’s take a

look at what we can do:

/home/larry# cp /etc/rc .
/home/larry# 1s -F

rc

/home/larry# mv rc frog
/home/larry# 1s -F

frog

/home/larry# mkdir report
/home/larry# mv frog report
/home/larry# 1s -F

30 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

report/

/home/larry# 1s -F report
frog

/home/larryit

As you can see, mv will rename a file if the second parameter is a file. If the second parameter is

a directory, mv will move the file to the new directory, keeping it’s shortname the same:

mv old-name new-name
mv filel file2 . .. fileN new-directory

You should be very careful with mv—it doesn’t check to see if the file already exists, and will
remove any old file in its way. For instance, if I had a file named frog already in my directory
report, the command mv frog report would delete the file /report/frog and replace it with

/frog.

In fact, there is one way to make rm, cp and mv ask you before deleting files. The -i option. If
you use an alias, you can make the shell do rm -i automatically when you type rm. You'll learn

more about this later.

Chapter 5

Working with Unix

better !pout 'cry
better watchout
lpr why

santa claus <north pole >town

cat /etc/passwd >list

ncheck list

ncheck list

cat list | grep naughty >nogiftlist
cat list | grep nice >giftlist

santa claus <north pole > town

who | grep sleeping
who | grep awake

who | egrep ’bad|good’
for (goodness sake) {

be good

Unix is a powerful system for those who know how to harness its power. In this chapter, I'll try

to describe various ways to use Unix’s shell, bash, more efficently.

5.1 Wildcards

In the previous chapter, you learned about the file maintence commands cp, mv, and rm. Occasionally,
you want to deal with more than one file at once—in fact, you might want to deal with many files at
once. For instance, you might want to copy all the files beginning with data into a directory called
/backup. You could do this by either running many cp commands, or you could list every file on
one command line. Both of these methods would take a long time, however, and you have a large

chance of making an error.

31

32 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

A better way of doing that task is to type:

/home/larry/report# ls -F

1993-1 1994-1 datal datab
1993-2 data-new data?2
/home/larry/report# mkdir ~/backup
/home/larry/report# cp data* ~/backup
/home/larry/reportit 1ls -F ~/backup

data-new datal data?2 datab
/home/larry/reportit

As you can see, the asterix told cp to take all of the files beginning with data and copy them to
/backup. Can you guess what cp d*w /backup would have done?

5.1.1 What Really Happens?

Good question. Actually, there are a couple of special characters intercepted by the shell, bash. The
character “¥” an asterix, says “replace this word with all the files that will fit this specification”. So,
the command cp data* /backup, like the one above, gets changed to cp data-new datal data2
data5 /backup before it gets run.

To illustrate this, let me introduce a new command, echo. echo is an extremely simple command,;
it echoes back, or prints out, any parameters. Thus:

/home/larry# echo Hello!

Hello!

/home/larry# echo How are you?

How are you?

/home/larry# cd report
/home/larry/report# ls -F

1993-1 1994-1 datal datab
1993-2 data-new data?2
/home/larry/reporti echo 199%

1993-1 1993-2 1994-1
/home/larry/reportit echo *4#

1994-1

/home/larry/reportit echo *2#

1993-2 data2

/home/larry/reportit

As you can see, the shell expands the wildcard and passes all of the files to the program you
tell it to run. This raises an interesting question: what happens if there are no files that meet
the wildcard specification? Try echo /rc/fr*og and see what happens...The shell will pass the

wildcard specification verbatim to the program.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 33

5.1.2 The Question Mark

In addition to the asterix, the shell also interprets a question mark as a special character. A question
mark will match one, and only one character. For instance, 1s /etc/?? will display all two letter
files in the the /etc directory.

5.2 Time Saving with bash

5.2.1 Command-Line Editing

Occasionally, you’ve typed a long command to bash and, before you hit return, notice that there
was a spelling mistake early in the line. You could just delete all the way back and retype everything
you need to, but that takes much too much effort! Instead, you can use the arrow keys to move back

there, delete the bad character or two, and type the correct information.

There are many special keys to help you edit your command line, most of them similar to the
commands used in GNU Emacs. For instance, flips two adjacent characters.! You’ll be able to

find most of the commands in the chapter on Emacs, Chapter 7.

5.2.2 Command and File Completion

Another feature of bash i1s automatic completion of your command lines. For instance, let’s look at

the following example of a typical cp command:

/home/larry# 1s -F

this-is-a-long-file

/home/larry# cp this-is-a-long-file shorter
/home/larry# 1s -F

shorter this-is-a-long-file
/home/larryit

It’s a big pain to have to type every letter of this-is—a-long-file whenever you try to access
it. So, create this-is-a-long-file by copying /etc/rc to it2. Now, we're going to do the above

cp command very quickly and with a smaller chance of mistyping.

Instead of typing the whole filename, type cp th and press and release the . Like magic, the
rest of the filename shows up on the command line, and you can type in shorter. Unfortunately,

bash cannot read your thoughts, and you’ll have to type all of shorter.

When you type , bash looks at what you’ve typed and looks for a file that starts like
that. For instance, if I type /usr/bin/ema and then hit , bash will find /usr/bin/emacs
since that’s the only file that begins /usr/bin/ema on my system. However, if I type /usr/bin/1d

1 means hold down the key labeled “Ctrl”, then press the “t” key. Then release the “Ctrl” key.
2cp /etc/rc this-is-a-long-file

34 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

and hit , bash beeps at me. That’s because three files, /usr/bin/1d, /usr/bin/1dd, and
/usr/bin/1d86 start /usr/bin/1ld on my system.

If you try a completion and bash beeps, you can immediately hit again to get a list of all
the files your start matches so far. That way, if you aren’t sure of the exact spelling of your file, you
can start 1t and scan a much smaller list of files.

5.3 The Standard Input and The Standard Output

Let’s try to tackle a simple problem: getting a listing of the /usr/bin directory. If all we do is 1s

/usr/bin, some of the files scroll off the top of the screen. How can we see all of the files?

5.3.1 Unix Concepts

The Unix operating system makes it very easy for programs to use the terminal. When a program
writes something to your screen, it is using something called standard output. Standard output,
abbreviated as stdout, is how the program writes things to a user. The name for what you tell
a program is standard input (stdin). It’s possible for a program to communicate with the user
without using standard input or output, but very rare—all of the commands we have covered so far

use stdin and stdout.

For example, the 1s command prints the list of the directories to standard output, which is
normally “connected” to your terminal. An interactive command, such as your shell, bash, reads

your commands from standard input.

It is also possible for a program to write to standard error, since it is very easy to make
standard output point somewhere besides your terminal. Standard error, stderr, is almost always

connected to a terminal so an actual human will read the message.

In this section, we’re going to examine three ways of fiddling with the standard input and output:

input redirection, output redirection, and pipes.

5.3.2 Output Redirection

A very important feature of Unix is the ability to redirect output. This allows you, instead of
viewing the results of a command, to save it in a file or send it directly to a printer. For instance,
to redirect the output of the command 1s /usr/bin, we place a > sign at the end of the line, and

say what file we want the output to be put in:

/home/larry# 1s

/home/larry# 1ls -F /usr/bin > listing
/home/larry# 1s

listing

/home/larryit

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 35

As you can see, instead of writing the names of all the files, the command created a totally new
file in your home directory. Let’s try to take a look at this file using the command cat. If you think
back, you’ll remember cat was a fairly useless command that copied what you typed (the standard
input) to the terminal (the standard output). cat can also print a file to the standard output if you

list the file as a parameter to cat:

/home/larry# cat listing
/home/larryit

The exact output of the command 1s /usr/bin appeared in the contents of listing. All well
and good, although it didn’t solve the original problem.?

However, cat does do some interesting things when it’s output is redirected. What does the
command cat listing > newfile do? Normally, the > newfile says “take all the output of the
command and put it in newfile.” The output of the command cat listing is the file 1isting.

So we’ve invented a new (and not so efficent) method of copying files.

How about the command cat > fox? cat by itself reads in each line typed at the terminal
(standard input) and prints it right back out (standard output) until it reads . In this case,

standard output has been redirected into the file fox. Now cat is serving as a rudimentary editor:

/home/larry# cat > fox
The quick brown fox jumps over the lazy dog.
press Ctrl-d

We’ve now created the file fox that contains the sentence “The quick brown fox jumps over the
lazy dog.” One last use of the versitile cat command is to concatenate files together. cat will
print out every file it was given as a parameter, one after another. So the command cat listing
fox will print out the directory listing of /usr/bin, and then it will print out our silly sentence.
Thus, the command cat listing fox > listandfox will create a new file containing the contents

of both listing and fox.

5.3.3 Input Redirection

Like redirecting standard output, it is also possible to redirect standard input. Instead of a program
reading from your keyboard, it will read from a file. Since input redirection is related to output
redirection, it seems natural to make the special character for input redirection be <. It too, is used

after the command you wish to run.

This is generally useful if you have a data file and a command that expects input from standard
input. Most commands also let you specify a file to operate on, so < isn’t used as much in day-to-day

operations as other techniques.

3For impatient readers, the command you might want to try is more. However, there’s still a bit more to talk about

before we get there.

36 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

5.3.4 Solution: The Pipe

Many Unix commands produce a large amount of information. For instance, it is not uncommon
for a command like 1s /usr/bin to produce more output than you can see on your screen. In order
for you to be able to see all of the information that a command like 1s /usr/bin, it’s necessary to

4 more will pause once every screenful of information. For

use another Unix command, called more.
instance, move < /etc/rc will display the file /etc/rc just like cat /etc/rc would, except that

more will let you read it.%

However, that doesn’t help the problem that 1s /usr/bin displays more information than you
can see. more < ls /usr/bin won’t work—input redirection only works with files, not commands!
You could do this:

/home/larry# 1s /usr/bin > temp-ls
/home/larry# more temp-ls

/home/larry# rm temp-ls

However, Unix supplies a much cleaner way of doing that. You can just use the command 1s
/usr/bin | more. The character “|” indicates a pipe. Like a water pipe, a Unix pipe controls

flow. Instead of water, we're controlling the flow of information!

A useful tool with pipes are programs called filters. A filter is a program that reads the standard
input, changes it in some way, and outputs to standard output. more is a filter—it reads the data
that it gets from standard input and displays it to standard output one screen at a time, letting you

read the file.

Other filters include the programs cat, sort, head, and tail. For instance, if you wanted to

read only the first ten lines of the output from 1s, you could use 1s /usr/bin | head.

5.4 Multitasking

5.4.1 The Basics

Job control refers to the ability to put processes (another word for programs, essentially) in the
background and bring them to the foreground again. That is to say, you want to be able to make
something run while you go and do other things, but have it be there again when you want to tell
it something or stop it. In Unix, the main tool for job control is the shell—it will keep track of jobs

for you, if you learn how to speak its language.

The two most important words in that language are fg, for “foreground”, and bg, for “back-

ground”. To find out how they work, use the command yes at a prompt.

“more is named because that’s the prompt it originally displayed: --more--. In many versions of LINUX the more

command is identical to a more advanced command that does all that more can do and more. Its name? less, of
course!

Smore also allows the command more /etc/rc.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 37

/home/larry# yes

This will have the startling effect of running a long column of y’s down the left hand side of your
screen, faster than you can follow. (There are good reasons for this strange command to exist, but
we won’t go into them now). To get them to stop, you’d normally type ctrl-C to kill it, but instead
you should type ctrl-Z this time. It appears to have stopped, but there will be a message before

your prompt, looking more or less like this:
[1]1+ Stopped yes

It means that the process yes has been suspended in the background. You can get it running
again by typing fg at the prompt, which will put it into the foreground again. If you wish, you
can do other things first, while i1t’s suspended. Try a few 1s’s or something before you put it back

in the foreground.

Once it’s returned to the foreground, the y’s will start coming again, as fast as before. You do
not need to worry that while you had it suspended it was “storing up” more y’s to send to the
screen: when a program is suspended the whole program doesn’t run until you bring it back to life.

(And you can type ctrl-C to kill it for good, once you’ve seen enough).

Let’s pick apart that message we got from the shell:
[1]1+ Stopped yes

The number in brackets is the job mumber of this job, and will be used when we need to refer
to it specifically. (Naturally, since job control is all about running multiple processes, we need some
way to tell one from another). The + following it tells us that this is the “current job” — that is,
the one most recently moved from the foreground to the background. If you were to type fg, you
would put the job with the + in the foreground again. (More on that later, when we discuss running
multiple jobs at once). The word Stopped means that the job is “stopped”. The job isn’t dead, but
it 1sn’t running right now. Linux has saved 1t in a special suspended state, ready to jump back into
the action should anyone request it. Finally, the yes is the name that was typed on the command

line to start the program.
Before we go on, let’s kill this job and start it again in a different way. The command is named

kill and can be used in the following way:

/home/larry# kill %1
[1]1+ Stopped yes

That message about it being “stopped” again is misleading. To find out whether it’s still alive

(that is, either running or frozen in a suspended state), type jobs:

/home/larry# jobs
[1]1+ Terminated yes

There you have it—the job has been terminated! (It’s possible that the jobs command showed

nothing at all, which just means that there are no jobs running in the background. If you just killed

38 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

a job, and typing jobs shows nothing, then you know the kill was successful. Usually it will tell you

the job was “terminated”.)

Now, start yes running again, like this:
/home/larry# yes > /dev/null

If you read the section about input and output redirection, you know that this is sending the
output of yes into the special file /dev/null. /dev/null is a black hole that eats any output sent
to it (you can imagine that stream of y’s coming out the back of your computer and drilling a hole

in the wall, if that makes you happy).

After typing this, you will not get your prompt back, but you will not see that column of y’s
either. Although output is being sent into /dev/null, the job is still running in the foreground. As
usual, you can suspend it by hitting ctrl-Z. Do that now to get the prompt back.

/home/larry# yes > /dev/null

["yes" is running, and if we type ctrl-z right now, we’ll suspend
it and get the prompt back. Imagine that I just did that...]

[1]1+ Stopped yes >/dev/null

/home/larryit

Hmm. . .1is there any way to get it to actually run in the background, while still leaving us the
prompt for interactive work? Of course there is, otherwise I wouldn’t have asked. The command to

do that is bg:

/home/larry# bg
[1]1+ yes >/dev/null &
/home/larry#

Now, you’ll have to trust me on this one: after you typed bg, yes > /dev/null began to run
again, but this time in the background. In fact, if you do things at the prompt, like 1s and stuff,
you might notice that your machine has been slowed down a little bit (piping a steady stream of
single letters out the back of the machine does take some work, after alll) Other than that, however,
there are no effects. You can do anything you want at the prompt, and yes will happily continue to

sending its output into the black hole.

There are now two different ways you can kill it: with the kill command you just learned, or
by putting the job in the foreground again and hitting it with an interrupt (ctrl-C). Let’s try the
second way, just to understand the relationship between fg and bg a little better;

/home/larry# fg
yes >/dev/null

[now it’s in the foreground again. Imagine that I hit ctrl-C

to terminate it]

/home/larryit

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 39

There, it’s gone. Now, start up a few jobs running in simultaneously, like this:

/home/larry# yes > /dev/null &

[1]1 1024

/home/larry# yes | sort > /dev/null &

[2] 1026

/home/larry# yes | uniq > /dev/null

[and here, type ctrl-Z to suspend it, please]

[31+ Stopped yes | uniq >/dev/null

The first thing you might notice about those commands is the trailing & at the end of the first
two. Putting an & after a command tells the shell to start in running in the background right from
the very beginning. (It’s just a way to avoid having to start the program, type ctrl-Z, and then type
bg.) So, we started those two commands running in the background. The third is suspended and
inactive at the moment. You should notice that the machine has definitely become slower now, as
the two running ones require significant amounts of CPU time.

Each one told you it’s job number. The first two also showed you their Process IDentification
numbers, or PID’s, immediately following the job number. The PID’s are normally not something

you need to know, but occasionally come in handy.

Let’s kill the second one, since I think it’s making your machine slow. You could just type kill
%2, but that would be too easy. Instead, do this:

/home/larry # fg %2
[and then hit ctrl-C to kill it]

As this demonstrates, £g takes parameters beginning with % as well. In fact, you could just have
typed this:

/home/larry # %2
[and then hit ctrl-C to kill it]

This works because the shell automatically interprets a job number as a request to put that job
in the foreground. It can tell job numbers from other numbers by the preceding %. Now type jobs
to see which jobs are left running:

/home/larry # jobs
[1]1- Running yes >/dev/null &
[31+ Stopped yes | uniq >/dev/null

That pretty much says it all. The - means that job number 1 is second in line to be put in the
foreground, if you just type fg without giving it any parameters. However, you can get to it by
naming it, if you wish:

/home/larry # fg %1
yes >/dev/null
[now type ctrl-Z to suspend it]

40 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

[1]1+ Stopped yes >/dev/null

Having changed to job number 1 and then suspending it has also changed the priorities of all

your jobs. You can see this with the jobs command:

/home/larry # jobs
[1]1+ Stopped yes >/dev/null
[31- Stopped yes | uniq >/dev/null

Now they are both stopped (because both were suspended with ctrl-Z), and number 1 is next in
line to come to the foreground by default. This is because you put it in the foreground manually,
and then suspended it. The + always refers to the most recent job that was suspended from the

foreground. You can start it running again:

/home/larry # bg

[1]1+ yes >/dev/null &

/home/larry# jobs

[1]1- Running yes >/dev/null

[31+ Stopped yes | uniq >/dev/null

Notice that now it is running, and the other job has moved back up in line and has the +.

Well, enough of that. Kill them all so you can get your machine back:

/home/larry# kill %1
/home/larry# kill %3

You should see various messages about termination of jobs — nothing dies quietly, it seems. To

summarize what you should know about job control now:

ctrl-z DOS equiv.: Hah! DOS doesn’t have real job control...
This key combination usually causes a program to suspend, although a few programs
ignore 1t. Once suspended, the job can be run in the background or killed.

Parameters: none — it’s not really a command, just a signal.

fg DOS equiv.: none whatsoever. Maybe someday.. .
This is a shell-builtin command that returns a job to the foreground. To find out
which one this is by default, type jobs and look for the one with the +.
Parameters: job number (optional — defaults to the one with +).

& When an & is added to the end of the command line, 1t tells the command to run
in the background automatically. This job is then subject to all the usual methods
of job control detailed here.

bg This is a shell-builtin command that causes a suspended job to run in the back-

ground. To find out which one this is by default, type jobs and look for the one

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 41

with the +. One way to think of bg is that it’s really just fg &!

Parameters: job number (optional — defaults to the one with +).

kill This is a shell-builtin command that causes a background job, either suspended or
running, to terminate. You should always specify the job number or PID, and if
you are using job numbers, remember to precede them with a %.

Parameters: job number (preceded by %) or PID (no % necessary).

jobs This shell command just lists information about the jobs currently running or sus-
pending. Sometimes it also tells you about ones that have just exited or been
terminated.

ctrl-c This is the generic interrupt character. Usually, if you type 1t while a program is

running in the foreground, it will kill the program (sometimes it takes a few tries).

However, not all programs will respond to this method of termination.

5.4.2 What Is Really Going On Here?

It is important to understand that job control is done by the shell. There is no program on the
system called fg; rather, fg, bg, &, jobs, and kill are all shell-builtins (actually, sometimes kill is
an independent program, but the bash shell used by Linux has it built in). This is a logical way to
do 1t: since each user wants their own job control space, and each user already has their own shell, it
1s easiest to just have the shell keep track of the user’s jobs. Therefore, each user’s job numbers are
meaningful only to that user: my job number [1] and your job number [1] are probably two totally
different processes. In fact, if you are logged in more than once, each of your shells will have unique
job control data, so you as a user might have two different jobs with the same number running in
two different shells.

The way to tell for sure is to use the Process ID numbers (PID’s). These are system-wide — each
process has its own unique PID number. Two different users can refer to a process by its PID and
know that they are talking about the same process (assuming that they are logged into the same
machine!)

If you start to program in C on your Linux system, you will soon learn that the shell’s job control
is just an interactive version of the function calls fork and execl. This is too complex to go into
here, but may be helpful to remember later on when you are programming and want to run multiple

processes from a single program.

5.5 Virtual Consoles: Being in Many Places at Once

Linux supports virtual consoles. These are a way of making your single machine seem like multiple
terminals, all connected to one Linux kernel. Thankfully, using virtual consoles is one of the simplest
things about Linux: there are “hot keys” for switching among the consoles quickly. To try it, log in

to your Linux system, hold down the left key, and press (that is, the function key number

42 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

9).6

You should find yourself at another login prompt. Don’t panic: you are now on virtual console
(VC) number 2! Log in here and do some things — a few 1s’s or whatever — to confirm that this is

a real login shell. Now you can return to VC number 1, by holding down the left and pressing
. Or you can move on to a third VC, in the obvious way ()

Linux systems generally come with four VC’s enabled by default. You can increase this all the
way to eight; this should be covered in The Linux System Administrator’s Guide. It involves

editing a file in /etc or two. However, four should be enough for most people.

Once you get used to them, VC’s will probably become an indispensable tool for getting many
things done at once. For example, I typically run Emacs on VC 1 (and do most of my work there),
while having a communications program up on VC 3 (so I can be downloading or uploading files by
modem while T work, or running jobs on remote machines), and keep a shell up on VC 2 just in case

I want to run something else without tying up VC 1.

6 Make sure you are doing this from text consoles: if you are running X windows or some other graphical application,

it probably won't work, although rumor has it that X Windows will soon allow virtual console switching under Linux.

Chapter 6

Powerful Little Programs

6.1 The Power of Unix

The power of Unix is hidden in small commands that don’t seem too useful when used alone, but
when combined with other commands (either directly or indirectly) produce a system that’s much
more powerful and flexible than most other operating systems. The commands I'm going to talk
about in this chapter include sort, grep, more, cat, wc, spell, diff, head, and tail. Unfortunately,
it isn’t totally intuitive what these names mean right now. Let’s cover what each of these utilities

do seperately and then I'll give some examples of how to use them together.

6.2 Operating on Files

In addition to the commands like cd, mv, and rm you learned in Chapter 4, there are other commands
that just operate on files but not the data in them. These include touch, chmod, du, and df. All
of these files don’t care what is in the file—the merely change some of the things Unix remembers
about the file.

Some of the things these commands manipulate:

o The time stamp. Each file has three dates associated with it.! The three dates are the creation
time (when the file was created), the last modification time (when the file was last changed),

and the last access time (when the file was last read).
e The owner. Every file in Unix is owned by one user or the other.

e The group. Every file also has a group of users it is associated with. The most common group
for user files is called users, which is usually shared by all the user account on the system.

10Older filesystems in LINUX only stored one date, since they were derived from Minix. If you have one of these

filesystems, some of the information will merely be unavailable—operation will be mostly unchanged.

43

44 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

e The permissions. Every file has permissions associated with it which tell Unix who can access
what file, or change it, or, in the case of programs, execute it. Fach of these permissions can

be toggled seperately for the owner, the group, and all other users.
touch filel file2 .. . fileN

touch will update the time stamps of the files listed on the command line to the current time.
If a file doesn’t exist, touch will create it. It is also possible to specify the time that touch will set

files to—consult the the manpage for touch.
chmod [-Refv] mode filel file2 ... fileN

The command used to change the permissions on a file is called chmod. Before I go into how to
use the command, let’s discuss what permissions are in Unix. Each file has a group of permissions
associated with 1t. These permissions tell Unix whether or not the file can be read from, written to,

or executed as a program.
du

df

6.3 What’s in the File?

There are two major commands used in Unix for listing files, cat and more. I've talked about both
of them in Chapter 5.

cat [-nA] [filel file2 ... fileN]

cat is not a user friendly command—it doesn’t wait for you to read the file, and is mostly used in
conjuction with pipes. However, cat does have some useful command-line options. For instance, n
will number all the lines in the file, and A will show control characters as normal characters instead of
(possibly) doing strange things to your screen. (Remember, to see some of the stranger and perhaps
“less useful” options, use the man command: man cat.) cat will accept input from stdin if no files

are specified on the command-line.
more [-1] [+linenumber] [file] file2 . .. fileN]

more is much more useful, and is the command that you’ll want to use when browsing ASCII
text files. The only interesting option is 1, which will tell more that you aren’t interested in treating

the character | Ctrl-L | as a “new page” character. more will start on a specified linenumber.

Since more is an interactive command, I've summarized the major interactive commands below:

Moves to the next screen of text.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 45

E This will scroll the screen by 11 lines, or about half a normal, 25-line, screen.

m Searches for a regular expression. While a regular expression can be quite complicated, you can

just type in a text string to search for. For example, /toad would search for the next
occurence of “toad” in your current file. A slash followed by a return will search for the next

occurence of what you last searched for.
E This will also search for the next occurence of your regular expression.
m If you specified more than one file on the command line, this will move to the next file.
E This will move the the previous file.

E Exits from more.
head [-lines] [file] file2 ... fileN]

head will display the first ten lines in the listed files, or the first ten lines of stdin if no files are
specified on the command line. Any numeric option will be taken as the number of lines to print,
so head -15 frog will print the first fifteen lines of the file frog.

tail [-lines| [file] file2 ... fileN]

Like head, tail will display only a fraction of the file. Naturally, tail will display the end of the
file, or the last ten lines that come through stdin. tail also accepts a option specifying the number

of lines.

6.4 Commands to Operate on File Attributes

A file attribute is, for example, who “owns” the file or whether or not a file is an executable.

6.5 Commands to Operate of File Contents

This section discusses the commands that will alter a file, perform a certain operation on the file,
or display statistics on the file.

grep [-nvwx] [-number] expression [file] file2 .. . fileN]

One of the most useful commands in Unix is grep, the generalized regular expression parser.
This is a fancy name for a utility which can only search a text file. The easiest way to use grep is

like this:

46 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

/home/larry# cat animals

Animals are very interesting creatures. One of my favorite animals is
the tiger, a fearsome beast with large teeth.

I also like the lion---it’s really neat!

/home/larry# grep iger animals

the tiger, a fearsome beast with large teeth.

/home/larryit

One disadvantage of this is, although it shows you all the lines containing your word, it doesn’t
tell you where to look in the file—no line number. Depending on what you’re doing, this might be
fine. For instance, if you’re looking for errors from a programs output, you might try a.out | grep

error, where a.out is your program’s name.

If you’re interested in where the match(es) are, use the n switch to grep to tell it to print line

numbers. Use the v switch if you want to see all the lines that don’t match the specified expression.

Another feature of grep is that it matches only parts of a word, like my example above where
iger matched tiger. To tell grep to only match whole words, use the w, and the x switch will tell

grep to only match whole lines.

Remember, if you don’t specify any files, grep will examine stdin.
we [-clw] [filel file2 .. . fileN]

wc stands for word count. It simply counts the number of words, lines, and characters in the

file(s). If there aren’t any files specified on the command line, it operates on stdin.

The three parameters, clw, stand for character, line, and word respectively, and tell we which
of the three to count. Thus, we -cw will count the number of characters and words, but not the

number of lines. we defaults to counting everything—words, lines, and characters.

One nice use of wc is to find how many files are in the present directory: 1s | wec -w. If you

wanted to see how many files that ended with .c there were, try 1s *.¢ | we -w.
spell [filel file2 ... fileN]

spell is a very simple Unix spelling program, usually for American English.? spell is a filter,
like most of the other programs we’ve talked about, which sucks in an ASCII text file and outputs
all the words it considers misspellings. spell operates on the files listed in the command line, or, if

there weren’t any there, stdin.

A more sophisticated spelling program, ispell is probably also available on your machine.
ispell will offer possible correct spellings and a fancy menu interface if a filename is specified on

the command line or will run as a filter-like program if no files are specified.

While operation of ispell should be fairly obvious, consult the man page if you need more help.

2While there are versions of this for several other European languages, the copy on your LINUX machine is most

likely for American English and only American English. Sorry.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 47

cmp filel [file2]

cmp compares two files. The first must be listed on the command line, while the second is either
listed as the second parameter or is read in from standard input. cmp i1s very simple, and merely
tells you where the two files first differ.

diff filel file2

One of the most complicated standard Unix commands is called diff. The GNU version of diff
has over twenty command line options! It is a much more powerful version of cmp and shows you
what the differences are instead of merely telling you where the first one is.

Since talking about even a good portion of diff is beyond the scope of this book, I'll just talk
about the basic operation of diff. In short, diff takes two parameters and displays the differences

between them on a line-by-line basis. For instance:

/home/larry# cat frog

Animals are very interesting creatures. One of my favorite animals is
the tiger, a fearsome beast with large teeth.

I also like the lion---it’s really neat!

/home/larry# cp frog toad

/home/larry# diff frog toad

/home/larry# cat dog

Animals are very nteresting creatures. One of my favorite animals is

the tiger, a fearsome beast with large teeth.

I also 1like the lion---it’s really neat!

/home/larry# diff frog dog

lc1,2

< Animals are very interesting creatures. One of my favorite animals is
> Animals are very nteresting creatures. One of my favorite animals is
>

3c4

< I also like the lion---it’s really neat!

> I also like the lion---it’s really neat!

/home/larryit

As you can see, diff outputs nothing when the two files are identical. Then, when I compared
two different files, it had a section header, 1c1,2 saying it was comparing line 1 of the left file, frog,
to lines 1-2 of dog and what differences it noticed. Then it compared line 3 of frog to line 4 of dog.
While 1t may seem strange at first to compare different line numbers, it is much more efficent then

listing out every single line if there is an extra return early in one file.

48

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

Chapter 7

Editing files with Emacs

FUNNY SOMETHING OR OTHER

7.1 What’s emacs?

In order to get anything done on a computer, you need a way to put text into files, and a way
to change text that’s already in files. An editor is a program for doing this. Emacs is one of the
most popular editors around—partly because it’s very easy for a complete beginner to get actual
work done with it. To learn it, you need to find a file of plain text (letters, numbers, and the like),
copy it to your home directory (we don’t want to modify the actual file, if it contains important

information), and invoke Emacs on the file:
prompt> emacs some_file.txt

“Invoking” Emacs can have different effects depending on where where you do it. From a plain
console displaying only text characters, Emacs will just take over the whole console. If you invoke
it from X Windows, Emacs will actually bring up its own window. I will assume that you are
doing it from a text console, but everything carries over logically into the X Windows version—just

substitute the word “window” in the places I've written “screen”.

You should see the contents of the file filling most of the screen (or as much of the file as fits
on the screen, if it’s a lot of text). Then, one line from the bottom of the screen appears in reverse

video. This line is called the mode-line in Emacs. It should say something like:

————— Emacs: some_file.txt (Fundamental)--Top————————————————————————

The word “Top” might be “All” instead, and there might be other minor differences. The one
blank line (in regular video) immediately below the mode-line is called the minibuffer, or sometimes

the echo area. Emacs uses the minibuffer to flash messages at you, and occasionally uses it to read

49

50 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

input from you, when necessary. Ignore it for now; we won’t be making much use of the minibuffer

for a while.

Before you actually change any of the text in the file, you need to learn how to move around.
The cursor should be at the beginning of the file, in the upper-left corner of the screen. To move
forward, type C-f (that is, hold down the key while you press “f”, for “forward”). Tt will
move you forward a character at a time, and if you hold both keys down, your system’s automatic
key-repeat should take effect in a half-second or so. Notice how when you get to the end of the line,
it moves smoothly on to the next line. C-b (for “backward”) does the opposite. And, while we’re at

it, ¢-n and C-p take you to the next and previous lines, respectively.!

Hold down C-b until you’ve been taken all the way back to the upper-left corner, and then keep
it held a little longer. You should hear an annoying bell sound, and see the message “Beginning of
buffer” appear in the minibuffer. At this point you might wonder, “But what is a buffer?” Well,

here’s how 1t works:

When Emacs works on a file, it doesn’t actually work on the file itself. Instead, it copies the
contents of the file into a special Emacs work area called a buffer, where you can modify it to your
heart’s content. When you are done working, you tell Emacs to save the buffer—in other words, to
write the buffer’s contents into the corresponding file. Until you do this, the file remains unchanged,

and the buffer’s contents exist only inside of Emacs.

With that in mind, prepare to insert your first character into the buffer. Until now, everything
we have done has been “non-destructive”, so this is a big moment. You can choose any character
you like, but if you want to do this in style, I suggest using a nice, solid, capital “X”. As you type
it, take a look at the beginning of the mode-line at the bottom of the screen. When you change the
buffer so that its contents are no longer the same as those of the file on disk, Emacs displays two

asterisks at the beginning of the mode-line, to let you know that the buffer has been modified:

-—x%-FEmacs: some_file.txt (Fundamental)--Top————————————————————————

These two asterisks are displayed as soon as you modify the buffer, and remain visible until you
save the buffer. You can save the buffer multiple times during an editing session—the command
to do so is just C-x C-s (hold down and hit “x” and “s” while it’s down. .. okay, so you
probably already figured that out!). Tt’s deliberately easy to type, because saving your buffers is

something best done early and often.

I’'m going to list a few more commands now, along with the ones you’ve learned already, and
you can practice them however you like. I’d suggest becoming familiar with them before going any
further:

1In case you hadn’t noticed yet, many of Emacs’ movement commands consist of combining with a single

mnemonic letter.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 51

Cc-f Move forward one character.

C-b Move backward one character.

C-n Go to next line.

C-p Go to previous line.

C-a Go to beginning of line.

C-e Go to end of line.

C-v Go to next page/screenful of text.

c-1 Redraw the screen, with current line in center.
c-d Delete this character (practice this one).
C-k Delete text from here to end of line.
C-x C-s Save the buffer in its corresponding file.

Delete preceding character (the one you just typed).

7.2 Editing Many Files at Once

Emacs can work on more than one file at a time. In fact, the only limit on how many buffers your

2 The command to

Emacs can contain is the actual amount of memory available on the machine.
bring a new file into an Emacs buffer is C-x C-f. When you type it, you will be prompted for a

filename in the minibuffer:

Find file: ~/

The syntax here is the same one used to specify files from the shell prompt; slashes represent
subdirectories, ~ means your home directory, etc. You also get filename completion, meaning

that if you’ve typed enough of a filename at the prompt to identify the file uniquely, you can just hit

to complete it (or to show possible completions, if there are more than one). also has a

role in filename completion in the minibuffer, similar to , but I'll let you experiment to find out
how the two differ. Once you have the full filename in the minibuffer, hit , and Emacs will
bring up a buffer displaying that file. In Emacs, this process is known as finding a file. Go ahead
and find some other unimportant text file now, and bring it into Emacs (do this from our original
buffer some_file.txt). Now you have a new buffer; I'll pretend it’s called another_file.txt, since

I can’t see your mode-line.

Your original buffer seems to have disappeared—you’re probably wondering where 1t went. It’s
still inside Emacs, and you can switch back to it with C-x b. When you type this, you will see that
the minibuffer prompts you for a buffer to switch to, and it names a default. The default is the
buffer you’d get if you just hit at the prompt, without typing a buffer name. The default
buffer to switch to is always the one most recently left, so that when you are doing a lot of work
between two buffers, C-x b always defaults to the “other” buffer (which saves you from having to
type the buffer name). Even if the default buffer is the one you want, however, you should try typing

in its name anyway.

2 This leads to one of the more Zen-like quotes in Emacs lore, in which an unimpressed user asks an Emacs fanatic
“Who cares? Why would I ever want to have two hundred buffers open simultaneously?” To which the fanatic replies:

“But isn’t it nice to know that you can?”

52 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

Notice that you get the same sort of completion you got when finding a file: hitting
completes as much of a buffer name as it can, and so on. Whenever you are being prompted for
something in the minibuffer, it’s a good idea to see if Emacs is doing completion. Taking advantage
of completion whenever it’s offered will save you a lot of typing. Emacs usually does completion

when you are choosing one item out of some predefined list.

Everything you learned about moving around and editing text in the first buffer applies to the
new one. Go ahead and change some text in the new buffer, but don’t save it (i.e. don’t type
C-x C-s). Let’s assume that you want to discard your changes without saving them in the file. The
command for that is C-x k, which “kills” the buffer. Type it now. First you will be asked which
buffer to kill, but the default is the current buffer, and that’s almost always the one you want to
kill, so just hit . Then you will be asked if you really want to kill the buffer—Emacs always
checks before killing a buffer that has unsaved changes in it.3 Just type “yes” and hit , if

you want to kill it.

Go ahead and practice loading in files, modifying them, saving them, and killing their buffers.
Make sure you don’t modify any important system files in a way that will cause trouble?, of course,
but do try to have at least five buffers open at once, so you can get the hang of switching between
them.

7.3 Ending an Editing Session

When you are done with your work in Emacs, make sure that all buffers are saved that should be
saved, and exit Emacs with C-x C-c. Sometimes C-x C-c will ask you a question or two in the
minibuffer before it lets you leave—don’t be alarmed, just answer them in the obvious ways. If you
think that you might be returning to Emacs later, don’t use C-x C-c at all; use C-z, which will

5 This is more efficient

suspend Emacs. You can return to it with the shell command “fg” later.
than stopping and starting Emacs multiple times, especially if you have edit the same files again

later.

7.4 The Meta Key

You've already learned about one “modifier key” in Emacs, the key. There is a second
one, called the Meta key, which is used almost as frequently. However, not all keyboards have their
Meta key in the same place, and some don’t have one at all. The first thing you need to do is find
where your Meta key is located. Chances are, your keyboard’s keys are also Meta keys, if you
are using an IBM PC or other another keyboard that has an key.

3You can tell if a buffer has unsaved changes by looking at the beginning of the mode-line. If you see two asterisks
in a row right near the left edge of the mode-line (“#*”), then the buffer has been modified since it was last saved.
4If you are not the “root” user on the machine, you shouldn’t be able to hurt the system anyway, but be careful

just the same.
5If you are running Emacs under a windowing system, like X Windows, then just iconify the window. This is

analogous to suspending it, though not quite the same.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 53

The way to test this is to hold down a key that you think might be a Meta key and type “x”. If
you see a little prompt appear in the minibuffer (like this: M-x) then you’ve found it. To get rid of
the prompt and go back to your Emacs buffer, type C-g.

If you didn’t get a prompt, then there is still one solution. You can use the key as a
Meta key. But instead of holding it down while you type the next letter, you have to tap it and
release it quickly, and then type the letter. This method will work whether or not you have a real
Meta key, so it’s the safest way to go. Try tapping and then typing “x” now. You should
get that tiny prompt again. Just use C-g to make it go away. C-g is the general way in Emacs to
quit out of something you don’t mean to be in. It usually beeps annoyingly at you to let you know
that you have interrupted something, but that’s fine, since that’s what you intended to do if you

typed C-g!

The notation M-x is analogous to C-x (substitute any character for “x”). If you have found a
real Meta key, use that, otherwise just use the key. T will simply write M-x, since I don’t

know which alternative you are using.

7.5 Cutting, Pasting, Killing and Yanking

Emacs, like any good editor, allows you to cut and paste blocks of text. In order to do this, you need
a way to define the start and end of the block. In Emacs, you do this by setting two locations in the
buffer, known as mark and point. To set the mark, go to the place you want your block to begin
and type C-SPC (“SPC” means , of course). You should see the message “Mark set” appear
in the minibuffer.® The mark has now been set at that place. There will be no special highlighting
indicating that fact, but you know where you put it, and that’s all that matters.

What about point? Well, it turns out that you’ve been setting point every time you move the
cursor, because “point” just refers to your current location in the buffer. In formal terms, point
is the spot where text would be inserted if you were to type something. By setting the mark, and
then moving to the end of the block of text, you have actually defined a block of text. This block is
known as the region. The “region” always means the area between mark and point.

Merely defining the region does not make it available for pasting. You have to tell Emacs to
copy it in order to be able to paste it. To copy the region, make sure that mark and point are set
correctly, and type M-w. It has now been recorded by Emacs. In order to paste it somewhere else,

just go there and type C-y. This is known as yanking the text into the buffer.

If you want to actually move the text of the region to somewhere else, type C-w instead of M-w.
This will kill the region—all the text inside it will disappear. In fact, it has been saved in the same
way as if you had used M-w. You can yank it back out with C-y, as always. The place Emacs saves

all this text is known as the kill-ring. Some editors call it the “clipboard” or the “paste buffer”.

There’s another way to do cutting and pasting: whenever you use C-k to kill to the end of a line,
the killed text is saved in the kill-ring. If you kill more than one line in a row, they are all saved

in the kill-ring together, so that the next yank will paste in all the lines at once. Because of this

6Sometimes, on a few machines, C-SPC doesn’t work. For these machines, you must use C-@.

54 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

feature, it is often faster to use repeated C-k’s to kill some text than it is to explicitly set mark and
point and use C-w. However, either way will work. It’s really a matter of personal preference how
you do it.

7.6 Searching and Replacing

There are several ways to search for text in Emacs. Many of them are rather complex, and not
worth going into here. The easiest and most entertaining way is to use isearch. “Isearch” stands

for “incremental search”. Suppose you want to search for the string “gadfly” in the following buffer:

I was growing afraid that we would run out of gasoline, when my passenger exclaimed

‘‘Gadzooks! There’s a gadfly in here!’’.

You would move to the beginning of the buffer, or at least to some point that you know is before
the first occurence of the goal word, “gadfly”, and type C-s. That puts you in isearch mode. Now
start typing the word you are searching for, “gadfly”. But as soon as you type the “g”, you see that
Emacs has jumped you to the first occurence of “g” in the buffer. If the above quote is the entire
contents of the buffer, then that would be the first “g” of the word “growing”. Now type the “a”
of “gadfly”, and Emacs leaps over to “gasoline”, which contains the first occurence of a “ga”. The
“d” gets you to gadzooks, and finally, “” gets you to “gadfly”, without your having had to type the
entire word.

What you are doing in an isearch is defining a string to search for. Each time you add a character
to the end of the string, the number of matches is reduced, until eventually you have entered enough
to define the string uniquely. Once you have found the match you are looking for, you can exit
the search with or any of the normal movement commands. If you think the string you’re

looking for is behind you in the buffer, then you should use C-r, which does an isearch backwards.

If you encounter a match, but it’s not the one you were looking for, then hit C-s again while
still in the search. This will move you forward to the next complete match, each time you hit it. If
there is no next match, it will say that the search failed, but if you press C-s again at that point,
the search will wrap around from the beginning of the buffer. The reverse holds true for C-r — it

wraps around the end of the buffer.

Try bringing up a buffer of plain English text and doing and isearch for the string “the”. First
you’d type in as much as you wanted, then use repeated C-s’s to go to all instances of it. Notice
that it will match words like “them” as well, since that also contains the substring “the”. To search
only for “the”, you’d have to do add a space to the end of your search string. You can add new
characters to the string at any point in the search, even after you’ve hit C-s repeatedly to find the

next matches. You can also use | Backspace | or | Delete | to remove characters from the search string
at any point in the search, and hitting exits the search, leaving you at the last match.

Emacs also allows you to replace all instances of a string with some new string—this is known
as query-replace. To invoke it, type query-replace and hit . Completion 1s done on the
command name, so once you have typed “query-re”, you can just hit to finish it. Say you

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 95

”

wish to replace all instances of “gadfly” with “housefly”. At the “Query replace: prompt,
type “gadfly”, and hit . Then you will be prompted again, and you should enter “housefly”.
Emacs will then step through the buffer, stopping at every instance of the word “gadfly”, and asking
if you want to replace it. Just hit “y” or “n” at each instance, for “Yes” or “No”, until it finishes.

If this doesn’t make sense as you read it, then try it out.

7.7 What’s Really Going On Here?

Actually, all these keybindings you have been learning are shortcuts to Emacs functions. For exam-
ple, C-p is a short way of telling Emacs to execute the internal function previous-1line. However,
all these internal functions can be called by name, using M-x. If you forgot that previous-line
is bound to C-p, you could just type M-x previous-line , and it would move you up one
line. Try this now, to understand how M-x previous-line and C-p are really the same thing.

The designer of Emacs started from the ground up, first defining a whole lot of internal functions,
and then giving keybindings to the most commonly-used ones. Sometimes it’s easier just to call a
function explicitly with M-x than to remember what key it’s bound to. The function query-replace,
for example, is bound to M-% in some versions of Emacs. But who can remember such an odd

keybinding? Unless you use query-replace extremely often, it’s easier just to call it with M-x.

Most of the keys you type are letters, meant to be inserted into the text of the buffer. So each
of those keys is bound to the function self-insert-command, which does nothing but insert that
letter into the buffer. Combinations that use the key with a letter are generally bound to
functions that do other things, like moving you around. For example, C-v is bound to a function
called scroll-up, which scrolls the buffer up by one screenful (meaning that your position in the

buffer moves down , of course).

If you ever actually wanted to insert a Control character into the buffer, then, how would you do
1t? After all, the Control characters are ASCII characters, although rarely used, and you might want
them in a file. There is a way to prevent Control characters from being interpreted as commands
by Emacs. The key C-q” is bound to a special function named quoted-insert. All quoted-insert
does is read the next key and insert it literally into the buffer, without trying to interpret it as a
command. This is how you can put Control characters into your files using Emacs. Naturally, the

way to insert a C-q is to press C—-q twice!

Emacs also has many functions that are not bound to any key. For example, if you're typing
a long message, you don’t want to have to hit return at the end of every line. You can have
Emacs do it for you (you can have Emacs do anything for you)—the command to do so is called
auto-fill-mode®, but it’s not bound to any keys by default. In order to invoke this command, you
would type “M-x auto-fill-mode”. “M-x” is the key used to call functions by name. You could
even use it to call functions like next-line and previous—line, but that would be very inefficient,

since they are already bound to C-n and C-p!

"We call C-q a “key”, even though it is produced by holding down and pressing “q”, because it is a single
ASCII character.

8You might expect this to be called ‘wrap-mode’, or ‘auto-wrap-mode’ ...but you'd be wrong. Sorry!

56 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

By the way, if you look at your mode-line after invoking auto-fill-mode, you will notice that
the word “Fill” has been added to the right side. As long as it’s there, Emacs will fill (wrap) text

automatically. You can turn it off by typing “M-x auto-fill-mode” again—it’s a toggle command.

The inconvenience of typing long function names in the minibuffer is lessened because Emacs
does completion on function names the same way it does on file names. Therefore, you should rarely
find yourself typing in the whole function name, letter by letter. If you’re not sure whether or not
you can use completion, just hit . It can’t hurt: the worst thing that will happen is that you’ll

just get a tab character, and if you're lucky, it’ll turn out that you can use completion.

7.8 Asking Emacs for Help

Emacs has extensive help facilities—so extensive, in fact, that we can only touch on them here.
The most basic help features are accessed by typing C-h and then a single letter. For example,
C-h k gets help on a key (it prompts you to type a key, then tells you what that key does). ¢-h t
brings up a short Emacs tutorial. Most importantly, C-h C-h C-h gets you help on help, to tell you
what’s available once you have typed C-h the first time. If you know the name of an Emacs function
(save-buffer, for example), but can’t remember what key sequence invokes it, then use ¢-h w, for
“where-is”, and type in the name of the function. Or, if you want to know what a function does

in detail, use C-h £, which prompts for a function name.

Remember, since Emacs does completion on function names, you don’t really have to be sure
what a function is called to ask for help on it. If you think you can guess the word it might start
with, type that and hit to see if it completes to anything. If not, back up and try something
else. The same goes for file names: even if you can’t remember quite what you named some file that
you haven’t accessed for three months, you can guess and use completion to find out if you’re right.

Get used to using completion as means of asking questions, not just as a way of saving keystrokes.

There are other characters you can type after C-h, and each one gets you help in a different way.
The ones you will use most often are C-h k, C-h w, and C-h £. Once you are more familiar with
Emacs, another one to try is C-h a, which prompts you for a string and then tells you about all the

functions who have that string as part of their name (the “a” means for “apropos”, or “about”).

Another source of information is the Info documentation reader. Info is too complex a subject
to go into here, but if you are interested in exploring it on your own, type C-h i and read the

paragraph at the top of the screen. It will tell you how get more help.

7.9 Specializing Buffers: Modes

Emacs buffers have modes associated with them®

. The reason for this is that your needs when
writing a mail message are very different from your needs when, say, writing a program. Rather

than try to come up with an editor that would meet every single need all the time (which would be

?To make matters worse, there are “Major Modes” and “Minor Modes”, but you don’t need to know about that.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 87

impossible), the designer of Emacs!? chose to have Emacs behave differently depending on what you
are doing in each individual buffer. Thus, buffers have modes; each one designed for some specific
activity. The main features that distinguish one mode from another are the keybindings, but there

can be other differences as well.

The most basic mode is fundamental mode, which doesn’t really have any special commands at

all. In fact, here’s what Emacs has to say about Fundamental Mode:
Fundamental Mode:

Major mode not specialized for anything in particular.

Other major modes are defined by comparison with this one.

I got that information like this: I typed C-x b, which is switch-to-buffer, and entered “foo”
when i1t prompted me for a buffer name to switch to. Since there was previously no buffer named
“foo”, Emacs created one and switched me to it. It was in fundamental-mode by default, but it it
hadn’t been, I could have typed “M-x fundamental-mode” to make it so. All mode names have a
command called <modename>-mode which puts the current buffer into that mode. Then, to find out
more information about that major mode, I typed C-h m, which gets you help on the current major

mode of the buffer you’re in.

There’s a slightly more useful mode called text-mode, which has the special commands M-S, for

center-paragraph, and M-s, which invokes center-line. M-S, by the way, means exactly what
you think it does: hold down both the and the key, and press “S”.

Don’t just take my word for this—go make a new buffer, put it into text-mode, and type C-h m.
You may not understand everything Emacs tells you when you do that, but you should be able to

get some useful information out of it.

Here is an introduction to some of the more commonly used modes. If you use them, make sure
that you type C-h m sometime in each one, to find out more about each mode.

7.10 Programming Modes

7.10.1 C Mode

If you use Emacs for programming in the C language, you can get it to do all the indentation for you

”

automatically. Files whose names end in “.¢” or “.h” are automatically brought up in c-mode. This

means that certain special editing commands, useful for writing C-programs, are available. In C-
mode, is bound to c-indent-command. This means that hitting the key does not actually
insert a tab character. Instead, if you hit anywhere on a line, Emacs automatically indents
that line correctly for its location in the program. This implies that Emacs knows something about
C syntax, which it does (although nothing about semantics—it cannot insure that your program has

no errors!)

10Well, there’s no reason not to use his name. He is Richard Stallman, also sometimes referred to as “rms”, because

that’s his login name.

58 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

In order to do this, it assumes that the previous line(s) are indented correctly. That means that
if the preceding line is missing a parenthesis, semicolon, curly brace, or whatever, Emacs will indent
the current line in a funny way. When you see it do that, you will know to look for a punctuation
mistake on the line above.

You can use this feature to check that you have punctuated your programs correctly—instead
of reading through the entire program looking for problems, just start indenting lines from the top
down with , and when something indents oddly, check the lines just before it. In other words,
let Emacs do the work for you!

7.10.2 Scheme Mode

This is a major mode that won’t do you any good unless you have a compiler or an interpreter for
the Scheme programming language on your system. Having one is not as normal as having, say, a
C compiler, but it’s becoming more and more common, so I’ll cover it too. Much of what is true for

Scheme mode is true for Lisp mode as well, if you prefer to write in Lisp.

Well, to make matters painful, Emacs comes with two different Scheme modes, because people
couldn’t decide how they wanted it to work. The one I'm describing is called “cmuscheme”, and
later on, in the section on customizing Emacs, I'll talk about how there can be two different Scheme
modes and what to do about it. For now, don’t worry about it if things in your Emacs don’t quite
match up to what I say here. A customizable editor means an unpredictable editor, and there’s no
way around that!

You can run an interactive Scheme process in Emacs; with the command M-x run-scheme. This
creates a buffer named “#scheme#”, which has the usual Scheme prompt in it. You can type in
Scheme expressions at the prompt, hit , and Scheme will evaluate them and display the
answer. Thus, in order to interact with the Scheme process, you could just type all your function
definitions and applications in at the prompt. Chances are you have previously-written Scheme
source code 1n a file somewhere, and 1t would be easier to do your work in that file and send the

definitions over to the Scheme process buffer as necessary.

If that source file ends in “.ss” or ¢

‘.scm”, it will automatically be brought up in Scheme mode
when you find it with C-x C-f. If for some reason, it doesn’t come up in Scheme mode, you can do
it by hand with M-x scheme-mode. This scheme-mode is not the same thing as the buffer running
the Scheme process; rather, the source code buffer’s being in scheme-mode means that it has special

commands for communicating with the process buffer.

If you put yourself inside a function definition in the Scheme source code buffer and type C-c C-e,
then that definition will be “sent” to the process buffer — exactly as if you had typed it in yourself.
C-c M-e sends the definition and then brings you to the process buffer to do some interactive work.
C-c C-1 loads a file of Scheme code (this one works from either the process buffer or the source
code buffer). And like other programming language modes, hitting anywhere on a line of code

correctly indents that line.

If you’re at the prompt in the process buffer, you can use M-p and M-n to move through your

previous commands (also known as the input history). So if you are debugging the function

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 59

‘rotate’, and have already applied it to arguments in the process buffer, like so:
> (rotate ’(a b cde))

then you can get that command back by typing M-p at the prompt later on. There should be no
need to retype long expressions at the Scheme prompt — get in the habit of using the input history

and you’ll save a lot of time.

Emacs knows about quite a few programming languages: C, C+4, Lisp, and Scheme are just

some. Generally, it knows how to indent them in intuitive ways.

7.10.3 Mail Mode

You can also edit and send mail in Emacs. To enter a mail buffer, type C-x m. You need to fill in
the To: and Subject: fields, and then use C-n to get down below the separator line into the body
of the message (which is empty when you first start out). Don’t change or delete the separator line,
or else Emacs will not be able to send your mail—it uses that line to distinguish the mail’s headers,

which tell it where to send the mail, from the actual contents of the message.

You can type whatever you want below the separator line. When you are ready to send the
message, just type C-c C-c, and Emacs will send it and then make the mail buffer go away.

7.11 Being Even More Efficient

Experienced Emacs users are fanatical about efficiency. In fact, they will often end up wasting a lot
of time searching for ways to be more efficient! While I don’t want that to happen to you, there are
some easy things you can do to become a better Emacs user. Sometimes experienced users make
novices feel silly for not knowing all these tricks—for some reason, people become religious about
using Emacs “correctly”. I’d condemn that sort of elitism more if I weren’t about to be guilty of it

myself. Here we go:

When you’re moving around, use the fastest means available. You know that C-f is forward-char—
can you guess that M-f is forward-word? C-b is backward-char. Guess what M-b does? That’s
not all, though: you can move forward a sentence at a time with M-e, as long as you write your
sentences so that there are always two spaces following the final period (otherwise Emacs can’t tell

where one sentence ends and the next one begins). M-a is backward-sentence.

If you find yourself using repeated C-£’s to get to the end of the line, be ashamed, and make
sure that you use C-e instead, and C-a to go to the beginning of the line. If you use many C-n’s to
move down screenfuls of text, be very ashamed, and use C-v forever after. If you are using repeated
C-p’s to move up screenfuls, be embarrassed to show your face, and use M-v instead.

If you are nearing the end of a line and you realize that there’s a mispelling or a word left out
somewhere earlier in the line, don’t use | Backspace | or | Delete | to get back to that spot. That would

require retyping whole portions of perfectly good text. Instead, use combinations of M-b, C-b, and

C-f to move to the precise location of the error, fix it, and then use C-e to move to the end of the

line again.

60 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

When you have to type in a filename, don’t ever type in the whole name. Just type in enough of
it to identify it uniquely, and let Emacs’ completion finish the job by hitting or . Why

waste keystrokes when you can waste CPU cycles instead?

If you are typing some kind of plain text, and somehow your auto-filling (or auto-wrapping) has
gotten screwed up, use M—q, which is £ill-paragraph in common text modes. This will “adjust”
the paragraph you’re in as if it had been wrapped line by line, but without your having to go mess

around with it by hand. M-q will work from inside the paragraph, or from its very beginning or end.

When something awful happens, and Emacs seems to be behaving weirdly because you hit some
keys by accident and don’t know what they did, the solution is not to go hitting more keys randomly.
Just use C-g, which quits out of whatever you’re in, and lets out a noise (if your terminal is capable
of that) to inform you that something was interrupted. Whatever you do, don’t panic—FEmacs will

not reward it.

Sometimes it’s helpful to use C-x u, (undo), which will try to “undo” the last change(s) you
made. Emacs will guess at how much to undo; usually it guesses very intelligently. Calling it

repeatedly will undo more and more, until Emacs can no longer remember what changes were made.

7.12 Customizing Emacs

Emacs is so big, and so complex, that it actually has its own programming language! I'm not
kidding: to really customize Emacs to suit your needs, you have to write programs in this language.
It’s called Emacs Lisp, and it’s a dialect of Lisp, so if you have previous experience in Lisp, it will
seem quite friendly. If not, don’t worry: I'm not going to go into a great deal of depth, because it’s
definitely best learned by doing. To really learn about programming Emacs, you should consult the

Info pages on Emacs Lisp, and read a lot of Emacs Lisp source code.

Most of Emacs’ functionality is defined in files of Emacs Lisp'! code. Most of these files
are distributed with Emacs and collectively are known as the “Emacs Lisp library”. This Ii-
brary’s location depends on how Emacs was installed on your system — common locations are
/usr/lib/emacs/lisp, /usr/lib/emacs/19.19/1lisp/, etc. The “19.19” is the version number of

Emacs, and might be different on your system.

You don’t need to poke around your filesystem looking for the lisp library, because Emacs has the
information stored internally, in a variable called load-path. To find out the value of this variable,
it is necessary to evaluate it; that is, to have Emacs’ lisp interpreter get its value. There is a special
mode for evaluating Lisp expressions in Emacs, called lisp-interaction-mode. Usually, there is a
buffer called “*scratch#*” that is already in this mode. If you can’t find one, create a new buffer of

any name, and type M-x lisp-interaction-mode inside it.

Now you have a workspace for interacting with the Emacs Lisp interpreter. Type this:

load-path

and then press C-j at the end of it. In lisp-interaction-mode, C-j 1s bound to eval-print-last-sexp.

11 Sometimes unofficially called “Elisp”.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 61

An “sexp” is an “s-expression”, which means a balanced group of parentheses, including none.
Well, that’s simplifying it a little, but you’ll get a feel for what they are as you work with Emacs
Lisp. Anyway, evaluating load-path should get you something like this:

load—pat
("/usr/lib/emacs/site-lisp/vm-5.35" "/home/kfogel/elithp"
"/usr/lib/emacs/site-lisp" "/usr/lib/emacs/19.19/1isp")

It won’t look the same on every system, of course, since it is dependant on how Emacs was
installed. The above example comes from my 386 PC running Linux. As the above indicates,
load-path is a list of strings. Each string names a directory that might contain Emacs Lisp files.
When Emacs needs to load a file of Lisp code, it goes looking for it in each of these directories, in
order. If a directory i1s named but does not actually exist on the filesystem, Emacs just ignores it.

When Emacs starts up, it automatically tries to load the file .emacs in your home directory.
Therefore, if you want to make personal customizations to Emacs, you should put them in .emacs.

The most common customizations are keybindings, so here’s how to do them:
(global-set-key "\C-cl" ’goto-line)

global-set-key is a function of two arguments: the key to be bound, and the function to bind
it to. The word “global” means that this keybinding will be in effect in all major modes (there is
another function, local-set-key, that binds a key in a single buffer). Above, I have bound ¢-¢ 1
to the function goto-line. The key is described using a string. The special syntax “\C-<char>”
means the key held down while the key <char> 1s pressed. Likewise, “\M-<char>” indicates

the key.

All very well, but how did I know that the function’s name was “goto-line”? I may know that
I want to bind C-c 1 to some function that prompts for a line number and then moves the cursor
to that line, but how did I find out that function’s name?

This is where Emacs’ online help facilities come in. Once you have decided what kind of func-
tion you are looking for, you can use Emacs to track down its exact name. Here’s one quick and
dirty way to do it: since Emacs gives completion on function names, just type C-h £ (which is
describe-function, remember), and then hit without typing anything. This asks Emacs
to do completion on the empty string — in other words, the completion will match every single
function! It may take a moment to build the completion list, since Emacs has so many internal

functions, but it will display as much of it as fits on the screen when it’s ready.

At that point, hit C-g to quit out of describe-function. There will be a buffer called “*Completions*”,
which contains the completion list you just generated. Switch to that buffer. Now you can use C-s,
isearch, to search for likely functions. For example, it’s a safe assumption that a function which
prompts for a line number and then goes to that line will contain the string “line” in its name.
Therefore, just start searching for the string “line”, and you’ll find what you’re looking for eventu-

ally.

If you want another method, you can use C-h a, command-apropos, to show all functions whose

names match the given string. The output of command-apropos is a little harder to sort through

62 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

than just searching a completion list, in my opinion, but you may find that you feel differently. Try
both methods and see what you think.

There is always the possibility that Emacs does not have any predefined function to do what
you're looking for. In this situation, you have to write the function yourself. I'm not going to
talk about how to do that — you should look at the Emacs Lisp library for examples of function
definitions, and read the Info pages on Emacs Lisp. If you happen to know a local Emacs guru, ask
her how to do it. Defining your own Emacs functions is not a big deal — to give you an idea, I have
written 131 of them in the last year or so. It takes a little practice, but the learning curve is not
steep at all.

Another thing people often do in their .emacs is set certain variables to preferred values. For

example, put this in your .emacs and then start up a new Emacs:
(setq inhibit-startup-message t)

Emacs checks the value of the variable inhibit-startup-message to decide whether or not to
display certain information about version and lack of warranty when 1t starts up. The Lisp expression
above uses the command setq to set that variable to the value ‘t’, which is a special Lisp value that
means true. The opposite of ‘t’ 1s ‘nil’, which is the designated false value in Emacs Lisp. Here

are two things that are in my .emacs that you might find useful:

(setq case-fold-search nil) ; gives case-insensitivity in searching
;; make C programs indent the way I like them to:

(setq c-indent-level 2)

The first expression causes searches (including isearch) to be case-insensitive; that is, the search
will match upper- or lower-case versions of a character even though the search string contains only
the lower-case version. The second expression sets the default indentation for C language statements
to be a little smaller than it is normally — this is just a personal preference; I find that it makes C

code more readable.

1))

The comment character in Lisp is “;”. Emacs ignores anything following one, unless it appears

inside a literal string, like so:

;; these two lines are ignored by the Lisp interpreter, but the
;; s—expression following them will be evaluated in full:

(setq some-literal-string "An awkward pause; for no purpose.')

It’s a good idea to comment your changes to Lisp files, because six months later you will have
no memory of what you were thinking when you modified them. If the comment appears on a line

by itself, precede it with two semicolons. This aids Emacs in indenting Lisp files correctly.

You can find out about internal Emacs variables the same ways you find out about functions. Use
C-h v, describe-variable to make a completion list, or use C-h C-a, apropos. Apropos differs

from C-h a, command-apropos, in that it shows functions and variables instead of just functions.

The default extension for Emacs Lisp files is “.el”, as in “c-mode.el”. However, to make Lisp

code run faster, Emacs allows it to be byte-compiled, and these files of compiled Lisp code end

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 63

in “.elc” instead of “.el”. The exception to this 1s your .emacs file, which does not need the .el

extension because Emacs knows to search for it on startup.

To load a file of Lisp code interactively, use the command M-x load-file. It will prompt you
for the name of the file. To load Lisp files from inside other Lisp files, do this:

(load "c-mode") ; force Emacs to load the stuff in c-mode.el or .elc

Emacs will first add the .elc extension to the filename and try to find it somewhere in the
load-path. If it fails, it tries it with the .el extension; failing that, it uses the literal string as
passed to load. You can byte-compile a file with the command M-x byte-compile-file, but if
you modify the file often, it’s probably not worth it. You should never byte-compile your .emacs,
though, nor even give it a .el extension.

After your .emacs has been loaded, Emacs searches for a file named default.el to load. Usually
it’s located in a directory in load-path called site-1isp or local-elisp or something (see the
example load-path I gave a while ago). People who maintain Emacs on multi-user systems use
default.el to make changes that will affect everyone’s Emacs, since everybody’s Emacs loads it after
their personal .emacs. Default.el should not be byte-compiled either, since it tends to be modified
fairly often.

If a person’s .emacs contains any errors, Emacs will not attempt to load default.el, but

>

instead will just stop, flashing a message saying “Error in init file.” or something. If you see

this message, there’s probably something wrong with your .emacs.

There 18 one more kind of expression that often goes in a .emacs. The Emacs Lisp library
sometimes offers multiple packages for doing the same thing in different ways. This means that you
have to specify which one you want to use (or you’ll get the default package, which is not always the
best one for all purposes). One area in which this happens is Emacs’ Scheme interaction features.
There are two different Scheme interfaces distributed with Emacs (in version 19 at least): xscheme

and cmuscheme.

prompt> ls /usr/lib/emacs/19.19/1isp/*scheme*
/usr/lib/emacs/19.19/1isp/cmuscheme. el
/usr/lib/emacs/19.19/1isp/cmuscheme.elc
/usr/lib/emacs/19.19/1isp/scheme.el
/usr/lib/emacs/19.19/1isp/scheme.elc
/usr/lib/emacs/19.19/1isp/xscheme. el
/usr/lib/emacs/19.19/1isp/xscheme.elc

I happen to like the interface offered by cmuscheme much better than that offered by xscheme,
but the one Emacs will use by default is xscheme. How can I cause Emacs to act in accordance with

my preference? I put this in my .emacs:

;; notice how the expression can be broken across two lines. Lisp
;; ignores whitespace, generally:
(autoload ’run-scheme "cmuscheme"

"Run an inferior Scheme, the way I like it." t)

64 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

The function autoload takes the name of a function (quoted with “*”, for reasons having to do
with how Lisp works) and tells Emacs that this function is defined in a certain file. The file is the
second argument, a string (without the “.el” or “.elc” extension) indicating the name of the file
to search for in the load-path.

The remaining arguments are optional, but necessary in this case: the third argument is a
documentation string for the function, so that if you call describe-function on it, you get some
useful information. The fourth argument tells Emacs that this autoloadable function can be called
interactively (that is, by using M-x). This is very important in this case, because one should be able

to type M-x run-scheme to start a scheme process running under Emacs.

Now that run-scheme has been defined as an autoloadable function, what happens when I type
M-x run-scheme? Emacs looks at the function run-scheme, sees that it’s set to be autoloaded,
and loads the file named by the autoload (in this case, “cmuscheme”). The byte-compiled file
cmuscheme. elc exists, so Emacs will load that. That file must define the function run-scheme, or
there will be an autoload error. Luckily, it does define run-scheme, so everything goes smoothly,
and I get my preferred Scheme interface!?.

An autoload is a like a promise to Emacs that, when the time comes, it can find the specified
function in the file you tell it to look in. In return, you get some control over what gets loaded.
Also, autoloads help cut down on Emacs’ size in memory, by not loading certain features until they
are asked for. Many commands are not really defined as functions when Emacs starts up. Rather,
they are simply set to autoload from a certain file. If you never invoke the command, it never gets
loaded. This space saving is actually vital to the functioning of Emacs: if it loaded every available
file in the Lisp library, Emacs would take twenty minutes just to start up, and once it was done, it
might occupy most of the available memory on your machine. Don’t worry, you don’t have to set

all these autoloads in your .emacs; they were taken care of when Emacs was built.

7.13 Finding Out More

I have not told you everything there is to know about Emacs. In fact, I don’t think I have even told
you 1% of what there is to know about Emacs. While you know enough to get by, there are still lots
of time-saving tricks and conveniences that you ought to find out about. The best way to do this is

to wait until you find yourself needing something, and then look for a function that does it.

The importance of being comfortable with Emacs’ online help facilities cannot be emphasized
enough. For example, suppose you want to be able to insert the contents of some file into a buffer
that is already working on a different file, so that the buffer contains both of them. Well, if you
were to guess that there 1s a command called insert-file, you’d be right. To check your educated
guess, type C-h f. At the prompt in the minibuffer, enter the name of a function that you want
help on. Since you know that there is completion on function names, and you can guess that the
command you are looking for begins with “insert”, you type insert and hit . This shows you
all the function names that begin with “insert”, and “insert-file” is one of them.

12By the way, cmuscheme was the interface I was talking about earlier, in the section on working with Scheme, so if

you want to use any of the stuff from that tutorial, you need to make sure that you run cmuscheme.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 65

So you complete the function name and read about how it works, and then use M-x insert-file.
If you’re wondering whether it’s also bound to a key, you type C-h w insert-file , and
find out. The more you know about Emacs’ help facilities, the more easily you can ask Emacs
questions about itself. The ability to do so, combined with a spirit of exploration and a willingness

to learn new ways of doing things, can end up saving you a lot of keystrokes.

To order a copy of the Emacs user’s manual and/or the Emacs Lisp Programming manual, write

to:

Free Software Foundation
675 Mass Ave
Cambridge, MA 02139
USA

Both of these manuals are distributed electronically with Emacs, in a form readable by using
the Info documentation reader (C-h i), but you may find it easier to deal with treeware than with
the online versions. Also, their prices are quite reasonable, and the money goes to a good cause —
quality free software! At some point, you should type C-h C-c to read the copyright conditions for
Emacs. It’s more interesting than you might think, and will help clarify the concept of free software.
If you think the term “free software” just means that the program doesn’t cost anything, please do

read that copyright as soon as you have time!

66

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

Chapter 8

I Gotta Be Me!

If God had known we’d need foresight, she would have given it to us.

8.1 Shell Customization

One of the distinguishing things about the Unix philosophy is that the system’s designers did not
attempt to predict every need that users might have; instead, they tried to make 1t easy for each
individual user to tailor the environment to their own particular needs. This is mainly done through

configuration files'.

The most important configuration files are the ones used by the shell. Linux’s default shell is

bash, and that’s the shell this manual will cover.

The most important configuration file for ordinary users is .bash_profile?. Each user has
their own .bash_profile—it lives in your home directory—and it is used to customize your shell.
(The shell, remember, is the go-between that allows you to communicate with the operating system
itself, so it’s quite natural to think of it as your “environment” and to direct customization efforts
at it.) The commands in .bash profile are read by bash when it starts up®, and whatever it
found there will be in effect for the rest of your “login session”. Ex-MS-DOS users can think of

1 Also known variously as “init files”, “rc files” (for “rum control’), or even “dot files” (because the filenames
often begin with “.”, so that the files aren’t displayed in a normal 1s).

?In, fact, due to some confusing Unix lossage, there are times when bash will look for a .bash_profile, and
times when it will look for a .bashrc. To avoid inconsistency, just make .bashrc always be an exact copy of
.bash_profile. You can do this through repeated use of the cp command, or you can make a link, with the command
1n /.bash_profile /.bashrc. [Larry, am I leading them astray by doing this? Having looked over the Bash man
page, I don’t see any reason to initiate them into the mysteries of login vs. interactive shells, but I am not an expert
in this area.]

3In fact, if you were using the C Shell instead of Bash, the init file would be .cshre. Sigh..., one of the cutest facts
about this is that the two shells use slightly different command languages, so that users who use both (on different
systems, say) are constantly tripping themselves up. You needn’t worry, however; the default shell in LINUXis bash,
and if you know enough to be changing your default shell to C Shell, then you know enough not to be reading this

section.

67

68 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

the .bash_profile as a sort of individualized AUTOEXEC.BAT (since it only affects one user, not

everyone on the system).

8.1.1 Aliasing

What are some of the things you might want to customize? Here’s something that I think about
90% of Bash users have put in their .bash _profile:

alias 11="1s -1"

That command defined a shell alias called 11 that “expands” to the normal shell command
“ls -1” when invoked by the user. So, assuming that Bash has read that command in from your
.bash_profile, you can just type 11 to get the effect of “1s -1” in only half the keystrokes. What
happens is that when you type 11 and hit , Bash intercepts it, because it’s watching for
aliases, replaces it with “ls -1”, and runs that instead. There is no actual program called 11 on the
system (no binary file waiting to be executed, that is), but the shell translated the alias into a valid

program. Clear? Good. Here are a zillion aliases from my own .bash_profile:

alias 1ls="1s -CF"

alias 11="1s -1"

alias la="ls -a"

alias rr="rm -r"

alias ro="rm *~; rm .*""

alias rd="rmdir"

alias md="mkdir"

alias pu=pushd

alias po=popd

alias ds=dirs

alias b=""/.b"

alias to="telnet cs.oberlin.edu"

alias ta="telnet altair.mcs.anl.gov"
alias tg="telnet wombat.gnu.ai.mit.edu"
alias tko='"talk kold@cs.oberlin.edu"
alias tjo="talk jimb@cs.oberlin.edu"
alias tji="talk jimb@totoro.bio.indiana.edu"
alias mroe="more"

alias moer="more"

alias email="emacs -f wvm"

alias ed2="emacs -d floss:0 -fg \'"grey95\" -bg \'"grey50\""

You might have noticed a few odd things about them. First of all, I leave off the quotes in a
few of the aliases, for example rd. Strictly speaking, quotes aren’t always necessary. If you’re just

aliasing a single long command to give it a name that’s easier to type, you can do without the quotes:

alias rf=refrobnicate

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 69

However, it never hurts to have quotes either, so don’t let me get you into any bad habits. You

should certainly use them if you’re going to be aliasing a command with options and/or arguments:

alias rf="refrobnicate -verbose -prolix -wordy -o foo.out"

Also, the final alias has some funky quoting going on:

alias ed2="emacs -d floss:0 -fg \backslash'grey95\backslash" -bg \backslash'grey50\backslash""

As you probably guessed, I wanted to pass double-quotes in the options themselves, so I had to
quote those with a backslash to prevent Bash from thinking that they signaled the end of the alias.

Finally, I have actually aliased two common typing mistakes, “mroe” and “moer”, to the com-
mand I meant to type, more. Aliases do not interfere with your passing arguments to a program:

prompt> mroe hurd.txt

does invoke the more program on the file hurd.txt.

In fact, knowing how to make your own aliases is probably at least half of all the shell customiza-
tion you’ll ever do. Experiment a little, find out what long commands you find yourself typing
frequently, and make aliases for them (and then don’t forget to use the aliases!) You’ll find that it

makes working at a shell prompt a much more pleasant experience.

8.1.2 Environment Variables

The other major thing one does in a .bash_profile is set environment variables. And what
are environment variables? Let’s go at it from the other direction: suppose you are reading the

documentation for the program fruggle, and you run across these sentences:

Fruggle normally looks for its configuration file, .frugglerc, in the user’s home directory.
However, if the environment variable FRUGGLEPATH is set to a different filename, it will

look there instead.

Hmmm, what did that mean? Well, every program executes in an environment, and that
environment is defined by the shell that called the program®. The environment could be said to
exist “within” the shell. Programmers have a special routine for querying the environment, and
the fruggle program makes use of this routine. It checks the value of the environment variable
FRUGGLEPATH. If that variable turns out to be undefined, then it will just use the file .frugglerc
in your home directory. If it is defined, however, fruggle will use the variable’s value (which had

better be the name of a file that fruggle can use) instead of the default .frugglerc.

Enough yakking, here’s how you can change your environment in Bash:

4Now you see why shells are so important. Imagine if you had to pass a whole environment by hand every time

you called a program! It could get tiresome really fast...

70 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

prompt> export PGPPATH=/home/kfogel/secrets/pgp

You may think of the export command as meaning “Please export this variable out to the
environment where I will be calling programs, so that its value is visible to them.” There are

actually reasons to call it export, as you’ll see later.

This particular variable is used by Phil Zimmerman’s infamous public-key encryption program,
pgp. By default, pgp uses your home directory as a place to find certain files that it needs (ones
containing encryption keys, ahem), and also as a place to store temporary files that it creates
when it’s running. By setting variable PGPPATH to this value, I have told it to use the directory
/home/kfogel/secrets/pgp instead (I had to read the pgp manual to find out the exact name of
the variable and what it does, but in fact it’s a common convention to use the name of the program
in capital letters, prepended to the suffix “PATH”).

How can you check the value of an environment variable? Like this:

prompt> echo $PGPPATH
/home/kfogel/.pgp
prompt>

Notice the “$”; you prefix an environment variable with a dollar sign in order to extract the
variable’s value. Had you typed it without the dollar sign, echo would have simply echoed its
argument(s):

prompt> echo PGPPATH
PGPPATH
prompt>

The “$” is used to ewaluate environment variables, but it only does so in the context of the
shell—that is, when the shell is interpreting. When is the shell interpreting? Well, when you are
typing commands at the prompt, or when Bash is reading commands from a file like .bash_profile,

it can be said to be “interpreting” the commands.

There are four variables defined automatically when you log in (meaning that you don’t have to
set them in your .bash_profile, because they have already been set by the time Bash gets around
to reading its init file): HOME, TERM, SHELL, and USER. Let’s check their values:

prompt> echo $HOME
/home/kfogel
prompt> echo $TERM
vt100

prompt> echo $SHELL
/bin/sh

prompt> echo $USER
kfogel

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 71

In order, these values are: the location of your home directory, your terminal type, the program
that is running as your shell (/bin/sh, or maybe /bin/bash; in Linux they are the same thing
anyway), and finally, your username. Of these, the only one whose purpose should be a mystery to
you 18 the TERM variable. A brief history lesson is in order, though it means a digression. . .

The operating system, you see, needs to know certain facts about your console, in order to perform
basic functions like writing a character to the screen, moving the cursor to the next line, etc. In
the early days of computing, manufacturers were constantly adding new features to their terminals:
first reverse-video, then maybe European character sets, eventually even primitive drawing functions
(remember, these were the days before windowing systems and mice). However, all these nice features
represented a problem to programmers: how were they to know what the system’s terminal could
support and what 1t couldn’t, if it was changing from day to day? What eventually happened
was that the Digital Equipment Corporation’s VT-100 terminal became a sort of lowest-common-
denominator standard. It supports all standard characters, some basic cursor movement commands,
reverse-video, and a few other things. Programs counted on being able to find a vt100 terminal,
and terminal manufacturers were expected to support a vt100 compatibility mode, even if their
terminal had features above and beyond the standard vt100. This standard is still used today,
even though most terminals can support much more, and anyway most users do their work in
a graphical windowing system. The lesson: portability i1s more important than fancy features.

Budding programmers take note.

So this is what the TERM variable is used for: programs check its value to make sure that they
have a vt100, or something close to it, before they do anything that requires writing to the screen.
Under LINUX, TERM’s value is sometimes console, which means, I believe; a vt100-like terminal
with some extra features. [Larry, or someone, please correct if that is not accurate.] Often, simple
terminal problems (like garbage characters) can be fixed by issuing this command:

prompt> export TERM=vt100

There 1s another variable, named simply PATH, whose value is crucial to the proper functioning

of the shell. Here’s mine:

prompt> echo $PATH
/home/kfogel/bin:/bin:/usr/bin: /usr/local/bin:/usr/bin/X11:/usr/TeX/bin
prompt>

Your PATH is a colon-separated list of the directories the shell should search for programs, when
you type the name of a program to run. When I type 1s and hit , for example, the Bash
first looks in /home/kfogel/bin, a directory I made for storing programs that I wrote. However, I
didn’t write 1s (in fact, I think it might have been written before I was born!). Failing to find it
in /home/kfogel/bin, Bash looks next in /bin—and there it has a hit! /bin/1s does exist and is
executable, so Bash stops searching for a program named 1s and runs it. There might well have
been another 1s sitting in the directory /usr/bin, but Bash would never run it unless I asked for it

by specifying an explicit pathname:

72 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

prompt> /usr/bin/ls

The PATH variable exists so that we don’t have to type in complete pathnames for every command.
When you type a command, Bash looks for it in the directories named in PATH, in order, and runs

1t if it finds 1t. If it doesn’t find it, you get a rude error:

prompt> clubly

clubly: command not found

Notice that my PATH does not have the current directory, “.”, in it. If it did, it might look like
this:

prompt> echo $PATH
. :/home/kfogel/bin: /bin: /usr/bin:/usr/local/bin:/usr/bin/X11:/usr/TeX/bin
prompt>

This is a matter of some debate in Unix-circles (which you are now a member of, whether you
like it or not). The problem is that having the current directory in your path can be a security hole.
Suppose that you cd into a directory where somebody has left a “Trojan Horse” program called 1s,
and you do an 1s, as would be natural on entering a new directory. Since the current directory, “.”,
came first in your PATH, the shell would have found this version of 1s and executed it. Whatever
mischief they might have put into that program, you have just gone ahead and executed (and that
could be quite a lot of mischief indeed). The person did not need root privileges to do this; they
only needed write permission on the directory where the “false” 1s was located. It might even have

been their home directory, if they knew that you would be poking around in there at some point.

On your own system, it’s highly unlikely that people are leaving traps for each other. All the
users are probably friends or colleagues of yours. However, on a large multi-user system (like many
university computers), there could be plenty of unfriendly programmers whom you’ve never met.
Whether or not you want to take your chances by having “.” in your path depends on your situation;
I'm not going to be dogmatic about it either way, I just want you to be aware of the risks involved?®.
Multi-user systems really are communities, where people can do things to one another in all sorts of

unforseen ways.
The actual way that I set my PATH involves most of what you’ve learned so far about environment

variables. Here is what is actually in my .bash_profile:

export PATH=.:${HOME}/bin:/bin:/usr/bin:/usr/local/bin:/usr/bin/X11:/usr/TeX/bin

Here, I am taking advantage of the fact that the HOME variable is set before Bash reads my
.bash_profile, by using its value in setting my PATH. The curly braces (“{...}”) are a further
level of quoting; they delimit the extent of what the “$” is to evaluate, so that the shell doesn’t get

5Remember that you can always execute programs in the current directory by being explicit about it, i.e.: “./foo” .

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 73

confused by the text immediately following it (“/bin” in this case). Here is another example of the
effect they have:

prompt> echo ${HOME}foo
/home/kfogelfoo
prompt>

Without the curly braces, I would get nothing

prompt> echo $HOMEfoo

prompt>

because there 1s no environment variable named “HOMEfoo” set.

The file /etc/profile serves as a kind of global .bash_profile that is common to all users.
Having one centralized file like that makes it easier for the system administrator to add a new
directory to everyone’s PATH or something, without them all having to do it individually. Therefore,
it might be best to put this in your .bash_profile:

export PATH=${PATH}:.:${HOME}/bin:/bin:/usr/bin:/usr/local/bin:/usr/bin/X11:/usr/TeX/bin

so as not to lose any of the PATH directories defined in /etc/profile. (The reasons you didn’t
see me doing that in my own .bash_profile before are not worth going into here; 99% of the time,
you’ll want the PATH defined in /etc/profile to be part of your own PATH, so you’d best be careful

to include it.)

You can also control what your prompt looks like. This is done by setting the value of the
environment variable PS1. Personally, I want a prompt that shows me the path to the current

working directory—here’s how I do it in my .bash_profile:

export PS1=’$PWD>’

Whew! As you can see, there are actually two variables being used here. The one being set
is PS1, and 1t is being set to the value of PWD, which can be thought of as either “Print Working
Directory” or “Path to Working Directory”. But the evaluation of PWD takes place inside single
quotes. The single quotes serve to evaluate the expression inside them, which itself evaluates the
variable PWD. If you just did export PS1=$PWD, your prompt would constantly display the path to
the current directory at the time that PS1 was set, instead of constantly updating it as you change
directories. Well, that’s sort of confusing, and not really all that important. Just keep in mind that

you need the quotes if you want the current directory displayed in your prompt.

There’s a lot more to configuring your .bash_profile, and not enough room to explain it here. You
can read the Bash man page for more, and also the Info pages on it (if you have them installed), and

ask questions of experienced Bash users. Here is a complete .bash_profile for you to study; it’s

74 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

fairly standard and probably can’t get you into any trouble, but don’t be intimidated if you don’t

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

understand everything in it:

some random stuff:

ulimit -c unlimited

export history_control=ignoredups
export PS1=’$PWD>’

umask 022

application-specific paths:

export MANPATH=/usr/local/man:/usr/man
export INFOPATH=/usr/local/info

export PGPPATH=${HOME}/.pgp

make the main PATH:

homepath=${HOME}: " /bin
stdpath=/bin:/usr/bin:/usr/local/bin: /usr/ucb/:/etc: /usr/etc:/usr/games
pubpath=/usr/public/bin: /usr/gnusoft/bin:/usr/local/contribs/bin
softpath=/usr/bin/X11:/usr/local/bin/X11:/usr/TeX/bin

export PATH=.:${homepath}:${stdpath}:${pubpath}:${softpath}

Technically, the curly braces were not necessary, because the colons
were valid delimiters; nevertheless, the curly braces are a good

habit to get into, and they can’t hurt. There is absolutely no need
to be this fancy with the PATH, it’s just for showboating.

aliases

alias 1ls="1s -CF"

alias fgl="fg %1"

alias fg2="fg %2"

alias tba="talk sussman@tern.mcs.anl.gov"
alias tko='"talk kold@cs.oberlin.edu"
alias tji="talk jimb@totoro.bio.indiana.edu"
alias mroe="more"

alias moer="more"

alias email="emacs -f wvm"

alias pu=pushd

alias po=popd

alias b=""/.b"

alias ds=dirs

alias ro="rm *~; rm .*""

alias rd="rmdir"

alias 11="1s -1"

alias la="ls -a"

alias rr="rm -r"

alias md="mkdir"

alias ed2="emacs -d floss:0 -fg \'"grey95\" -bg \'"grey50\""

function gco
{

gcc —o $1 $1.c -g
}

75

76 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

8.2 X Windows Init Files

Most people prefer to do their work inside a graphical environment, and for Unix machines, that
usually means using X Windows. If you’re accustomed to the Macintosh or to Microsoft Windows,

the X Window System may take a little getting used to, especially in how it is customized.

With a Mac or MS-Windows, you customize the environment from within the environment: if
you want to change your background, for example, you do by clicking on the new color in some
special graphical setup program. In X Windows, system defaults are controlled by text files, which
you edit directly—in other words, you’d type the actual color name into a file in order to set your

background to that color.

There is no denying that this method just isn’t as slick as some commercial windowing systems.
I think this tendency to remain text-based, even in a graphical environment, has to do with the fact
that X Windows was created by a bunch of programmers who simply weren’t trying to write software
that their grandparents could use. This tendency may change in future versions of X Windows (at
least T hope it will), but for now, you just have to learn to deal with more text files. Tt does at least

give you very flexible and precise control over your configuration.
Here are the most important files for configuring X Windows:

.xinitrc A script run by X Windows when it starts up.
.twmrc Read by an X Windows window manager, twm.

.fvwmrc Read by an X Windows window manager, £vwm.

All of these files should be located in your home directory, if they exist at all.

The .xinitrc is a simple shell script that gets run when X Windows is invoked. It can do
anything any other shell script can do, but of course it makes the most sense to use 1t for starting
up various X Windows programs and setting window system parameters. The last command in the
.xinitrc is usually the name of a window manager to run, for example /usr/bin/X11/twm (short

for the “T'wm Window Manager”, in case anyone ever asks you).

What sort of thing might you want to put in a .xinitrc file? Perhaps some calls to the xsetroot
program, to make your root (background) window and mouse cursor look the way you want them
to look. Calls to xmodmap, which tells the server® how to interpret the signals from your keyboard.

Any other programs you want started every time you run X Windows (for example, xclock).

Here 1s some of my .xinitrc; yours will almost certainly look different, so this is meant only as

6The “server” just means the main X Windows process on your machine, the one with which all other X programs
must communicate in order to use the display. These other programs are known as “clients”, and the whole deal is

called a “client-server” system.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

an example:

#!/bin/sh
The first line tells the operating system which shell to use in
interpreting this script. The script itself ought to be marked as

executable; you can make it so with "chmod +x ~/.xinitrc".

xmodmap is a program for telling the X server how to interpret your
keyboard’s signals. It is #definitely* worth learning about. You
can do "man xmodmap'', 'xmodmap -help", "xmodmap -grammar', and more.
I don’t guarantee that the expressions below will mean anything on

your system (I don’t even guarantee that they mean anything on

= H H H = =

mine) :
xmodmap -e ’clear Lock’
xmodmap -e ’keycode 176 = Control_R’

xmodmap -e ’add control = Control_R’

xmodmap -e ’clear Mod2’
xmodmap -e ’add Modl = Alt_L Alt_R’

xset is a program for setting some other parameters of the X server:
xsetm 3 2 & # mouse parameters

xset s 600 5 & # screen saver prefs

xset s noblank & # ditto

xset fp+ /home/kfogel/x/fonts # for cxterm

To find out more, do "xset -help".

Tell the X server to superimpose fish.cursor over fish.mask, and use
the resulting pattern as my mouse cursor:
xsetroot —cursor /home/lab/kfogel/x/fish.cursor /home/lab/kfogel/x/fish.mask &

a pleasing background pattern and color:

xsetroot -bitmap /home/lab/kfogel/x/pyramid.xbm -bg tan
todo: xrdb here? What about .Xdefaults file?

You should do '"man xsetroot', or '"xsetroot -help" for more

information on the program used above.

A client program, the imposing circular color-clock by Jim Blandy:

/usr/local/bin/circles &

Maybe you’d like to know have a clock on your screen at all times?
/usr/bin/X11/xclock -digital &

Allow client X programs running at occs.cs.oberlin.edu to display
themselves here, do the same thing for juju.mcs.anl.gov:
xhost occs.cs.oberlin.edu

xhost juju.mcs.anl.gov

You could simply tell the X server to allow clients running on any

other host (a host being a remote machine) to display here, but this
is a security hole —-- those clients might be run by someone else,

and watch your keystrokes as you type your password or something!

However, if you wanted to do it anyway, you could use a '"+'" to stand
for all possible hostnames, instead of a specific hostname, like

this:

xhost +

And finally, run the window manager:

/usr/bin/X11/twn

Some people prefer other window managers. I use twm, but fvwm is
often dietribiited with T.innixy too:*

78 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

It seems to work fine either way; I'm wondering if there’s any point recommending an “&” or not.
-Karl]

Notice that some commands are run in the background (i.e.: they are followed with a “&”),
while others aren’t. The distinction is that some programs will start when you start X Windows
and keep going until you exit—these get put in the background. Others execute once and then exit
immediately. xsetroot is one such; it just sets the root window or cursor or whatever, and then

exits.

Once the window manager has started, it will read its own init file, which controls things like
how your menus are set up, which positions windows are brought up at, icon control, and other
earth-shakingly important issues. If you use twm, then this file is .twmrc in your home directory.
If you use fvwm, then i1t’s .fvwmrc, etc. I'll deal with only those two, since they’re the window

managers you’ll be most likely to encounter with Linux.

The .twmrc is not a shell script—it’s actually written in a language specially made for twm,

believe it or not!” The main thing people like to play with in their .twmrc is window style (colors

"This is one of the harsh facts about init files: they generally each have their own idiosyncratic command language.
This means that users get very good at learning command languages quickly. I suppose that it would have been nice if
early Unix programmers had agreed on some standard init file format, so that we wouldn’t have to learn new syntaxes

all the time, but to be fair it’s hard to predict what kinds of information programs will need.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 79

and such), and making cool menus, so here’s an example .twmrc that does that:

Set colors for the various parts of windows. This has a great
impact on the "feel" of your environment.
Color
{
BorderColor "OrangeRed"
BorderTileForeground "Black"
BorderTileBackground "Black"
TitleForeground "black"
TitleBackground "gold"
MenuForeground "black"
MenuBackground "LightGrey"
MenuTitleForeground "LightGrey"
MenuTitleBackground "LightSlateGrey"
MenuShadowColor "black"
IconForeground "DimGray"
IconBackground "Gold"
IconBorderColor "OrangeRed"
IconManagerForeground "black"

IconManagerBackground "honeydew"

I hope you don’t have a monochrome system, but if you do...
Monochrome
{

BorderColor "black"

BorderTileForeground "black"

BorderTileBackground "white"

TitleForeground "black"

TitleBackground "white"

I created beifang.bmp with the program "bitmap'". Here I tell twm to
use it as the default highlight pattern on windows’ title bars:
Pixmaps
{

TitleHighlight "/home/kfogel/x/beifang.bmp"

Don’t worry about this stuff, it’s only for power users :-)

BorderWidth 2

TitleFont "-adobe-new century schoolbook-bold-r-normal--14-140-75-75-p-87-is08859-1"
MenuFont "6x13"

IconFont "lucidasans-italic-14"

ResizeFont "fixed"

Zoom 50

RandomPlacement

These programs will not get a window titlebar by default:
NoTitle
{

"stamp'

"xload"

"xclock"

"xlogo"

"xbiff"

"xeyes'

"oclock"

Yxoid"

80 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

that some decent example .twmrc files came with your X Windows. Take a look in the directory
/usr/1ib/X11/twm/ or /usr/X11/1ib/X11/twm and see what’s there.

One bug to watch out for with .twmrc files is forgetting to put the & after a command on a
menu. If you notice that X Windows just freezes when you run certain commands, chances are that

this is the cause. Break out of X with | Control F A|t|» Backspace |, edit your .twmrc, and try again.

If you are using fvwm, the directory /usr/1lib/X11/fvwm/ (or /usr/X11/1ib/X11/fvum/) has

some good example config files in it, as well.

[Folks: T don’t know anything about fvwm, although T might be able to grok something from
the example config files. Then again, so could the reader :-). Also, given the decent but small
system.twmrc in the above-mentioned directory, I wonder if 1t’s worth it for me to provide that
lengthy example with my own .twmrc. It’s in for now, but I don’t know whether we want to leave
it there or not. -Karl]

8.3 Other Init Files

Some other initialization files of note are:

.emacs Read by the Emacs text editor when 1t starts up.
.netrc Gives default login names and passwords for ftp.
.rhosts Makes your account remotely accessible.

.forward For automatic mail forwarding.

8.3.1 The Emacs Init File

If you use emacs as your primary editor, then the .emacs file is quite important. It is dealt with at
length in Chapter 7.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

8.3.2 FTP Defaults

Your .netrc file allows you to have certain ftp defaults set before you run ftp.

sample .netrc:

machine
machine
machine
machine
machine

machine

machine
machine
machine
machine
machine

machine

machine

Each line

floss.life.uiuc.edu login kfogel password fishSticks
darwin.life.uiuc.edu login kfogel password fishSticks
geta.life.uiuc.edu login kfogel password fishSticks

phylo.life.uiuc.edu login kfogel password fishSticks
ninja.life.uiuc.edu login kfogel password fishSticks

indy.life.uiuc.edu login kfogel password fishSticks

clone.mcs.anl.gov login fogel password doorm@
osprey.mcs.anl.gov login fogel password doorm@
tern.mcs.anl.gov login fogel password doorm@

altair.mcs.anl.gov login fogel password doorm@
dalek.mcs.anl.gov login fogel password doorm@

juju.mcs.anl.gov login fogel password doorm@

sunsite.unc.edu login anonymous password kfogel@cs.oberlin.edu

81

Here 1s a small

of your .netrc specifies a machine name, a login name to use by default for that

machine, and a password. This is a great convenience if you do a lot of ftp-ing and are tired of

constantly typing in your username and password at various sites. The ftp program will try to

log you in automatically using the information found in your .netrc file, if you £tp to one of the

machines listed in the file.

You can tell £tp to ignore your .netrc and not attempt auto-login by invoking it with the -n

option: “ftp

_n77 .

You must make sure that your .netrc file is readable only by you. Use the chmod program to set

the file’s read permissions. If other people can read it, that means they can find out your password

at various other sites. This is about as big a security hole as one can have; to encourage you to be

careful, £tp and other programs that look for the .netrc file will actually refuse to work if the read

permissions on the file are bad.

There’s more to the .netrc file than what I’ve said; when you get a chance, do “man .netrc”

or “man ftp”

8.3.3 Allowing Easy Remote Access to Your Account

If you have an .rhosts file in your home directory, it will allow you to run programs on this machine

remotely. That is; you might be logged in on the machine cs.oberlin.edu, but with a correctly

configured .rhosts file on floss.life.uiuc.edu, you could run a program on floss.life.uiuc.edu

and have the output go to cs.oberlin.edu, without ever having to log in or type a password.

82 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

A .rhosts file looks like this:

frobnozz.cs.knowledge.edu jsmith
aphrodite.classics.hahvaahd.edu wphilps

frobbo.hoola.com trixie

The format is fairly straightforward: a machine name, followed by username. Suppose that that
example is in fact my .rhosts file on floss.life.uiuc.edu. That would mean that I could run
programs on floss, with output going to any of the machines listed, as long as I were also logged in
as the corresponding user given for that machine when I tried to do it.

The exact mechanism by which one runs a remote program is usually the rsh program. It stands
for “remote shell”, and what it does 1s start up a shell on a remote machine and execute a specified
command. For example:

frobbo$ whoami

trixie

frobbo$ rsh floss.life.uiuc.edu "1ls ™"

foo.txt mbox url.ps snax.txt

frobbo$ rsh floss.life.uiuc.edu "more ~/snax.txt"

[snax.txt comes paging by here]

User trixie at floss.life.uiuc.edu, who had the example .rhosts shown previously, explicitly allows

trixie at frobbo.hoola.com to run programs as trixie from floss.

You don’t have to have the same username on all machines to make a .rhosts work right. Use
the “~1” option to rsh, to tell the remote machine what username you’d like to use for logging in.
If that username exists on the remote machine, and has a .rhosts file with your current (i.e.: local)

machine and username in it, then your rsh will succeed.

frobbo$ whoami
trixie
frobbo$ rsh -1 kfogel floss.life.uiuc.edu "ls ~"

[Insert a listing of my directory on floss here]

This will work if user kfogel on floss.life.uiuc.edu has a .rhosts file which allows trixie
from frobbo.hoopla.com to run programs in his account. Whether or not they are the same person
is irrelevant: the only important things are the usernames, the machine names, and the entry in
kfogel’s .rhosts file on floss. Note that trixie’s .rhosts file on frobbo doesn’t enter into it, only

the one on the remote machine matters.

There are other combinations that can go in a .rhosts file—for example, you can leave off the
username following a remote machine name, to allow any user from that machine to run programs as
you on the local machine! This is, of course, a security risk: someone could remotely run a program
that removes your files, just by virtue of having an account on a certain machine. If you’re going to
do things like leave off the username, then you ought to make sure that your .rhosts file is readable
by you and no one else.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 83

8.3.4 Mail Forwarding

You can also have a .forward file, which is not strictly speaking an “init file”. If it contains an
email address, then all mail to you will be forwarded to that address instead. This is useful when

you have accounts on many different systems, but only want to read mail at one location.

There is a host of other possible initialization files. The exact number will vary from system to
system, and is dependent on the software installed on that system. One way to learn more 1s to look
at files in your home directory whose names begin with “.”. These files are not all guaranteed to
be init files, but it’s a good bet that most of them are.

8.4 Seeing Some Examples

The ultimate example I can give you is a running Linux system. So, if you have Internet access,
feel free to telnet to floss.life.uiuc.edu. Log in as “guest”, password “explorer”, and poke
around. Most of the example files given here can be found in /home/kfogel, but there are other
user directories as well. You are free to copy anything that you can read. Please be careful: floss is
not a terribly secure box, and you can almost certainly gain root access if you try hard enough. 1

prefer to rely on trust, rather than constant vigilance, to maintain security.

84

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

Chapter 9
Funny Commands

Well, most people who had to do with the UNIX commands exposed in this chapter will not agree
with this title. “What the heck! You have just shown me that the Linux interface is very standard,
and now we have a bunch of commands, each one working in a completely different way. I will never
remember all those options, and you are saying that they are funny?” Yes, you have just seen an
example of hackers” humor. Besides, look at it from the bright side: there i1s no MS-DOS equivalent
of these commands. If you need them, you have to purchase them, and you never know how their

interface will be. Here they are a useful — and inexpensive — add-on, so enjoy!

The set of commands dwelled on in this chapter covers find, which lets the user search in the
directory tree for specified groups of files; tar, useful to create some archive to be shipped or just
saved; dd, the low-level copier; and sort, which ...yes, sorts files. A last proviso: these commands
are by no means standardized, and while a core of common options could be found on all *IX
systems, the (GNU) version which is explained below, and which you can find in your Linux system,
has usually many more capabilities. So if you plan to use other UNIX-like operating systems, please

don’t forget to check their man page in the target system to learn the maybe not-so-little differences.

9.1 f£find, the file searcher

9.1.1 Generalities

Among the various commands seen so far, there were some which let the user recursively go down
the directory tree in order to perform some action: the canonical examples are 1s -R and rm -R.
Good. find is the recursive command. Whenever you are thinking “Well, I have to do so-and-so on
all those kind of files in my own partition”, you have better think about using £ind. In a certain

sense the fact that find finds files is just a side effect: its real occupation is to evaluate

The basic structure of the command is as follows:
find path [...] expression [...]

85

86 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

This at least on the GNU version; other version do not allow to specify more than one path, and
besides it is very uncommon the need to do such a thing. The rough explanation of the command
syntax is rather simple: you say from where you want to start the search (the path part; with GNU
find you can omit this and it will be taken as default the current directory .), and which kind of

search you want to perform (the expression part).

The standard behavior of the command is a little tricky, so it’s worth to note it. Let’s suppose
that in your home directory there is a directory called garbage, containing a file foobar. You happily
type find . -name foobar (which as you can guess searches for files named foobar), and you obtain
...nothing else than the prompt again. The trouble lies in the fact that £ind is by default a silent
command; it just returns 0 if the search was completed (with or without finding anything) or a
non-zero value if there had been some problem. This does not happen with the version you can find

on Linux, but it is useful to remember 1t anyway.

9.1.2 Expressions

The expression part can be divided itself in four different groups of keywords: options, tests, actions,
and operators. FEach of them can return a true/false value, together with a side effect. The difference

among the groups is shown below.

options affect the overall operation of find, rather than the processing of a single file. An example
1s -follow, which instructs £ind to follow symbolic links instead of just stating the inode. They

always return true.

tests are real tests (for example, -empty checks whether the file is empty), and can return true or
false.

actions have also a side effect the name of the considered file. They can return true or false too.

operators do not really return a value (they can conventionally be considered as true), and are
used to build compress expression. An example is -or, which takes the logical OR, of the two

subexpressions on its side. Notice that when juxtaposing expression, a -and is implied.

Note that £ind relies upon the shell to have the command line parsed; it means that all keyword
must be embedded in white space and especially that a lot of nice characters have to be escaped,
otherwise they would be mangled by the shell itself. Each escaping way (backslash, single and double
quotes) is OK; in the examples the single character keywords will be usually quoted with backslash,

because it is the simplest way (at least in my opinion. But it’s me who is writing these notes!)

9.1.3 Options

Here there is the list of all options known by GNU version of £ind. Remember that they always
return true.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 87

e -daystart measures elapsed time not from 24 hours ago but from last midnight. A true hacker
probably won’t understand the utility of such an option, but a worker who programs from

eight to five does appreciate it.

e -depth processes each directory’s contents before the directory itself. To say the truth, I don’t
know many uses of this, apart form an emulation of rm -F command (of course you cannot
delete a directory before all files in it are deleted too ...

o —follow deferences (that is, follows) symbolic links. It implies option -noleaf; see below.

e -noleaf turns off an optimization which says “A directory contains two fewer subdirectories
than their hard link count”. If the world were perfect, all directories would be referenced with
their name on the father directory, as . on itself — thus the value two above —

possible exceptions: a non-UNIX NFS-mounted filesystem, and symbolic links. Life is hard,
sometimes.

e -maxdepth levels, -mindepth levels, where levels i1s a non-negative integer, respectively say
that at most or at least levels levels of directories should be searched. A couple of exam-
ples is mandatory: -maxdepth O indicates that it the command should be performed just on
the arguments in the command line, i.e., without recursively going down the directory tree;
-mindepth 1 inhibits the processing of the command for the arguments in the command line,
while all other files down are considered.

e -version just prints the current version of the program.

e -xdev, which is a misleading name, instructs £ind not to cross device, i.e. changing filesystem.
It 1s very useful when you have to search for something in the root filesystem; in many machines
it 1s a rather small partition, but a find / would otherwise search the whole structure!

9.1.4 Tests

The first two tests are very simple to understand: -false always return false, while -true always
return true. Other tests which do not need the specification of a value are -empty, which returns
true whether the file is empty, and the couple -nouser / -nogroup, which return true in the case
that no entry in /etc/passwd or /etc/group match the user/group id of the file owner. This is a
common thing which happens in a multiuser system; a user is deleted, but files owned by her remain

in the strangest part of the filesystems, and due to Murphy’s laws take a lot of space.

Of course, it 1s possible to search for a specific user or group. The tests are -uid nn and -gid
nn. Unfortunately it is not possibile to give directly the user name, but it is necessary to use the
numeric id, nn.

allowed to use the forms +nn, which means “a value strictly greater than nn”, and —nn, which
means “a value strictly less than nn”. This is rather silly in the case of UIDs, but it will turn handy
with other tests.

Another useful option is -type ¢, which returns true if the file is of type ¢. The mnemonics for the

possible choices are the same found in 1s; so we have b when the file is a block special; ¢ when the

88 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

file i1s character special; d for directories; p for named pipes; 1 for symbolic links, and s for sockets.
Regular files are indicated with f. A related test is -xtype, which is similar to -type except in the
case of symbolic links. If -follow has not been given, the file pointed at i1s checked, instead of the
link itself. Completely unrelated is the test -fstype type. In this case, the filesystem type is checked.
I think that the information is got from file /etc/mtab, the one stating the mounting filesystems; I

am certain that types nfs, tmp, msdos and ext2 are recognized.

Tests -inum nn and -links nn check whether the file has inode number nn, or nn links, while
-size nn is true if the file has nn 512-bytes blocks allocated. (well, not precisely: for sparse files
unallocated blocks are counted too). As nowadays the result of 1s -s is not always measured in
512-bytes chunks (Linux for example uses 1k as the unit), it is possible to append to nn the character

b, which means to count in butes, or k, to count in kilobytes.

Permission bits are checked through the test -perm mode. If mode has no leading sign, then the
permission bits of the file must exactly match them. A leading — means that all permission bits
must be set, but makes no assumption for the other; a leading + is satisfied just if any of the bits
are set. Oops! 1 forgot saying that the mode is written in octal or symbolically, like you use them

in chmod.

Next group of tests is related to the time in which a file has been last used. This comes handy
when a user has filled his space, as usually there are many files he did not use since ages, and whose
meaning he has forgot. The trouble is to locate them, and find is the only hope in sight. -atime
nn is true if the file was last accessed nn days ago, -ctime nn if the file status was last changed nn
days ago — for example, with a chmod — and -mtime nn if the file was last modified nn days ago.
Sometimes you need a more precise timestamp; the test -newer file is satisfied if the file considered
has been modified later than file. So, you just have to use touch with the desidered date, and you’re
done. GNU find add the tests -anewer and -cnewer which behave similarly; and the tests -amin, -cmin

and -mmin which count time in minutes instead than 24-hours periods.

Last but not the least, the test I use more often. -name pattern is true if the file name exactly
matches pattern, which is more or less the one you would use in a standard 1s. Why ‘more or less’?
Because of course you have to remember that all the parameters are processed by the shell, and
those lovely metacharacters are expanded. So, a test like —-name foo* won’t return what you want,
and you should either write -name foo or —name "foo*". This is probably one of the most common
mistakes made by careless users, so write it in BIG letters on your screen. Another problem is that,
like with 1s, leading dots are not recognized. To cope with this, you can use test -path pattern which

does not worry about dot and slashes when comparing the path of the considered file with pattern.

9.1.5 Actions

I have said that actions are those which actually do something. Well, -prune rather does not do
something, i.e. descending the directory tree (unless -depth is given). It is usally find together with
-fstype, to choose among the various filesystems which should be checked.

The other actions can be divided into two broad categories;

e Actions which print something. The most obvious of these — and indeed, the default action

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 89

of find — is -print which just print the name of the file(s) matching the other conditions in
the command line, and returns true. A simple variants of -print is -fprint file, which uses file
instead of standard output, -ls lists the current file in the same format as 1s -dils; -printf
format behaves more or less like C function printf(), so that you can specify how the output
should be formatted, and -fprintf file format does the same, but writing on file. These action
too return true.

e Actions which ezecute something. Their syntax is a little odd and they are used widely, so
please look at them.

-exec command \; the command is executed, and the action returns true if its final status is
0, that is regular execution of it. The reason for the \; is rather logical: find does not know
where the command ends, and the trick to put the exec action at the end of the command is not
applicable. Well, the best way to signal the end of the command is to use the character used to
do this by the shell itself, that is “;’, but of course a semicolon all alone on the command line
would be eaten by the shell and never sent to £ind, so it has to be escaped. The second thing
to remember is how to specify the name of the current file within command, as probably you
did all the trouble to build the expression to do something, and not just to print date. This is
done by means of the string {}. Some old versions of £ind require that it must be embedded
in white space — not very handy if you needed for example the whole path and not just the
file name — but with GNU find could be anywhere in the string composing command. And
shouldn’t it be escaped or quoted, you surely are asking? Amazingly, I never had to do this
neither under tesh nor under bash (sh does not consider { and } as special characters, so it is
not much of a problem). My idea is that the shells “know” that {} is not an option making

sense, so they do not try to expand them, luckily for find which can obtain it untouched.

-ok command \; behaves like -exec, with the difference that for each selected file the user is
asked to confirm the command; if the answer starts with y or Y, it is executed, otherwise not,

and the action returns false.

9.1.6 Operators

There are a number of operators; here there is a list, in order of decreasing precedence.

\(ezpr \)
forces the precedence order. The parentheses must of course be quoted, as they are meaningful
for the shell too.

I expr
-not expr
change the truth value of expression, that is if ezpr is true, it becomes false. The exclamation
mark needn’t be escaped, because it is followed by a white space.

exprl expr?
exprl -a expr?
exprl -and expr?2

90 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

all correspond to the logical AND operation, which in the first and most common case is implied.

expr? is not evaluated, if exprl is false.

exprl -o expr?
exprl -or expr?

correspond to the logical OR operation. expr?2 is not evaluated, if exzprl is true.

exprl , expr?
is the list statement; both ezpr! and expr2 are evaluated (together with all side effects, of course!),
and the final value of the expression is that of expr2.

9.1.7 Examples

Yes, £ind has just too many options, I know. But there are a lot of cooked instances which are

worth to remember, because they are usen very often. Let’s see some of them.
% find . -name fool* -print

finds all file names starting with foo. If the string is embedded in the name, probably it is more

sensitive to write something like "*foo*", rather than foo.

% find /usr/include -xtype f -exec grep foobar \
/dev/null {3} \;

is a grep executed recursively starting from directory /usr/include. In this case, we are interested
both in regular file and in symbolic links which point to regular files, hence the -xtype test. Many
times it is simpler to avoid specyfing it, especially if we are rather sure no binary file contains the
wanted string. And why the /dev/null in the command? It’s a trick to force grep to write the
file name where a match has been found. The command grep is applied to each file in a different
invocation, and so it doesn’t think it is necessary to output the file name. But now there are two
files, i.e. the current one and /dev/null! Another possibility should be to pipe the command to
xargs and let it perform the grep. T just tried it, and completely smashed my filesystem (together

with these notes which T am tring to recover by hand :=().

% find / -atime +1 -fstype ext2 -name core \
-exec rm {} \;

is a classical job for crontab. It deletes all file named core in filesystems of type ext2 which have not
been accessed in the last 24 hours. It i1s possible that someone wants to use the core file to perform
a post mortem dump, but nobody could remember what he was doing after 24 hours. ..

% find /home -xdev -size +500k -ls > piggies

is useful to see who has those files who clog the filesystem. Note the use of -xdev; as we are interested

in just one filesystem, it is not necessary to descend other filesystems mounted under /home.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 91

9.1.8 A last word

Keep in mind that find is a very time consuming command, as it has to access each and every
inode of the system in order to perform its operation. It is therefore wise to combine how many
operations you need in a unique invocation of £ind, especially in the ‘housekeeping’ jobs usually ran
via a crontab job. A enlightening example is the following: let’s suppose that we want to delete files
ending in .BAK and change the protection of all directories to 771 and that of all files ending in .sh
to 755. And maybe we are mounting NFS filesystems on a dial-up link, and we’d like not to check
for files there. Why writing three different commands? The most effective way to accomplish the
task is this:

% find . \(-fstype nfs -prune \) -o \
\(-type d -a —exec chmod 771 {} \; \) -o \
\(-name "*.BAK" -a -exec /bin/rm {} \; \) -o \
\(-name "#.sh" -a -exec chmod 755 {} \; \)

It seems ugly (and with much abuse of backslashes!), but looking closely at it reveals that the
underlying logic is rather straightforward. Remember that what is really performed is a true/false
evaluation; the embedded command is just a side effect. But this means that it is performed only if
find must evaluate the exec part of the expression, that is only if the left side of the subexpression
evaluates to true. So, if for example the file considered at the moment is a directory then the first
exec is evaluated and the permission of the inode is changed to 771; otherwise it forgets all and
steps to the next subexpression. Probably it’s easier to see it in practice than to writing it down;
but after a while, it will become a natural thing.

9.2 tar, the tape archiver

9.2.1 Introduction
9.2.2 Main options
9.2.3 Modifiers

9.2.4 Examples

9.3 dd, the data duplicator

Legend says that back in the mists of time, when the first UNIX was created, its developers needed
a low level command to copy data between devices. As they were in a hurry, they decided to borrow
the syntax used by IBM-360 machines, and to develop later an interface consistent with that of the
other commands. Time passed, and all were so used with the odd way of using dd that it stuck. I

don’t know whether it is true, but it is a nice story to tell.

92 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

9.3.1 Options

To say the truth, dd it’s not completely unlike the other Unix command: it i1s indeed a filter, that
is it reads by default from the standard input and writes to the standard output. So if you just
type dd at the terminal it remains quiet, waiting for input, and a ctrl-C is the only sensitive thing

to type.

The syntax of the command is as follows:

dd [if=file] [of=file] [ibs=bytes] [obs=bytes]
[bs=bytes] [cbs=bytes] [skip=blocks] [seek=blocks]
[count=blocks] [conv={ascii,ebcdic,ibm,block,

unblock,lcase,ucase,swab,noerror,notrunc, synclt]

so all options are of the form option=value. No space is allowed either before or after the equal
sign; this used to be annoying, because the shell did not expand a filename in this situation, but
the version of bash present in Linux is rather smart, so you don’t have to worry about that. It is
important also to remember that all numbered values (bytes and blocks above) can be followed by
a multiplier. The possible choices are b for block, which multiplies by 512, k for kilobytes (1024),
w for word (2), and xm multiplies by m.

The meaning of options if explained below.

e if=filein and of=filcout instruct dd to respectively read from filein and write to fileout. In
the latter case, the output file is truncated to the value given to seek, or if the keyword is
not present, to 0 (that is deleted), before performing the operation. But look below at option
notrunc.

e ibs=nn and obs=nn specify how much bytes should be read or write at a time. I think that
the default is 1 block, i.e. 512 bytes, but I am not very sure about it: certainly it works that
way with plain files. These parameters are very important when using special devices as input
or output; for example, reading from the net should set ibs at 10k, while a high density 3.5”
floppy has as its natural block size 18k. Failing to set these values could result not only in

longer time to perform the command, but even in timeout errors, so be careful.
e bs=nn both reads and writes nn bytes at a time. It overrides ibs and obs keywords.

e cbs=nn sets the conversion buffers to nn bytes. This buffer is used when translating from
ASCII to EBCDIC, or from an unblocked device to a blocked one. For example, files created
under VMS have often a block size of 512, so you have to set cbs to 1b when reading a foreign
VMS tape. Hope that you don’t have to mess with these things!

e skip=nbl and seek=nbl tell the program to skip nbdl blocks respectively at the beginning of
input and at the beginning of output. Of course the latter case makes sense if conversion
notrunc is given, see below. Each block’s size is the value of ibs (obs). Beware: if you did
not set ibs and write skip=1b you are actually skipping 512x512 bytes, that is 256 KB. It was

not precisely what you wanted, wasn’t it?

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 93

e count=nbl means to copy only nbl blocks from input, each of the size given by ibs. This
option, together with the previous, turns useful if for example you have a corrupted file and
you want to recover how much it is possible from it. You just skip the unreadable part and

get what remains.

e conv=conversion,[conversion..] convert the file as specified by its argument. Possible conver-
sions are ascii, which converts from EBCDIC to ASCII; ebcdic and ibm, which both perform
an inverse conversion (yes, there is not a unique conversion from EBCDIC to ASCII! The
first is the standard one, but the second works better when printing files on a IBM printer);
block, which pads newline-terminated records to the size of cbs, replacing newline with trailing
spaces; unblock, which performs the opposite (eliminates trailing spaces, and replaces them
with newline); lcase and ucase, to convert test to lowercase and uppercase; swab, which swaps
every pair of input bytes (for example, to use a file containing short integers written on a 680x0
machine in an Intel-based machine you need such a conversion); noerror, to continue processing

after read errors; sync, which pads input block to the size of ibs with trailing NULs.

9.3.2 Examples

The canonical example is the one you have probably bumped at when you tried to create the first

Linux diskette: how to write to a floppy without a MS-DOS filesystem. The solution is simple:
% dd if=disk.img of=/dev/fd0 obs=18k count=80

I decided not to use ibs because I don’t know which is the better block size for a hard disk, but
in this case no harm would have been if instead of obs I use bs — it could even be a trifle quicker.
Notice the explicitation of the number of sectors to write (18 KB is the occupation of a sector, so

count is set to 80) and the use of the low-level name of the floppy device.

Another useful application of dd is related to the network backup. Let’s suppose that we are on
machine alpha and that on machine beta there is the tape unit /dev/rst0 with a tar file we are
interested in getting. We have the same rights on both machines, but there is no space on beta to
dump the tar file. In this case, we could write

% rsh beta ’dd if=/dev/rst0 ibs=8k obs=20k’ | tar xvBf -

to do in a single pass the whole operation. In this case, we have used the facilities of rsh to perform
the reading from the tape. Input and output sizes are set to the default for these operations, that is
8KB for reading from a tape and 20KB for writing to ethernet; from the point of view of the other
side of the tar, there is the same flow of bytes which could be got from the tape, except the fact

that it arrives in a rather erratic way, and the option B is necessary.

I forgot: T don’t think at all that dd is an acronym for “data duplicator”, but at least this is a

nice way to remember its meaning . ..

94 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

9.4 sort, the data sorter

9.4.1 Introduction
9.4.2 Options

9.4.3 Examples

Chapter 10

Errors, Mistakes, Bugs, and Other

Unpleasantries

Unix was never designed to keep people from doing stupid things, because that policy
would also keep them from doing clever things.
Doug Gwyn

10.1 Avoiding Errors

Many users report frustration with the Unix operating system at one time or another, frequently
because of their own doing. A feature of the Unix operating system that many users’ love when
they’re working well and hate after a late-night session is how very few commands ask for confirma-
tion. When a user 1s awake and functioning, they rarely think about this, and it is an assest since

it let’s them work smoother.

However, there are some disadvantages. rm and mv never ask for confirmation and this frequently
leads to problems. Thus, let’s go through a small list that might help you avoid total disaster:

e Keep backups! This applies especially to the one user system—all system adminstrators should
make regular backups of their system! Once a week is good enough to salvage many files. See

the The LINUX System Adminstrator’s Guidefor more information.

e Individual user’s should keep there own backups, if possible. If you use more than one system
regularly, try to keep updated copies of all your files on each of the systems. If you have access
to a floppy drive, you might want to make backups onto floppies of your critical material. At
worst, keep additional copies of your most important material lying around your account n a

seperate directory!

e Think about commands, especially “destructive” ones like mv, rm, and cp before you act. You
also have to be careful with redirection (>)—it’ll overwrite your files when you aren’t paying
attention. Even the most harmless of commands can become sinister:

95

96 ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

/home/larry/reporti# cp report-1992 report-1993 backups
can easily become disaster:
/home/larry/report# cp report-1992 report-1993

e The author also recommends, from his personal experience, not to do file maintanence late at
night. Does you directory structure look a little messy at 1:32am? Let it stay—a little mess

never hurt a computer.

e Keep track of your present directory. Sometimes, the prompt you’re using doesn’t display
what directory you are working in, and danger strikes. It is a sad thing to read a post on
comp.unix.admin! about a root user who was in / instead of /tmp! For example:

mousehouse> pwd
/etc

mousehouse> 1ls /tmp
passwd

mousehouse> rm passwd

10.2 Not Your Fault

Unfortunately for the programmers of the world, not all problems are caused by user-error. Unix
and LINUX are complicated systems, and all known versions have bugs. Sometimes these bugs are

hard to find and only appear under certain circumstances.

First of all, what is a bug? An example of a bug is if you ask the computer to compute “543”
and it tells you “7”. Although that’s a trivial example of what can go wrong, most bugs in computer

programs involve arithmetic in some extremely strange way.

10.2.1 When Is There a Bug

If the computer gives a wrong answer (verify that the answer is wrong!) or crashes, it is a bug. If

any one program crashes or gives an operating system error message, it is a bug.

If a command never finishes running can be a bug, but you must make sure that you didn’t tell
it to take a long time doing whatever you wanted it to do. Ask for assistance if you didn’t know
what the command did.

Some messages will alert you of bugs. Some messages are not bugs. Check Section 3.3 and
any other documentation to make sure they aren’t normal informational messages. For instance,
messages like “disk full” or “Ip0 on fire” aren’t software problems, but something wrong with your

hardware—mnot enough disk space, or a bad printer.

If you can’t find anything about a program, it is a bug in the documentation, and you should

contact the author of that program and offer to write it yourself. If something is incorrect in existing

1A discussion group in Usenet, which talks about administring Unix computers.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 97

documentation?, it is a bug with that manual. If something appears incomplete or unclear in the

manual, that is a bug.

If you can’t beat gnuchess at chess, it is a flaw with your chess algorithm, but not necessarily a

bug with your brain.

10.2.2 Reporting a bug

After you are sure you found a bug, it is important to make sure that your information gets to the
right place. Try to find what program is causing the bug—if you can’t find it, perhaps you could
ask for help in comp.os.linux.help or comp.unix.misc. Once you find the program, try to read

the manual page to see who wrote it.

The preferred method of sending bug reports in the LINUX world is via electronic mail. If you
don’t have access to electronic mail, you might want to contact whoever you got LINUX from—
eventually, you’re bound to encounter someone who either has electronic mail, or sells LINUX com-
mercially and therefore wants to remove as many bugs as possible. Remember, though, that no one
is under any obligation to fix any bugs unless you have a contract!

When you send a bug report in, include all the information you can think of. This includes:

e A description of what you think is incorrect. For instance, “I get 5 when I compute 2+2” or
“It says segmentation violation —-- core dumped.” It is important to say exactly what is

happening so the maintainer can fix your bug!
e Include any relevant environment variables.

e The version of your kernel (see the file /proc/version) and your system libraries (see the
directory /1ib—if you can’t decipher it, send a listing of /1ib).

e How you ran the program in question, or, if it was a kernel bug, what you were doing at the

time.

e All peripheral information. For instance, the command w may not be displaying the current
process for certain users. Don’t just say, “w doesn’t work when for a certain user”. The bug
could occur because the user’s name is eight characters long, or when he is logging in over the
network. Instead say, “w doesn’t display the current process for use greenfie when he logs in
over the network.”

e And remember, be polite. Most people work on free software for the fun of it, and because
they have big hearts. Don’t ruin it for them—the LINUX community has already disillusioned

too many developers, and it’s still early in LINUX’s life!

2Especially this one!

98

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

Appendix A

The GNU General Public License

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (©) 1989, 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA 02139, USA

Everyone 1s permitted to copy and distribute verbatim copies of this license document, but

changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and change
free software—to make sure the software is free for all its users. This General Public License applies
to most of the Free Software Foundation’s software and to any other program whose authors commit
to using it. (Some other Free Software Foundation software is covered by the GNU Library General

Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want it,
that you can change the software or use pieces of it in new free programs; and that you know you

can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you

if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or can
get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license

99

100 ALPHA VERSION—TRUST THIS AND DIE-—ALPHA VERSION

which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have i1s not the original, so that any

problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect making
the program proprietary. To prevent this, we have made it clear that any patent must be licensed

for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

Terms and Conditions

0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License.
The “Program”, below, refers to any such program or work, and a “work based on the Program”
means either the Program or any derivative work under copyright law: that is to say, a
work containing the Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is included without limitation in

the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of the

Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of

Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole at no charge

to all third parties under the terms of this License.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 101

c. If the modified program normally reads commands interactively when run, you must
cause 1t, when started running for such interactive use in the most ordinary way, to print
or display an announcement including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user how to view a copy
of this License. (Exception: if the Program itself is interactive but does not normally
print such an announcement, your work based on the Program is not required to print an

announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which i1s a work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to the entire whole,

and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative

or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium does

not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do

one of the following:

a. Accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Sections 1 and 2 above on a medium customarily used
for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third party, for
a charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the
terms of Sections 1 and 2 above on a medium customarily used for software interchange;

or,

¢. Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if
you received the program in object code or executable form with such an offer, in accord
with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to
it. For an executable work, complete source code means all the source code for all modules
it contains, plus any associated interface definition files, plus the scripts used to control com-
pilation and installation of the executable. However, as a special exception, the source code

distributed need not include anything that is normally distributed (in either source or binary

102

ALPHA VERSION—TRUST THIS AND DIE-—ALPHA VERSION

form) with the major components (compiler, kernel, and so on) of the operating system on

which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

. You may not copy, modify, sublicense, or distribute the Program except as expressly provided

under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Pro-
gram is void, and will automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will not have their licenses

terminated so long as such parties remain in full compliance.

You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Program (or any work based on the Program), you indicate your acceptance
of this License to do so, and all its terms and conditions for copying, distributing or modifying

the Program or works based on it.

Fach time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing

compliance by third parties to this License.

If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply
in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent application of that system;
it is up to the author/donor to decide if he or she is willing to distribute software through any

other system and a licensee cannot impose that choice.

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 103

10.

This section is intended to make thoroughly clear what is believed to be a consequence of the

rest of this License.

If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded. In such case, this

License incorporates the limitation as if written in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version,

but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this

License, you may choose any version ever published by the Free Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the sharing and reuse of

software generally.

NO WARRANTY

11.

12.

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “ASIS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFOR-
MANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO
YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CON-
SEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES

104 ALPHA VERSION—TRUST THIS AND DIE-—ALPHA VERSION

OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and change

under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start
of each source file to most effectively convey the exclusion of warranty; and each file should have at

least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright ©) 19yy name of author

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either

version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for

more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge,
MA 02139,

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive

mode:

Gnomovision version 69, Copyright (© 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY;, for details type ‘show w’.
This is free software, and you are welcome to redistribute it under certain conditions;

type ‘show ¢’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other than ‘show

w’ and ‘show c¢’; they could even be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign

a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION 105

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’
(which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you may consider it more useful to permit linking

proprietary applications with the library. If this is what you want to do, use the GNU Library
General Public License instead of this License.

106 ALPHA VERSION—TRUST THIS AND DIE-—ALPHA VERSION

Appendix B

The GNU Library General Public

License

107

108 ALPHA VERSION—TRUST THIS AND DIE-—ALPHA VERSION

Bibliography

Almesberger, Werner. LILO: Generic Boot Loader for Linuz. Available electronically:
tsx-11.mit.edu. July 3, 1993.

Bach, Maurice J. The Design of the UNIX Operating System. Englewood Cliffs, New Jersey:
Prentice-Hall, Inc. 1986.

Lamport, Leslie. WTpX: A Document Preparation System. Reading, Massachusetts: Addison-
Wesley Publishing Company. 1986.

Stallman, Richard M. GNU Emacs Manual, eight edition. Cambridge, Massachusetts: Free Soft-
ware Foundation. 1993.

109

Index

.bash_profile, 67 end-of-file, 21

/etc/issue, 13 error

/etc/motd, 14 bad 386/387 coupling, 17
/etc/rc, 27, 28

%, 39 fg, 36, 37

&’ 39 ﬁle, 27

file system, 22
filters, 36
Fogel, Karl, 111

LINUX kernel
running messages, 17

starting messages, 15
foreground, 37

account, 13 fork, 13
AT&T, 7,8 FPU, 17

Free Software Foundation, 4, 8, 20
background, 38

bash, 20, 31-34 General Electric, 7
bg, 36, 38 General Public License, 8, 9
BIOS, 11, 12 getty, 13
Bourne, Steve R., 19 GNU Emacs, 3, 33
Boyle, Brian, 3 GNU Project, 4, 8, 47
BSD, 7, 8 gnuchess, 97
20, 36, 44 Gods
CZ’;’Q P Unix, 27
o ar Greenfield, Larry
cmp, L account names for, 13
Codogno, Maurizio, iii
. grep, 45
command line editing, see shell, editing
cp, 27-28 head, 36, 45
diff, 47 IEEE. 8
directory init, 12, 13
creating, 26-27 input redirection, 35
current, 24, 25 Intel. 3. 8. 11
home, 25 ispell, 46
parent, 25
present, 24 job control, see shell, job control
root, 22 jobs, see shell, jobs
working, 24 Johnson, Michael K., 5
DOS, 5, 12, 14, 16 Joy, Bill, 20

110

ALPHA VERSION—TRUST THIS AND DIE—ALPHA VERSION

Kernighan, Brian, 7 shell, 4, 19
kill, 37 completion, 33-34
editing, 33
less, 36 globbing, see shell, wildcards
Library General Public License, 9 .
job control, 36
LILO, 12
e concepts, 41
login, 11, 13 summary, 40
1s, 22, 34 job number, 37
LU, H. J., 9 jObS, 37
Macintosh, 4, 11 programming, 19
man. 21 prompt, 14, 19

script, 19
wildcards, 31-33

Massachusetts Institute of Technology, 7, 8
master boot record, 12

MicroSoft Windows, 9 sort, 21, 36

mkdir, 26-27 spell, 46

more, 36, 44 standard error, 34

Motif, 9 standard input, 34, 35

mount, 17 standard output, 34, 35

MS-DOS, 11, 19 superuser, 3
command.com, 19 suspended, 37

Multics, 7 System V, 8

mv, 27, 29-30 tail, 36, 45

Novell, 7 TCP/IP, 9

termination, 37
0S/2,5, 6, 11, 19 Thompson, Ken, 7
output redirection, 34-35 Torvalds, Linus, 11, 3, 8, 9

English 15
parallel ports, 16 nglish usage,

partition University of California, Berkeley, 7, 8
disk, 17 Unix System Laboratories, 7, 8
root, 17

password, 13, 14 VC, see virtual consoles

Peanuts, 9 virtual consoles, 41

PID, 39 VMS, 5, 6

pipes, 36

POSIX, 8 w, 97

process, 13 we, 46
forking, 13 Welsh, Matt, 5

pud, 24 wildcards, see shell, wildcards

Windows NT, 19

Ritchie, Dennis, 7 Wirzenius, Lars, b

rm, 27-29

rmdir, 26 X Window System, 8, 9

serial ports, 15 yes, 36

111

