
Bash Reference Manual

Reference Documentation for Bash
Edition ���� for bash Version �����

� April ����

Chet Ramey� Case Western Reserve University
Brian Fox� Free Software Foundation

Copyright c� ����� ����� ���	 Free Software Foundation� Inc�

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies�

Permission is granted to copy and distribute modi
ed versions of this manual under the con�
ditions for verbatim copying� provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one�

Permission is granted to copy and distribute translations of this manual into another lan�
guage� under the above conditions for modi
ed versions� except that this permission notice
may be stated in a translation approved by the Free Software Foundation�

Chapter �� Introduction �

� Introduction

��� What is Bash�

Bash is the shell� or command language interpreter� that will appear in the GNU op�
erating system� The name is an acronym for the
Bourne�Again SHell�� a pun on Steve
Bourne� the author of the direct ancestor of the current Unix shell �bin�sh� which appeared
in the Seventh Edition Bell Labs Research version of Unix�

Bash is an sh�compatible shell that incorporates useful features from the Korn shell
ksh and the C shell csh� It is intended to be a conformant implementation of the IEEE
POSIX Shell and Tools speci
cation �IEEE Working Group �������� It o�ers functional
improvements over sh for both interactive and programming use�

While the GNU operating system will include a version of csh� Bash will be the default
shell� Like other GNU software� Bash is quite portable� It currently runs on nearly every
version of Unix and a few other operating systems � independently�supported ports exist
for MS�DOS� OS��� Windows ��� and Windows NT�

��� What is a shell�

At its base� a shell is simply a macro processor that executes commands� A Unix shell is
both a command interpreter� which provides the user interface to the rich set of Unix utili�
ties� and a programming language� allowing these utilitites to be combined� Files containing
commands can be created� and become commands themselves� These new commands have
the same status as system commands in directories like
�bin�� allowing users or groups to
establish custom environments�

A shell allows execution of Unix commands� both synchronously and asynchronously�
The shell waits for synchronous commands to complete before accepting more input� asyn�
chronous commands continue to execute in parallel with the shell while it reads and executes
additional commands� The redirection constructs permit
ne�grained control of the input
and output of those commands� and the shell allows control over the contents of their envi�
ronment� Unix shells also provide a small set of built�in commands �builtins� implementing
functionality impossible �e�g�� cd� break� continue� and exec�� or inconvenient �history�
getopts� kill� or pwd� for example� to obtain via separate utilities� Shells may be used
interactively or non�interactively� they accept input typed from the keyboard or from a
le�
All of the shell builtins are described in subsequent sections�

While executing commands is essential� most of the power �and complexity� of shells
is due to their embedded programming languages� Like any high�level language� the shell
provides variables� �ow control constructs� quoting� and functions�

Shells have begun o�ering features geared speci
cally for interactive use rather than
to augment the programming language� These interactive features include job control�
command line editing� history and aliases� Each of these features is described in this manual�

� Bash Reference Manual

Chapter �� De
nitions �

� De�nitions

These de
nitions are used throughout the remainder of this manual�

POSIX A family of open system standards based on Unix� Bash is concerned with
POSIX ������� the Shell and Tools Standard�

blank A space or tab character�

builtin A command that is implemented internally by the shell itself� rather than by
an executable program somewhere in the
le system�

control operator

A word that performs a control function� It is a newline or one of the following�

����
����
���
���
����
���
��� or
���

exit status

The value returned by a command to its caller�

field A unit of text that is the result of one of the shell expansions� After expansion�
when executing a command� the resulting
elds are used as the command name
and arguments�

filename A string of characters used to identify a
le�

job A set of processes comprising a pipeline� and any processes descended from it�
that are all in the same process group�

job control

A mechanism by which users can selectively stop �suspend� and restart �resume�
execution of processes�

metacharacter

A character that� when unquoted� separates words� A metacharacter is a blank
or one of the following characters�
���
���
���
���
���
��� or
	��

name A word consisting solely of letters� numbers� and underscores� and beginning
with a letter or underscore� Names are used as shell variable and function names�
Also referred to as an identifier�

operator A control operator or a redirection operator� See Section ��	 �Redirec�
tions�� page ��� for a list of redirection operators�

process group

A collection of related processes each having the same process group ID�

process group ID

A unique identifer that represents a process group during its lifetime�

reserved word

A word that has a special meaning to the shell� Most reserved words introduce
shell �ow control constructs� such as for and while�

return status

A synonym for exit status�

� Bash Reference Manual

signal A mechanism by which a process may be noti
ed by the kernal of an event
occurring in the system�

special builtin

A shell builtin command that has been classi
ed as special by the POSIX��
standard�

token A sequence of characters considered a single unit by the shell� It is either a
word or an operator�

word A token that is not an operator�

Chapter �� Basic Shell Features �

� Basic Shell Features

Bash is an acronym for
Bourne�Again SHell�� The Bourne shell is the traditional Unix
shell originally written by Stephen Bourne� All of the Bourne shell builtin commands are
available in Bash� and the rules for evaluation and quoting are taken from the POSIX
������ speci
cation for the
standard� Unix shell�

This chapter brie�y summarizes the shell�s
building blocks�� commands� control struc�
tures� shell functions� shell parameters� shell expansions� redirections� which are a way to
direct input and output from and to named
les� and how the shell executes commands�

��� Shell Syntax

����� Shell Operation

The following is a brief description of the shell�s operation when it reads and executes a
command� Basically� the shell does the following�

�� Reads its input from a
le �see Section ��� �Shell Scripts�� page ���� from a string
supplied as an argument to the
�c� invocation option �see Section ��� �Invoking Bash��
page ���� or from the user�s terminal�

�� Breaks the input into words and operators� obeying the quoting rules described in
Section ����� �Quoting�� page �� These tokens are separated by metacharacters� Alias
expansion is performed by this step �see Section ��� �Aliases�� page 	���

�� Parses the tokens into simple and compound commands �see Section ��� �Shell Com�
mands�� page ���

�� Performs the various shell expansions �see Section ��� �Shell Expansions�� page ����
breaking the expanded tokens into lists of
lenames �see Section ����� �Filename Ex�
pansion�� page ��� and commands and arguments�

�� Performs any necessary redirections �see Section ��	 �Redirections�� page ��� and re�
moves the redirection operators and their operands from the argument list�

	� Executes the command �see Section ��� �Executing Commands�� page ����

�� Optionally waits for the command to complete and collects its exit status �see Sec�
tion ����� �Exit Status�� page �	��

����� Quoting

Quoting is used to remove the special meaning of certain characters or words to the shell�
Quoting can be used to disable special treatment for special characters� to prevent reserved
words from being recognized as such� and to prevent parameter expansion�

Each of the shell metacharacters �see Chapter � �De
nitions�� page �� has special mean�
ing to the shell and must be quoted if it is to represent itself� There are three quoting
mechanisms� the escape character� single quotes� and double quotes�

	 Bash Reference Manual

������� Escape Character

A non�quoted backslash

� is the Bash escape character� It preserves the literal value of
the next character that follows� with the exception of newline� If a
newline pair appears�
and the backslash itself is not quoted� the
newline is treated as a line continuation �that
is� it is removed from the input stream and e�ectively ignored��

������� Single Quotes

Enclosing characters in single quotes preserves the literal value of each character within
the quotes� A single quote may not occur between single quotes� even when preceded by a
backslash�

������� Double Quotes

Enclosing characters in double quotes preserves the literal value of all characters within
the quotes� with the exception of
���
��� and

�� The characters
�� and
�� retain their
special meaning within double quotes �see Section ��� �Shell Expansions�� page ���� The
backslash retains its special meaning only when followed by one of the following characters�

���
���

��

�� or newline� Within double quotes� backslashes that are followed by one of
these characters are removed� Backslashes preceding characters without a special meaning
are left unmodi
ed� A double quote may be quoted within double quotes by preceding it
with a backslash�

The special parameters
�� and
�� have special meaning when in double quotes �see
Section ����� �Shell Parameter Expansion�� page �	��

������� ANSI�C Quoting

Words of the form ��string� are treated specially� The word expands to string� with
backslash�escaped characters replaced as specifed by the ANSI C standard� Backslash
escape sequences� if present� are decoded as follows�

a alert �bell�

b backspace

e an escape character �not ANSI C�

f form feed

n newline

r carriage return

t horizontal tab

v vertical tab

 backslash

nnn the character whose ASCII code is the octal value nnn �one to three digits�

xnnn the character whose ASCII code is the hexadecimal value nnn �one to three
digits�

The result is single�quoted� as if the dollar sign had not been present�

Chapter �� Basic Shell Features �

������� Locale�Speci�c Translation

A double�quoted string preceded by a dollar sign �
��� will cause the string to be trans�
lated according to the current locale� If the current locale is C or POSIX� the dollar sign is
ignored� If the string is translated and replaced� the replacement is double�quoted�

����� Comments

In a non�interactive shell� or an interactive shell in which the interactive�comments

option to the shopt builtin is enabled �see Section ��� �Bash Builtins�� page ���� a word
beginning with
�� causes that word and all remaining characters on that line to be ignored�
An interactive shell without the interactive�comments option enabled does not allow
comments� The interactive�comments option is on by default in interactive shells� See
Section ��� �Is This Shell Interactive��� page ��� for a description of what makes a shell
interactive�

��� Shell Commands

����� Simple Commands

A simple command is the kind of command encountered most often� It�s just a se�
quence of words separated by blanks� terminated by one of the shell�s control operators
�see Chapter � �De
nitions�� page ��� The
rst word generally speci
es a command to be
executed�

The return status �see Section ����� �Exit Status�� page �	� of a simple command is its
exit status as provided by the POSIX�� waitpid function� or ����n if the command was
terminated by signal n�

����� Pipelines

A pipeline is a sequence of simple commands separated by
���

The format for a pipeline is

�time ��p�� ��� command� �� command� � � ��

The output of each command in the pipeline is connected to the input of the next command�
That is� each command reads the previous command�s output�

The reserved word time causes timing statistics to be printed for the pipeline once it

nishes� The statistics currently consist of elapsed �wall�clock� time and user and system
time consumed by the command�s execution� The
�p� option changes the output format
to that speci
ed by POSIX� The TIMEFORMAT variable may be set to a format string that
speci
es how the timing information should be displayed� See Section ��� �Bash Variables��
page ��� for a description of the available formats� The use of time as a reserved word per�
mits the timing of shell builtins� shell functions� and pipelines� An external time command
cannot time these easily�

If the pipeline is not executed asynchronously �see Section ����� �Lists�� page ��� the shell
waits for all commands in the pipeline to complete�

� Bash Reference Manual

Each command in a pipeline is executed in its own subshell �see Section ����� �Command
Execution Environment�� page ���� The exit status of a pipeline is the exit status of the
last command in the pipeline� If the reserved word
�� precedes the pipeline� the exit status
is the logical negation of the exit status of the last command�

����� Lists of Commands

A list is a sequence of one or more pipelines separated by one of the operators
���
���

���� or
���� and optionally terminated by one of
���
��� or a newline�

Of these list operators�
��� and
��� have equal precedence� followed by
�� and
��� which
have equal precedence�

If a command is terminated by the control operator
��� the shell executes the command
asynchronously in a subshell� This is known as executing the command in the background�
The shell does not wait for the command to
nish� and the return status is � �true�� The
standard input for asynchronous commands� in the absence of any explicit redirections� is
redirected from �dev�null�

Commands separated by a
�� are executed sequentially� the shell waits for each command
to terminate in turn� The return status is the exit status of the last command executed�

The control operators
��� and
��� denote AND lists and OR lists� respectively� An
AND list has the form

command �� command�

command� is executed if� and only if� command returns an exit status of zero�

An OR list has the form

command �� command�

command� is executed if� and only if� command returns a non�zero exit status�

The return status of AND and OR lists is the exit status of the last command executed
in the list�

����� Looping Constructs

Bash supports the following looping constructs�

Note that wherever you see a
�� in the description of a command�s syntax� it may be
replaced with one or more newlines�

until The syntax of the until command is�

until test�commands� do consequent�commands� done

Execute consequent�commands as long as test�commands has an exit status
which is not zero� The return status is the exit status of the last command
executed in consequent�commands� or zero if none was executed�

while The syntax of the while command is�

while test�commands� do consequent�commands� done

Execute consequent�commands as long as test�commands has an exit status
of zero� The return status is the exit status of the last command executed in
consequent�commands� or zero if none was executed�

Chapter �� Basic Shell Features �

for The syntax of the for command is�

for name �in words � � ��� do commands� done

Expand words� and execute commands once for each member in the resultant
list� with name bound to the current member� If
in words� is not present�
in

��
� is assumed� The return status is the exit status of the last command that
executes� If there are no items in the expansion of words� no commands are
executed� and the return status is zero�

The break and continue builtins �see Section ��� �Bourne Shell Builtins�� page ��� may
be used to control loop execution�

����� Conditional Constructs

if The syntax of the if command is�

if test�commands� then
consequent�commands�

�elif more�test�commands� then
more�consequents��

�else alternate�consequents��
fi

The test�commands list is executed� and if its return status is zero� the
consequent�commands list is executed� If test�commands returns a non�zero
status� each elif list is executed in turn� and if its exit status is zero� the
corresponding more�consequents is executed and the command completes� If

else alternate�consequents� is present� and the
nal command in the
nal
if or elif clause has a non�zero exit status� then alternate�consequents is
executed� The return status is the exit status of the last command executed�
or zero if no condition tested true�

case The syntax of the case command is�

case word in � ��� pattern �� pattern�� � �� command�list ���� � � esac

case will selectively execute the command�list corresponding to the
rst pat�
tern that matches word� The
�� is used to separate multiple patterns� and
the
�� operator terminates a pattern list� A list of patterns and an associated
command�list is known as a clause� Each clause must be terminated with
����
The word undergoes tilde expansion� parameter expansion� command substitu�
tion� arithmetic expansion� and quote removal before matching is attempted�
Each pattern undergoes tilde expansion� parameter expansion� command sub�
stitution� and arithmetic expansion�

There may be an arbitrary number of case clauses� each terminated by a
����
The
rst pattern that matches determines the command�list that is executed�

Here is an example using case in a script that could be used to describe one
interesting feature of an animal�

echo �n
Enter the name of an animal�

read ANIMAL
echo �n
The �ANIMAL has

�� Bash Reference Manual

case �ANIMAL in
horse � dog � cat� echo �n
four
��
man � kangaroo � echo �n
two
��
�� echo �n
an unknown number of
��

esac
echo
 legs�

The return status is zero if no pattern is matched� Otherwise� the return status
is the exit status of the command�list executed�

select

The select construct allows the easy generation of menus� It has almost the
same syntax as the for command�

select name �in words � � ��� do commands� done

The list of words following in is expanded� generating a list of items� The set of
expanded words is printed on the standard error output stream� each preceded
by a number� If the
in words� is omitted� the positional parameters are printed�
as if
in
��
� had been specifed� The PS� prompt is then displayed and a line
is read from the standard input� If the line consists of a number corresponding
to one of the displayed words� then the value of name is set to that word� If
the line is empty� the words and prompt are displayed again� If EOF is read�
the select command completes� Any other value read causes name to be set
to null� The line read is saved in the variable REPLY�

The commands are executed after each selection until a break or return com�
mand is executed� at which point the select command completes�

Here is an example that allows the user to pick a
lename from the current
directory� and displays the name and index of the
le selected�

select fname in ��
do
echo you picked �fname
��REPLY
�
break�
done

��� � ���

�� expression ��

The arithmetic expression is evaluated according to the rules described below
�see Section ��� �Shell Arithmetic�� page 	��� If the value of the expression is
non�zero� the return status is �� otherwise the return status is �� This is exactly
equivalent to

let
expression

See Section ��� �Bash Builtins�� page ��� for a full description of the let builtin�

��� � ���

�� expression ��

Return a status of � or � depending on the evaluation of the conditional expres�
sion expression� Expressions are composed of the primaries described below in

Chapter �� Basic Shell Features ��

Section ��	 �Bash Conditional Expressions�� page ��� Word splitting and
le�
name expansion are not performed on the words between the
��� and
���� tilde
expansion� parameter and variable expansion� arithmetic expansion� command
substitution� process substitution� and quote removal are performed�

When the
��� and
��� operators are used� the string to the right of the operator
is considered a pattern and matched according to the rules described below in
Section ������� �Pattern Matching�� page ��� The return value is � if the string
matches or does not match the pattern� respectively� and � otherwise� Any part
of the pattern may be quoted to force it to be matched as a string�

Expressions may be combined using the following operators� listed in decreasing
order of precedence�

� expression �

Returns the value of expression� This may be used to override the
normal precedence of operators�

� expression

True if expression is false�

expression� �� expression�

True if both expression� and expression� are true�

expression� �� expression�

True if either expression� or expression� is true�

The �� and �� commands do not execute expression� if the value of expression�
is su�cient to determine the return value of the entire conditional expression�

����	 Grouping Commands

Bash provides two ways to group a list of commands to be executed as a unit� When com�
mands are grouped� redirections may be applied to the entire command list� For example�
the output of all the commands in the list may be redirected to a single stream�

��

� list �

Placing a list of commands between parentheses causes a subshell to be created�
and each of the commands in list to be executed in that subshell� Since the list
is executed in a subshell� variable assignments do not remain in e�ect after the
subshell completes�

��

� list� �

Placing a list of commands between curly braces causes the list to be executed
in the current shell context� No subshell is created� The semicolon �or newline�
following list is required�

In addition to the creation of a subshell� there is a subtle di�erence between these two
constructs due to historical reasons� The braces are reserved words� so they must be

�� Bash Reference Manual

separated from the list by blanks� The parentheses are operators� and are recognized as
separate tokens by the shell even if they are not separated from the list by whitespace�

The exit status of both of these constructs is the exit status of list�

��� Shell Functions

Shell functions are a way to group commands for later execution using a single name for
the group� They are executed just like a
regular
 command� Shell functions are executed
in the current shell context� no new process is created to interpret them�

Functions are declared using this syntax�

� function � name �� � command�list� �

This de
nes a shell function named name� The reserved word function is optional� If
the function reserved word is supplied� the parentheses are optional� The body of the
function is the command�list between � and �� This list is executed whenever name is
speci
ed as the name of a command� The exit status of a function is the exit status of the
last command executed in the body�

When a function is executed� the arguments to the function become the positional pa�
rameters during its execution �see Section ����� �Positional Parameters�� page ���� The
special parameter
�� that expands to the number of positional parameters is updated to
re�ect the change� Positional parameter � is unchanged�

If the builtin command return is executed in a function� the function completes and
execution resumes with the next command after the function call� When a function com�
pletes� the values of the positional parameters and the special parameter
�� are restored
to the values they had prior to the function�s execution� If a numeric argument is given to
return� that is the function�s return status� otherwise the functions�s return status is the
exit status of the last command executed before the return�

Variables local to the function may be declared with the local builtin� These variables
are visible only to the function and the commands it invokes�

Functions may be recursive� No limit is placed on the number of recursive calls�

��� Shell Parameters

A parameter is an entity that stores values� It can be a name� a number� or one of the
special characters listed below� For the shell�s purposes� a variable is a parameter denoted
by a name�

A parameter is set if it has been assigned a value� The null string is a valid value� Once
a variable is set� it may be unset only by using the unset builtin command�

A variable may be assigned to by a statement of the form

name��value�

If value is not given� the variable is assigned the null string� All values undergo tilde
expansion� parameter and variable expansion� command substitution� arithmetic expansion�
and quote removal �detailed below�� If the variable has its integer attribute set �see the
description of the declare builtin in Section ��� �Bash Builtins�� page ���� then value is

Chapter �� Basic Shell Features ��

subject to arithmetic expansion even if the ���� � ��� expansion is not used �see Section �����
�Arithmetic Expansion�� page ���� Word splitting is not performed� with the exception of

��
 as explained below� Filename expansion is not performed�

����� Positional Parameters

A positional parameter is a parameter denoted by one or more digits� other than the
single digit �� Positional parameters are assigned from the shell�s arguments when it is
invoked� and may be reassigned using the set builtin command� Positional parameter N
may be referenced as ��N�� Positional parameters may not be assigned to with assignment
statements� The positional parameters are temporarily replaced when a shell function is
executed �see Section ��� �Shell Functions�� page ����

When a positional parameter consisting of more than a single digit is expanded� it must
be enclosed in braces�

����� Special Parameters

The shell treats several parameters specially� These parameters may only be referenced�
assignment to them is not allowed�

� Expands to the positional parameters� starting from one� When the expansion
occurs within double quotes� it expands to a single word with the value of each
parameter separated by the
rst character of the IFS special variable� That is�

��
 is equivalent to
��c��c� � �
� where c is the
rst character of the value of
the IFS variable� If IFS is unset� the parameters are separated by spaces� If
IFS is null� the parameters are joined without intervening separators�

� Expands to the positional parameters� starting from one� When the expan�
sion occurs within double quotes� each parameter expands to a separate word�
That is�
��
 is equivalent to
��

��
 � � �� When there are no positional
parameters�
��
 and �� expand to nothing �i�e�� they are removed��

� Expands to the number of positional parameters in decimal�

 Expands to the exit status of the most recently executed foreground pipeline�

� Expands to the current option �ags as speci
ed upon invocation� by the set

builtin command� or those set by the shell itself �such as the
�i� option��

� Expands to the process ID of the shell� In a �� subshell� it expands to the
process ID of the invoking shell� not the subshell�

� Expands to the process ID of the most recently executed background �asyn�
chronous� command�

� Expands to the name of the shell or shell script� This is set at shell initialization�
If Bash is invoked with a
le of commands �see Section ��� �Shell Scripts��
page ���� �� is set to the name of that
le� If Bash is started with the
�c�
option �see Section ��� �Invoking Bash�� page ���� then �� is set to the
rst
argument after the string to be executed� if one is present� Otherwise� it is set
to the
lename used to invoke Bash� as given by argument zero�

�� Bash Reference Manual

� At shell startup� set to the absolute
lename of the shell or shell script being
executed as passed in the argument list� Subsequently� expands to the last
argument to the previous command� after expansion� Also set to the full path�
name of each command executed and placed in the environment exported to
that command� When checking mail� this parameter holds the name of the mail

le�

��� Shell Expansions

Expansion is performed on the command line after it has been split into tokens� There
are seven kinds of expansion performed�

� brace expansion

� tilde expansion

� parameter and variable expansion

� command substitution

� arithmetic expansion

� word splitting

�
lename expansion

The order of expansions is� brace expansion� tilde expansion� parameter� variable� and
arithmetic expansion and command substitution �done in a left�to�right fashion�� word
splitting� and
lename expansion�

On systems that can support it� there is an additional expansion available� process

substitution� This is performed at the same time as parameter� variable� and arithmetic
expansion and command substitution�

Only brace expansion� word splitting� and
lename expansion can change the number
of words of the expansion� other expansions expand a single word to a single word� The
only exceptions to this are the expansions of
��
 �see Section ����� �Special Parameters��
page ��� and
��name����
 �see Section ���� �Arrays�� page 	���

After all expansions� quote removal �see Section ����� �Quote Removal�� page ��� is
performed�

����� Brace Expansion

Brace expansion is a mechanism by which arbitrary strings may be generated� This mech�
anism is similar to �lename expansion �see Section ����� �Filename Expansion�� page ����
but the
le names generated need not exist� Patterns to be brace expanded take the form
of an optional preamble� followed by a series of comma�separated strings between a pair
of braces� followed by an optional postscript� The preamble is prepended to each string
contained within the braces� and the postscript is then appended to each resulting string�
expanding left to right�

Brace expansions may be nested� The results of each expanded string are not sorted�
left to right order is preserved� For example�

Chapter �� Basic Shell Features ��

bash� echo a�d!c!b�e
ade ace abe

Brace expansion is performed before any other expansions� and any characters special
to other expansions are preserved in the result� It is strictly textual� Bash does not apply
any syntactic interpretation to the context of the expansion or the text between the braces�

A correctly�formed brace expansion must contain unquoted opening and closing braces�
and at least one unquoted comma� Any incorrectly formed brace expansion is left un�
changed�

This construct is typically used as shorthand when the common pre
x of the strings to
be generated is longer than in the above example�

mkdir �usr�local�src�bash��old!new!dist!bugs�

or

chown root �usr��ucb��ex!edit�!lib��ex � �!how�ex��

����� Tilde Expansion

If a word begins with an unquoted tilde character �
"��� all of the characters up to
the
rst unquoted slash �or all characters� if there is no unquoted slash� are considered a
tilde�pre�x� If none of the characters in the tilde�pre
x are quoted� the characters in the
tilde�pre
x following the tilde are treated as a possible login name� If this login name is the
null string� the tilde is replaced with the value of the HOME shell variable� If HOME is unset�
the home directory of the user executing the shell is substituted instead� Otherwise� the
tilde�pre
x is replaced with the home directory associated with the speci
ed login name�

If the tilde�pre
x is
"��� the value of the shell variable PWD replaces the tilde�pre
x� If
the tilde�pre
x is
"��� the value of the shell variable OLDPWD� if it is set� is substituted�

If the characters following the tilde in the tilde�pre
x consist of a number N� optionally
pre
xed by a
�� or a
��� the tilde�pre
x is replaced with the corresponding element from
the directory stack� as it would be displayed by the dirs builtin invoked with the characters
following tilde in the tilde�pre
x as an argument �see Section ���� �The Directory Stack��
page 	��� If the tilde�pre
x� sans the tilde� consists of a number without a leading
�� or

���
�� is assumed�

If the login name is invalid� or the tilde expansion fails� the word is left unchanged�

Each variable assignment is checked for unquoted tilde�pre
xes immediately following a

�� or
��� In these cases� tilde expansion is also performed� Consequently� one may use
le
names with tildes in assignments to PATH� MAILPATH� and CDPATH� and the shell assigns the
expanded value�

The following table shows how Bash treats unquoted tilde�pre
xes�

" The value of �HOME

"�foo
�HOME�foo�

"fred�foo

The subdirectory foo of the home directory of the user fred

"��foo
�PWD�foo�

�	 Bash Reference Manual

"��foo
��OLDPWD��"����foo�

"N The string that would be displayed by
dirs �N �

"�N The string that would be displayed by
dirs �N �

"�N The string that would be displayed by
dirs �N �

����� Shell Parameter Expansion

The
�� character introduces parameter expansion� command substitution� or arithmetic
expansion� The parameter name or symbol to be expanded may be enclosed in braces� which
are optional but serve to protect the variable to be expanded from characters immediately
following it which could be interpreted as part of the name�

When braces are used� the matching ending brace is the
rst
�� not escaped by a
backslash or within a quoted string� and not within an embedded arithmetic expansion�
command substitution� or parameter expansion�

The basic form of parameter expansion is ��parameter�� The value of parameter is
substituted� The braces are required when parameter is a positional parameter with more
than one digit� or when parameter is followed by a character that is not to be interpreted
as part of its name�

If the
rst character of parameter is an exclamation point� a level of variable indirection
is introduced� Bash uses the value of the variable formed from the rest of parameter as
the name of the variable� this variable is then expanded and that value is used in the rest
of the substitution� rather than the value of parameter itself� This is known as indirect
expansion�

In each of the cases below� word is subject to tilde expansion� parameter expansion�
command substitution� and arithmetic expansion� When not performing substring expan�
sion� Bash tests for a parameter that is unset or null� omitting the colon results in a test
only for a parameter that is unset�

��parameter��word�
If parameter is unset or null� the expansion of word is substituted� Otherwise�
the value of parameter is substituted�

��parameter��word�

If parameter is unset or null� the expansion of word is assigned to parameter�
The value of parameter is then substituted� Positional parameters and special
parameters may not be assigned to in this way�

��parameter� word�

If parameter is null or unset� the expansion of word �or a message to that e�ect
if word is not present� is written to the standard error and the shell� if it is not
interactive� exits� Otherwise� the value of parameter is substituted�

��parameter��word�

If parameter is null or unset� nothing is substituted� otherwise the expansion
of word is substituted�

Chapter �� Basic Shell Features ��

��parameter�o�set�

��parameter�o�set�length�

Expands to up to length characters of parameter� starting at the character
speci
ed by o�set� If length is omitted� expands to the substring of parameter�
starting at the character speci
ed by o�set� length and o�set are arithmetic
expressions �see Section ��� �Shell Arithmetic�� page 	��� This is referred to as
Substring Expansion�

length must evaluate to a number greater than or equal to zero� If o�set eval�
uates to a number less than zero� the value is used as an o�set from the end
of the value of parameter� If parameter is
��� the result is length positional
parameters beginning at o�set� If parameter is an array name indexed by
��
or
��� the result is the length members of the array beginning with ��parame�

ter�o�set��� Substring indexing is zero�based unless the positional parameters
are used� in which case the indexing starts at ��

���parameter�

The length in characters of the expanded value of parameter is substituted�
If parameter is
�� or
��� the value substituted is the number of positional
parameters� If parameter is an array name subscripted by
�� or
��� the value
substituted is the number of elements in the array�

��parameter�word�

��parameter��word�

The word is expanded to produce a pattern just as in
lename expansion �see
Section ����� �Filename Expansion�� page ���� If the pattern matches the be�
ginning of the expanded value of parameter� then the result of the expansion is
the expanded value of parameter with the shortest matching pattern �the
��
case� or the longest matching pattern �the
��� case� deleted� If parameter is
��
or
��� the pattern removal operation is applied to each positional parameter in
turn� and the expansion is the resultant list� If parameter is an array variable
subscripted with
�� or
��� the pattern removal operation is applied to each
member of the array in turn� and the expansion is the resultant list�

��parameter#word�

��parameter##word�

The word is expanded to produce a pattern just as in
lename expansion� If
the pattern matches a trailing portion of the expanded value of parameter�
then the result of the expansion is the value of parameter with the shortest
matching pattern �the
#� case� or the longest matching pattern �the
##� case�
deleted� If parameter is
�� or
��� the pattern removal operation is applied to
each positional parameter in turn� and the expansion is the resultant list� If
parameter is an array variable subscripted with
�� or
��� the pattern removal
operation is applied to each member of the array in turn� and the expansion is
the resultant list�

��parameter�pattern�string�

��parameter��pattern�string�

The pattern is expanded to produce a pattern just as in
lename expansion�
Parameter is expanded and the longest match of pattern against its value is

�� Bash Reference Manual

replaced with string� In the
rst form� only the
rst match is replaced� The
second form causes all matches of pattern to be replaced with string� If pattern
begins with
��� it must match at the beginning of string� If pattern begins with

#�� it must match at the end of string� If string is null� matches of pattern are
deleted and the � following pattern may be omitted� If parameter is
�� or
���
the substitution operation is applied to each positional parameter in turn� and
the expansion is the resultant list� If parameter is an array variable subscripted
with
�� or
��� the substitution operation is applied to each member of the array
in turn� and the expansion is the resultant list�

����� Command Substitution

Command substitution allows the output of a command to replace the command name�
There are two forms�

��command�

or

�command�

Bash performs the expansion by executing command and replacing the command sub�
stitution with the standard output of the command� with any trailing newlines deleted�
Embedded newlines are not deleted� but they may be removed during word splitting� The
command substitution ��cat �le� can be replaced by the equivalent but faster ��� �le��

When the old�style backquote form of substitution is used� backslash retains its literal
meaning except when followed by
���
��� or

�� The
rst backquote not preceded by a
backslash terminates the command substitution� When using the ��command� form� all
characters between the parentheses make up the command� none are treated specially�

Command substitutions may be nested� To nest when using the backquoted form� escape
the inner backquotes with backslashes�

If the substitution appears within double quotes� word splitting and
lename expansion
are not performed on the results�

����� Arithmetic Expansion

Arithmetic expansion allows the evaluation of an arithmetic expression and the substi�
tution of the result� The format for arithmetic expansion is�

��� expression ��

The expression is treated as if it were within double quotes� but a double quote inside
the parentheses is not treated specially� All tokens in the expression undergo parameter
expansion� command substitution� and quote removal� Arithmetic substitutions may be
nested�

The evaluation is performed according to the rules listed below �see Section ��� �Shell
Arithmetic�� page 	��� If the expression is invalid� Bash prints a message indicating failure
to the standard error and no substitution occurs�

Chapter �� Basic Shell Features ��

����	 Process Substitution

Process substitution is supported on systems that support named pipes �FIFOs� or the

�dev�fd� method of naming open
les� It takes the form of

��list�

or

	�list�

The process list is run with its input or output connected to a FIFO or some
le in

�dev�fd�� The name of this
le is passed as an argument to the current command as the
result of the expansion� If the 	�list� form is used� writing to the
le will provide input for
list� If the ��list� form is used� the
le passed as an argument should be read to obtain the
output of list�

When available� process substitution is performed simultaneously with parameter and
variable expansion� command substitution� and arithmetic expansion�

����
 Word Splitting

The shell scans the results of parameter expansion� command substitution� and arith�
metic expansion that did not occur within double quotes for word splitting�

The shell treats each character of �IFS as a delimiter� and splits the results of the
other expansions into words on these characters� If IFS is unset� or its value is exactly
�space	�tab	�newline	� the default� then any sequence of IFS characters serves to delimit
words� If IFS has a value other than the default� then sequences of the whitespace characters
space and tab are ignored at the beginning and end of the word� as long as the whitespace
character is in the value of IFS �an IFS whitespace character�� Any character in IFS that
is not IFS whitespace� along with any adjacent IFS whitespace characters� delimits a
eld�
A sequence of IFS whitespace characters is also treated as a delimiter� If the value of IFS
is null� no word splitting occurs�

Explicit null arguments �

 or ��� are retained� Unquoted implicit null arguments�
resulting from the expansion of parameters that have no values� are removed� If a parameter
with no value is expanded within double quotes� a null argument results and is retained�

Note that if no expansion occurs� no splitting is performed�

����� Filename Expansion

After word splitting� unless the
�f� option has been set �see Section ��� �The Set Builtin��
page ���� Bash scans each word for the characters
���
 ��
��� and
��� If one of these char�
acters appears� then the word is regarded as a pattern� and replaced with an alphabetically
sorted list of
le names matching the pattern� If no matching
le names are found� and the
shell option nullglob is disabled� the word is left unchanged� If the nullglob option is set�
and no matches are found� the word is removed� If the shell option nocaseglob is enabled�
the match is performed without regard to the case of alphabetic characters�

When a pattern is used for
lename generation� the character
�� at the start of a
lename
or immediately following a slash must be matched explicitly� unless the shell option dotglob

�� Bash Reference Manual

is set� When matching a
le name� the slash character must always be matched explicitly�
In other cases� the
�� character is not treated specially�

See the description of shopt in Section ��� �Bash Builtins�� page ��� for a description of
the nocaseglob� nullglob� and dotglob options�

The GLOBIGNORE shell variable may be used to restrict the set of
lenames matching
a pattern� If GLOBIGNORE is set� each matching
lename that also matches one of the
patterns in GLOBIGNORE is removed from the list of matches� The
lenames
�� and
��� are
always ignored� even when GLOBIGNORE is set� However� setting GLOBIGNORE has the e�ect
of enabling the dotglob shell option� so all other
lenames beginning with a
�� will match�
To get the old behavior of ignoring
lenames beginning with a
��� make
��� one of the
patterns in GLOBIGNORE� The dotglob option is disabled when GLOBIGNORE is unset�

������� Pattern Matching

Any character that appears in a pattern� other than the special pattern characters de�
scribed below� matches itself� The NUL character may not occur in a pattern� The special
pattern characters must be quoted if they are to be matched literally�

The special pattern characters have the following meanings�

� Matches any string� including the null string�

 Matches any single character�

�� � �� Matches any one of the enclosed characters� A pair of characters separated
by a minus sign denotes a range� any character lexically between those two
characters� inclusive� is matched� If the
rst character following the
�� is a
��
or a
$� then any character not enclosed is matched� A
�� may be matched by
including it as the
rst or last character in the set� A
�� may be matched by
including it as the
rst character in the set�

Within
�� and
��� character classes can be speci
ed using the syntax ��class���
where class is one of the following classes de
ned in the POSIX�� standard�

alnum alpha ascii blank cntrl digit graph lower
print punct space upper xdigit

A character class matches any character belonging to that class�

Within
�� and
��� an equivalence class can be speci
ed using the syntax ��c���
which matches all characters with the same collation weight �as de
ned by the
current locale� as the character c�

Within
�� and
��� the syntax ��symbol��matches the collating symbol symbol�

If the extglob shell option is enabled using the shopt builtin� several extended pattern
matching operators are recognized� In the following description� a pattern�list is a list of
one or more patterns separated by a
��� Composite patterns may be formed using one or
more of the following sub�patterns�

 �pattern�list�

Matches zero or one occurrence of the given patterns�

��pattern�list�

Matches zero or more occurrences of the given patterns�

Chapter �� Basic Shell Features ��

��pattern�list�

Matches one or more occurrences of the given patterns�

��pattern�list�

Matches exactly one of the given patterns�

��pattern�list�

Matches anything except one of the given patterns�

����� Quote Removal

After the preceding expansions� all unquoted occurrences of the characters

��
��� and

� that did not result from one of the above expansions are removed�

��	 Redirections

Before a command is executed� its input and output may be redirected using a special
notation interpreted by the shell� Redirection may also be used to open and close
les for
the current shell execution environment� The following redirection operators may precede
or appear anywhere within a simple command or may follow a command� Redirections are
processed in the order they appear� from left to right�

In the following descriptions� if the
le descriptor number is omitted� and the
rst char�
acter of the redirection operator is
��� the redirection refers to the standard input �
le
descriptor ��� If the
rst character of the redirection operator is
	�� the redirection refers
to the standard output �
le descriptor ���

The word following the redirection operator in the following descriptions� unless other�
wise noted� is subjected to brace expansion� tilde expansion� parameter expansion� command
substitution� arithmetic expansion� quote removal� and
lename expansion� If it expands
to more than one word� Bash reports an error�

Note that the order of redirections is signi
cant� For example� the command

ls 	 dirlist �	��

directs both standard output and standard error to the
le dirlist� while the command

ls �	�� 	 dirlist

directs only the standard output to
le dirlist� because the standard error was duplicated
as standard output before the standard output was redirected to dirlist�

A failure to open or create a
le causes the redirection to fail�

��	�� Redirecting Input

Redirection of input causes the
le whose name results from the expansion of word to
be opened for reading on
le descriptor n� or the standard input �
le descriptor �� if n is
not speci
ed�

The general format for redirecting input is�

�n��word

�� Bash Reference Manual

��	�� Redirecting Output

Redirection of output causes the
le whose name results from the expansion of word to
be opened for writing on
le descriptor n� or the standard output �
le descriptor �� if n is
not speci
ed� If the
le does not exist it is created� if it does exist it is truncated to zero
size�

The general format for redirecting output is�

�n�	���word

If the redirection operator is
	�� and the noclobber option to the set builtin has been
enabled� the redirection will fail if the
lename whose name results from the expansion
of word exists and is a regular
le� If the redirection operator is
	��� or the redirection
operator is
	� and the noclobber option is not enabled� the redirection is attempted even
if the
le named by word exists�

��	�� Appending Redirected Output

Redirection of output in this fashion causes the
le whose name results from the expan�
sion of word to be opened for appending on
le descriptor n� or the standard output �
le
descriptor �� if n is not speci
ed� If the
le does not exist it is created�

The general format for appending output is�

�n�		word

��	�� Redirecting Standard Output and Standard Error

Bash allows both the standard output �
le descriptor �� and the standard error output
�
le descriptor �� to be redirected to the
le whose name is the expansion of word with this
construct�

There are two formats for redirecting standard output and standard error�

�	word

and

	�word

Of the two forms� the
rst is preferred� This is semantically equivalent to

	word �	��

��	�� Here Documents

This type of redirection instructs the shell to read input from the current source until a
line containing only word �with no trailing blanks� is seen� All of the lines read up to that
point are then used as the standard input for a command�

The format of here�documents is as follows�

�����word
here�document

delimiter

No parameter expansion� command substitution�
lename expansion� or arithmetic ex�
pansion is performed on word� If any characters in word are quoted� the delimiter is the

Chapter �� Basic Shell Features ��

result of quote removal on word� and the lines in the here�document are not expanded� If
word is unquoted� all lines of the here�document are subjected to parameter expansion�
command substitution� and arithmetic expansion� In the latter case� the pair
newline is
ignored� and

� must be used to quote the characters

��
��� and
���

If the redirection operator is
����� then all leading tab characters are stripped from input
lines and the line containing delimiter� This allows here�documents within shell scripts to
be indented in a natural fashion�

��	�	 Duplicating File Descriptors

The redirection operator

�n���word

is used to duplicate input
le descriptors� If word expands to one or more digits� the
le
descriptor denoted by n is made to be a copy of that
le descriptor� If the digits in word

do not specify a
le descriptor open for input� a redirection error occurs� If word evaluates
to
���
le descriptor n is closed� If n is not speci
ed� the standard input �
le descriptor ��
is used�

The operator

�n�	�word

is used similarly to duplicate output
le descriptors� If n is not speci
ed� the standard
output �
le descriptor �� is used� If the digits in word do not specify a
le descriptor open
for output� a redirection error occurs� As a special case� if n is omitted� and word does
not expand to one or more digits� the standard output and standard error are redirected as
described previously�

��	�
 Opening File Descriptors for Reading and Writing

The redirection operator

�n��	word

causes the
le whose name is the expansion of word to be opened for both reading and
writing on
le descriptor n� or on
le descriptor � if n is not speci
ed� If the
le does not
exist� it is created�

��
 Executing Commands

��
�� Simple Command Expansion

When a simple command is executed� the shell performs the following expansions� as�
signments� and redirections� from left to right�

�� The words that the parser has marked as variable assignments �those preceding the
command name� and redirections are saved for later processing�

�� The words that are not variable assignments or redirections are expanded �see Sec�
tion ��� �Shell Expansions�� page ���� If any words remain after expansion� the
rst
word is taken to be the name of the command and the remaining words are the argu�
ments�

�� Bash Reference Manual

�� Redirections are performed as described above �see Section ��	 �Redirections�� page ����

�� The text after the
�� in each variable assignment undergoes tilde expansion� parameter
expansion� command substitution� arithmetic expansion� and quote removal before
being assigned to the variable�

If no command name results� the variable assignments a�ect the current shell environ�
ment� Otherwise� the variables are added to the environment of the executed command and
do not a�ect the current shell environment� If any of the assignments attempts to assign
a value to a readonly variable� an error occurs� and the command exits with a non�zero
status�

If no command name results� redirections are performed� but do not a�ect the current
shell environment� A redirection error causes the command to exit with a non�zero status�

If there is a command name left after expansion� execution proceeds as described below�
Otherwise� the command exits� If one of the expansions contained a command substitu�
tion� the exit status of the command is the exit status of the last command substitution
performed� If there were no command substitutions� the command exits with a status of
zero�

��
�� Command Search and Execution

After a command has been split into words� if it results in a simple command and an
optional list of arguments� the following actions are taken�

�� If the command name contains no slashes� the shell attempts to locate it� If there
exists a shell function by that name� that function is invoked as described above in
Section ��� �Shell Functions�� page ���

�� If the name does not match a function� the shell searches for it in the list of shell
builtins� If a match is found� that builtin is invoked�

�� If the name is neither a shell function nor a builtin� and contains no slashes� Bash
searches each element of �PATH for a directory containing an executable
le by that
name� Bash uses a hash table to remember the full pathnames of executable
les to
avoid multiple PATH searches �see the description of hash in Section ��� �Bourne Shell
Builtins�� page ���� A full search of the directories in �PATH is performed only if the
command is not found in the hash table� If the search is unsuccessful� the shell prints
an error message and returns an exit status of ����

�� If the search is successful� or if the command name contains one or more slashes� the
shell executes the named program in a separate execution environment� Argument �
is set to the name given� and the remaining arguments to the command are set to the
arguments supplied� if any�

�� If this execution fails because the
le is not in executable format� and the
le is not
a directory� it is assumed to be a shell script and the shell executes it as described in
Section ��� �Shell Scripts�� page ���

	� If the command was not begun asynchronously� the shell waits for the command to
complete and collects its exit status�

Chapter �� Basic Shell Features ��

��
�� Command Execution Environment

The shell has an execution environment� which consists of the following�

� open
les inherited by the shell at invocation� as modi
ed by redirections supplied to
the exec builtin

� the current working directory as set by cd� pushd� or popd� or inherited by the shell at
invocation

� the
le creation mode mask as set by umask or inherited from the shell�s parent

� current traps set by trap

� shell parameters that are set by variable assignment or with set or inherited from the
shell�s parent in the environment

� shell functions de
ned during execution or inherited from the shell�s parent in the
environment

� options enabled at invocation �either by default or with command�line arguments� or
by set

� options enabled by shopt

� shell aliases de
ned with alias �see Section ��� �Aliases�� page 	��

� various process IDs� including those of background jobs �see Section ����� �Lists��
page ��� the value of ��� and the value of �PPID

When a simple command other than a builtin or shell function is to be executed� it is
invoked in a separate execution environment that consists of the following� Unless otherwise
noted� the values are inherited from the shell�

� the shell�s open
les� plus any modi
cations and additions speci
ed by redirections to
the command

� the current working directory

� the
le creation mode mask

� shell variables marked for export� along with variables exported for the command�
passed in the environment �see Section ����� �Environment�� page ���

� traps caught by the shell are reset to the values inherited from the shell�s parent� and
traps ignored by the shell are ignored

A command invoked in this separate environment cannot a�ect the shell�s execution
environment�

Command substitution and asynchronous commands are invoked in a subshell environ�
ment that is a duplicate of the shell environment� except that traps caught by the shell are
reset to the values that the shell inherited from its parent at invocation� Builtin commands
that are invoked as part of a pipeline are also executed in a subshell environment� Changes
made to the subshell environment cannot a�ect the shell�s execution environment�

��
�� Environment

When a program is invoked it is given an array of strings called the environment� This
is a list of name�value pairs� of the form name�value�

�	 Bash Reference Manual

Bash allows you to manipulate the environment in several ways� On invocation� the shell
scans its own environment and creates a parameter for each name found� automatically
marking it for export to child processes� Executed commands inherit the environment� The
export and
declare �x� commands allow parameters and functions to be added to and
deleted from the environment� If the value of a parameter in the environment is modi
ed� the
new value becomes part of the environment� replacing the old� The environment inherited
by any executed command consists of the shell�s initial environment� whose values may be
modi
ed in the shell� less any pairs removed by the unset and
export �n� commands� plus
any additions via the export and
declare �x� commands�

The environment for any simple command or function may be augmented temporarily
by pre
xing it with parameter assignments� as described in Section ��� �Shell Parameters��
page ��� These assignment statements a�ect only the environment seen by that command�

If the
�k� option is set �see Section ��� �The Set Builtin�� page ���� then all parameter
assignments are placed in the environment for a command� not just those that precede the
command name�

When Bash invokes an external command� the variable
��� is set to the full path name
of the command and passed to that command in its environment�

��
�� Exit Status

For the shell�s purposes� a command which exits with a zero exit status has succeeded�
A non�zero exit status indicates failure� This seemingly counter�intuitive scheme is used so
there is one well�de
ned way to indicate success and a variety of ways to indicate various
failure modes� When a command terminates on a fatal signal whose number is n� Bash uses
the value ����n as the exit status�

If a command is not found� the child process created to execute it returns a status of
���� If a command is found but is not executable� the return status is ��	�

If a command fails because of an error during expansion or redirection� the exit status
is greater than zero�

The exit status is used by the Bash conditional commands �see Section ����� �Conditional
Constructs�� page �� and some of the list constructs �see Section ����� �Lists�� page ���

All of the Bash builtins return an exit status of zero if they succeed and a non�zero
status on failure� so they may be used by the conditional and list constructs� All builtins
return an exit status of � to indicate incorrect usage�

��
�	 Signals

When Bash is interactive� in the absence of any traps� it ignores SIGTERM �so that
kill
�� does not kill an interactive shell�� and SIGINT is caught and handled �so that the wait

builtin is interruptible�� When Bash receives a SIGINT� it breaks out of any executing loops�
In all cases� Bash ignores SIGQUIT� If job control is in e�ect �see Chapter 	 �Job Control��
page 	��� Bash ignores SIGTTIN� SIGTTOU� and SIGTSTP�

Commands started by Bash have signal handlers set to the values inherited by the
shell from its parent� When job control is not in e�ect� asynchronous commands ignore

Chapter �� Basic Shell Features ��

SIGINT and SIGQUIT as well� Commands run as a result of command substitution ignore
the keyboard�generated job control signals SIGTTIN� SIGTTOU� and SIGTSTP�

The shell exits by default upon receipt of a SIGHUP� Before exiting� it resends the
SIGHUP to all jobs� running or stopped� Stopped jobs are sent SIGCONT to ensure that they
receive the SIGHUP� To prevent the shell from sending the SIGHUP signal to a particular
job� it should be removed from the jobs table with the disown builtin �see Section 	�� �Job
Control Builtins�� page ��� or marked to not receive SIGHUP using disown �h�

If the huponexit shell option has been set with shopt �see Section ��� �Bash Builtins��
page ���� Bash sends a SIGHUP to all jobs when an interactive login shell exits�

When Bash receives a signal for which a trap has been set while waiting for a command
to complete� the trap will not be executed until the command completes� When Bash is
waiting for an asynchronous command via the wait builtin� the reception of a signal for
which a trap has been set will cause the wait builtin to return immediately with an exit
status greater than ���� immediately after which the trap is executed�

��� Shell Scripts

A shell script is a text
le containing shell commands� When such a
le is used as the
rst
non�option argument when invoking Bash� and neither the
�c� nor
�s� option is supplied
�see Section ��� �Invoking Bash�� page ���� Bash reads and executes commands from the

le� then exits� This mode of operation creates a non�interactive shell� When Bash runs a
shell script� it sets the special parameter � to the name of the
le� rather than the name
of the shell� and the positional parameters are set to the remaining arguments� if any are
given� If no additional arguments are supplied� the positional parameters are unset�

A shell script may be made executable by using the chmod command to turn on the
execute bit� When Bash
nds such a
le while searching the �PATH for a command� it
spawns a subshell to execute it� In other words� executing

filename arguments

is equivalent to executing

bash filename arguments

if filename is an executable shell script� This subshell reinitializes itself� so that the e�ect
is as if a new shell had been invoked to interpret the script� with the exception that the
locations of commands remembered by the parent �see the description of hash in Section ���
�Bourne Shell Builtins�� page ��� are retained by the child�

Most versions of Unix make this a part of the kernel�s command execution mechanism�
If the
rst line of a script begins with the two characters
���� the remainder of the line
speci
es an interpreter for the program� The arguments to the interpreter consist of a single
optional argument following the interpreter name on the
rst line of the script
le� followed
by the name of the script
le� followed by the rest of the arguments� Bash will perform
this action on operating systems that do not handle it themselves� Note that some older
versions of Unix limit the interpreter name and argument to a maximum of �� characters�

�� Bash Reference Manual

Chapter �� Bourne Shell Style Features ��

� Bourne Shell Style Features

This section brie�y summarizes things which Bash inherits from the Bourne Shell�
builtins� variables� and other features� It also lists the signi
cant di�erences between Bash
and the Bourne Shell� Many of the builtins have been extended by POSIX or Bash�

��� Bourne Shell Builtins

The following shell builtin commands are inherited from the Bourne Shell� These com�
mands are implemented as speci
ed by the POSIX ������ standard�

�

� �arguments�

Do nothing beyond expanding arguments and performing redirections� The
return status is zero�

�

� �lename

Read and execute commands from the �lename argument in the current shell
context� If �lename does not contain a slash� the �PATH variable is used to
nd
�lename� The current directory is searched if �lename is not found in �PATH�
The return status is the exit status of the last command executed� or zero if no
commands are executed� If �lename is not found� or cannot be read� the return
status is non�zero�

break

break �n�

Exit from a for� while� until� or select loop� If n is supplied� the nth
enclosing loop is exited� n must be greater than or equal to �� The return
status is zero unless n is not greater than or equal to ��

cd

cd ��LP� �directory�

Change the current working directory to directory� If directory is not given�
the value of the HOME shell variable is used� If the shell variable CDPATH exists�
it is used as a search path� If directory begins with a slash� CDPATH is not
used� The
�P� option means to not follow symbolic links� symbolic links are
followed by default or with the
�L� option� If directory is
��� it is equivalent
to �OLDPWD� The return status is zero if the directory is successfully changed�
non�zero otherwise�

continue

continue �n�

Resume the next iteration of an enclosing for� while� until� or select loop�
If n is supplied� the execution of the nth enclosing loop is resumed� n must be
greater than or equal to �� The return status is zero unless n is not greater
than or equal to ��

�� Bash Reference Manual

eval

eval �arguments�

The arguments are concatenated together into a single command� which is then
read and executed� and its exit status returned as the exit status of eval� If
there are no arguments or only empty arguments� the return status is zero�

exec

exec ��cl� ��a name� �command �arguments��

If command is supplied� it replaces the shell without creating a new process�
If the
�l� option is supplied� the shell places a dash in the zeroth arg passed
to command� This is what the login program does� The
�c� option causes
command to be executed with an empty environment� If
�a� is supplied� the
shell passes name as the zeroth argument to command� If no command is
speci
ed� redirections may be used to a�ect the current shell environment� If
there are no redirection errors� the return status is zero� otherwise the return
status is non�zero�

exit

exit �n�

Exit the shell� returning a status of n to the shell�s parent� Any trap on EXIT

is executed before the shell terminates�

export

export ��fn� ��p� �name��value��

Mark each name to be passed to child processes in the environment� If the

�f� option is supplied� the names refer to shell functions� otherwise the names
refer to shell variables� The
�n� option means to no longer mark each name

for export� If no names are supplied� or if the
�p� option is given� a list of
exported names is displayed� The
�p� option displays output in a form that
may be reused as input� The return status is zero unless an invalid option is
supplied� one of the names is not a valid shell variable name� or
�f� is supplied
with a name that is not a shell function�

getopts

getopts optstring name �args�

getopts is used by shell scripts to parse positional parameters� optstring con�
tains the option letters to be recognized� if a letter is followed by a colon� the
option is expected to have an argument� which should be separated from it by
white space� Each time it is invoked� getopts places the next option in the
shell variable name� initializing name if it does not exist� and the index of the
next argument to be processed into the variable OPTIND� OPTIND is initialized
to � each time the shell or a shell script is invoked� When an option requires an
argument� getopts places that argument into the variable OPTARG� The shell
does not reset OPTIND automatically� it must be manually reset between multi�
ple calls to getopts within the same shell invocation if a new set of parameters
is to be used�

Chapter �� Bourne Shell Style Features ��

When the end of options is encountered� getopts exits with a return value
greater than zero� OPTIND is set to the index of the
rst non�option argument�
and name is set to
 ��

getopts normally parses the positional parameters� but if more arguments are
given in args� getopts parses those instead�

getopts can report errors in two ways� If the
rst character of optstring is a
colon� silent error reporting is used� In normal operation diagnostic messages
are printed when invalid options or missing option arguments are encountered�
If the variable OPTERR is set to �� no error messages will be displayed� even if
the
rst character of optstring is not a colon�

If an invalid option is seen� getopts places
 � into name and� if not silent�
prints an error message and unsets OPTARG� If getopts is silent� the option
character found is placed in OPTARG and no diagnostic message is printed�

If a required argument is not found� and getopts is not silent� a question mark
�
 �� is placed in name� OPTARG is unset� and a diagnostic message is printed� If
getopts is silent� then a colon �
��� is placed in name and OPTARG is set to the
option character found�

hash

hash ��r� ��p �lename� �name�

Remember the full pathnames of commands speci
ed as name arguments� so
they need not be searched for on subsequent invocations� The commands are
found by searching through the directories listed in �PATH� The
�p� option
inhibits the path search� and �lename is used as the location of name� The
�r�
option causes the shell to forget all remembered locations� If no arguments are
given� information about remembered commands is printed� The return status
is zero unless a name is not found or an invalid option is supplied�

pwd

pwd ��LP�

Print the current working directory� If the
�P� option is supplied� the path
printed will not contain symbolic links� If the
�L� option is supplied� the path
printed may contain symbolic links� The return status is zero unless an error is
encountered while determining the name of the current directory or an invalid
option is supplied�

readonly

readonly ��apf� �name� � � �

Mark each name as readonly� The values of these names may not be changed
by subsequent assignment� If the
�f� option is supplied� each name refers to
a shell function� The
�a� option means each name refers to an array variable�
If no name arguments are given� or if the
�p� option is supplied� a list of all
readonly names is printed� The
�p� option causes output to be displayed in a
format that may be reused as input� The return status is zero unless an invalid
option is supplied� one of the name arguments is not a valid shell variable or
function name� or the
�f� option is supplied with a name that is not a shell
function�

�� Bash Reference Manual

return

return �n�

Cause a shell function to exit with the return value n� This may also be used
to terminate execution of a script being executed with the � builtin� returning
either n or the exit status of the last command executed within the script as
the exit status of the script� The return status is false if return is used outside
a function and not during the execution of a script by
���

shift

shift �n�

Shift the positional parameters to the left by n� The positional parameters
from n�� � � � �� are renamed to �� � � � ���n��� Parameters represented by the
numbers �� to n�� are unset� n must be a non�negative number less than or
equal to ��� If n is zero or greater than ��� the positional parameters are not
changed� The return status is zero unless n is greater than �� or less than zero�
non�zero otherwise�

test

� Evaluate a conditional expression expr� Each operator and operand must be a
separate argument� Expressions are composed of the primaries described below
in Section ��	 �Bash Conditional Expressions�� page ���

Expressions may be combined using the following operators� listed in decreasing
order of precedence�

� expr True if expr is false�

� expr � Returns the value of expr� This may be used to override the normal
precedence of operators�

expr� �a expr�

True if both expr� and expr� are true�

expr� �o expr�

True if either expr� or expr� is true�

The test and � builtins evaluate conditional expressions using a set of rules
based on the number of arguments�

� arguments
The expression is false�

� argument
The expression is true if and only if the argument is not null�

� arguments
If the
rst argument is
��� the expression is true if and only if the
second argument is null� If the
rst argument is one of the unary
conditional operators �see Section ��	 �Bash Conditional Expres�
sions�� page ���� the expression is true if the unary test is true� If
the
rst argument is not a valid unary operator� the expression is
false�

Chapter �� Bourne Shell Style Features ��

� arguments
If the second argument is one of the binary conditional operators
�see Section ��	 �Bash Conditional Expressions�� page ���� the result
of the expression is the result of the binary test using the
rst
and third arguments as operands� If the
rst argument is
��� the
value is the negation of the two�argument test using the second and
third arguments� If the
rst argument is exactly
�� and the third
argument is exactly
��� the result is the one�argument test of the
second argument� Otherwise� the expression is false� The
�a� and

�o� operators are considered binary operators in this case�

� arguments
If the
rst argument is
��� the result is the negation of the three�
argument expression composed of the remaining arguments� Oth�
erwise� the expression is parsed and evaluated according to prece�
dence using the rules listed above�

� or more arguments
The expression is parsed and evaluated according to precedence
using the rules listed above�

times

times

Print out the user and system times used by the shell and its children� The
return status is zero�

trap

trap ��lp� �arg� �sigspec � � ��

The commands in arg are to be read and executed when the shell receives
signal sigspec� If arg is absent or equal to
��� all speci
ed signals are reset to
the values they had when the shell was started� If arg is the null string� then
the signal speci
ed by each sigspec is ignored by the shell and commands it
invokes� If arg is
�p�� the shell displays the trap commands associated with
each sigspec� If no arguments are supplied� or only
�p� is given� trap prints
the list of commands associated with each signal number in a form that may
be reused as shell input� Each sigspec is either a signal name such as SIGINT
�with or without the SIG pre
x� or a signal number� If a sigspec is � or EXIT�
arg is executed when the shell exits� If a sigspec is DEBUG� the command arg is
executed after every simple command� The
�l� option causes the shell to print
a list of signal names and their corresponding numbers�

Signals ignored upon entry to the shell cannot be trapped or reset� Trapped
signals are reset to their original values in a child process when it is created�

The return status is zero unless a sigspec does not specify a valid signal�

umask

umask ��p� ��S� �mode�

Set the shell process�s
le creation mask to mode� If mode begins with a digit�
it is interpreted as an octal number� if not� it is interpreted as a symbolic mode

�� Bash Reference Manual

mask similar to that accepted by the chmod command� If mode is omitted� the
current value of the mask is printed� If the
�S� option is supplied without a
mode argument� the mask is printed in a symbolic format� If the
�p� option
is supplied� and mode is omitted� the output is in a form that may be reused
as input� The return status is zero if the mode is successfully changed or if no
mode argument is supplied� and non�zero otherwise�

unset

unset ��fv� �name�

Each variable or function name is removed� If no options are supplied� or the

�v� option is given� each name refers to a shell variable� If the
�f� option is
given� the names refer to shell functions� and the function de
nition is removed�
Readonly variables and functions may not be unset� The return status is zero
unless a name does not exist or is readonly�

��� Bourne Shell Variables

Bash uses certain shell variables in the same way as the Bourne shell� In some cases�
Bash assigns a default value to the variable�

CDPATH A colon�separated list of directories used as a search path for the cd builtin
command�

HOME The current user�s home directory� the default for the cd builtin command� The
value of this variable is also used by tilde expansion �see Section ����� �Tilde
Expansion�� page ����

IFS A list of characters that separate
elds� used when the shell splits words as part
of expansion�

MAIL If this parameter is set to a
lename and the MAILPATH variable is not set� Bash
informs the user of the arrival of mail in the speci
ed
le�

MAILPATH A colon�separated list of
lenames which the shell periodically checks for new
mail� Each list entry can specify the message that is printed when new mail
arrives in the mail
le by separating the
le name from the message with a
 ��
When used in the text of the message� �� expands to the name of the current
mail
le�

OPTARG The value of the last option argument processed by the getopts builtin�

OPTIND The index of the last option argument processed by the getopts builtin�

PATH A colon�separated list of directories in which the shell looks for commands�

PS� The primary prompt string� The default value is

s�
v
� ��

PS� The secondary prompt string� The default value is
	 ��

Chapter �� Bourne Shell Style Features ��

��� Other Bourne Shell Features

Bash implements essentially the same grammar� parameter and variable expansion� redi�
rection� and quoting as the Bourne Shell� Bash uses the POSIX ������ standard as the
speci
cation of how these features are to be implemented� There are some di�erences be�
tween the traditional Bourne shell and Bash� this section quickly details the di�erences of
signi
cance� A number of these di�erences are explained in greater depth in subsequent
sections�

����� Major Di
erences From The SVR��� Bourne Shell

� Bash is POSIX�conformant� even where the POSIX speci
cation di�ers from tradi�
tional sh behavior�

� Bash has multi�character invocation options �see Section ��� �Invoking Bash�� page ����

� Bash has command�line editing �see Chapter � �Command Line Editing�� page ��� and
the bind builtin�

� Bash has command history �see Section ��� �Bash History Facilities�� page ��� and the
history and fc builtins to manipulate it�

� Bash implements csh�like history expansion �see Section ��� �History Interaction��
page ����

� Bash has one�dimensional array variables �see Section ���� �Arrays�� page 	��� and the
appropriate variable expansions and assignment syntax to use them� Several of the
Bash builtins take options to act on arrays� Bash provides a number of built�in array
variables�

� The ��� � �� quoting syntax� which expands ANSI�C backslash�escaped characters in
the text between the single quotes� is supported �see Section ������� �ANSI�C Quoting��
page 	��

� Bash supports the �
� � �
 quoting syntax to do locale�speci
c translation of the charac�
ters between the double quotes� The
�D��
��dump�strings�� and
��dump�po�strings�
invocation options list the translatable strings found in a script �see Section �������
�Locale Translation�� page ���

� Bash implements the � keyword to negate the return value of a pipeline �see Sec�
tion ����� �Pipelines�� page ��� Very useful when an if statement needs to act only if
a test fails�

� Bash has the time reserved word and command timing �see Section ����� �Pipelines��
page ��� The display of the timing statistics may be controlled with the TIMEFORMAT

variable�

� Bash includes the select compound command� which allows the generation of simple
menus �see Section ����� �Conditional Constructs�� page ���

� Bash includes the �� compound command� which makes conditional testing part of the
shell grammar �see Section ����� �Conditional Constructs�� page ���

� Bash includes brace expansion �see Section ����� �Brace Expansion�� page ��� and tilde
expansion �see Section ����� �Tilde Expansion�� page ����

�	 Bash Reference Manual

� Bash implements command aliases and the alias and unalias builtins �see Section ���
�Aliases�� page 	���

� Bash provides shell arithmetic� the �� compound command �see Section ����� �Con�
ditional Constructs�� page ��� and arithmetic expansion �see Section ��� �Shell Arith�
metic�� page 	���

� Variables present in the shell�s initial environment are automatically exported to child
processes� The Bourne shell does not normally do this unless the variables are explicitly
marked using the export command�

� Bash includes the POSIX pattern removal
#��
���
##� and
��� expansions to remove
leading or trailing substrings from variable values �see Section ����� �Shell Parameter
Expansion�� page �	��

� The expansion ���xx�� which returns the length of ��xx�� is supported �see Sec�
tion ����� �Shell Parameter Expansion�� page �	��

� The expansion ��var�o�set��length��� which expands to the substring of var�s value
of length length� beginning at o�set� is present �see Section ����� �Shell Parameter
Expansion�� page �	��

� The expansion ��var����pattern��replacement��� which matches pattern and replaces
it with replacement in the value of var� is available �see Section ����� �Shell Parameter
Expansion�� page �	��

� Bash has indirect variable expansion using ���word� �see Section ����� �Shell Parameter
Expansion�� page �	��

� Bash can expand positional parameters beyond �% using ��num��

� The POSIX ��� form of command substitution is implemented �see Section �����
�Command Substitution�� page ���� and preferred to the Bourne shell�s �� �which is
also implemented for backwards compatibility��

� Bash has process substitution �see Section ����	 �Process Substitution�� page ����

� Bash automatically assigns variables that provide information about the current
user �UID� EUID� and GROUPS�� the current host �HOSTTYPE� OSTYPE� MACHTYPE� and
HOSTNAME�� and the instance of Bash that is running �BASH� BASH�VERSION� and BASH�

VERSINFO�� See Section ��� �Bash Variables�� page ��� for details�

� The IFS variable is used to split only the results of expansion� not all words �see
Section ����� �Word Splitting�� page ���� This closes a longstanding shell security hole�

� Bash implements the full set of POSIX��
lename expansion operators� including char�
acter classes� equivalence classes� and collating symbols �see Section ����� �Filename
Expansion�� page ����

� Bash implements extended pattern matching features when the extglob shell option
is enabled �see Section ������� �Pattern Matching�� page ����

� It is possible to have a variable and a function with the same name� sh does not separate
the two name spaces�

� Bash functions are permitted to have local variables using the local builtin� and thus
useful recursive functions may be written�

Chapter �� Bourne Shell Style Features ��

� Variable assignments preceding commands a�ect only that command� even builtins and
functions �see Section ����� �Environment�� page ���� In sh� all variable assignments
preceding commands are global unless the command is executed from the
le system�

� Bash performs
lename expansion on
lenames speci
ed as operands to input and
output redirection operators�

� Bash contains the
�	� redirection operator� allowing a
le to be opened for both read�
ing and writing� and the
�	� redirection operator� for directing standard output and
standard error to the same
le �see Section ��	 �Redirections�� page ����

� The noclobber option is available to avoid overwriting existing
les with output redi�
rection �see Section ��� �The Set Builtin�� page ���� The
	�� redirection operator may
be used to override noclobber�

� The Bash cd and pwd builtins �see Section ��� �Bourne Shell Builtins�� page ��� each
take
�L� and
�P� builtins to switch between logical and physical modes�

� Bash allows a function to override a builtin with the same name� and provides access to
that builtin�s functionality within the function via the builtin and command builtins
�see Section ��� �Bash Builtins�� page ����

� The command builtin allows selective disabling of functions when command lookup is
performed �see Section ��� �Bash Builtins�� page ����

� Individual builtins may be enabled or disabled using the enable builtin �see Section ���
�Bash Builtins�� page ����

� The Bash exec builtin takes additional options that allow users to control the contents
of the environment passed to the executed command� and what the zeroth argument
to the command is to be �see Section ��� �Bourne Shell Builtins�� page ����

� Shell functions may be exported to children via the environment using export �f �see
Section ��� �Shell Functions�� page ����

� The Bash export� readonly� and declare builtins can take a
�f� option to act on
shell functions� a
�p� option to display variables with various attributes set in a format
that can be used as shell input� a
�n� option to remove various variable attributes� and

name�value� arguments to set variable attributes and values simultaneously�

� The Bash hash builtin allows a name to be associated with an arbitrary
lename�
even when that
lename cannot be found by searching the �PATH� using
hash �p� �see
Section ��� �Bourne Shell Builtins�� page ����

� Bash includes a help builtin for quick reference to shell facilities �see Section ��� �Bash
Builtins�� page ����

� The printf builtin is available to display formatted output �see Section ��� �Bash
Builtins�� page ����

� The Bash read builtin �see Section ��� �Bash Builtins�� page ��� will read a line ending
in

� with the
�r� option� and will use the REPLY variable as a default if no arguments
are supplied� The Bash read builtin also accepts a prompt string with the
�p� option
and will use Readline to obtain the line when given the
�e� option�

� The return builtin may be used to abort execution of scripts executed with the � or
source builtins �see Section ��� �Bourne Shell Builtins�� page ����

�� Bash Reference Manual

� Bash includes the shopt builtin� for
ner control of shell optional capabilities �see
Section ��� �Bash Builtins�� page ����

� Bash has much more optional behavior controllable with the set builtin �see Section ���
�The Set Builtin�� page ����

� The test builtin �see Section ��� �Bourne Shell Builtins�� page ��� is slightly di�erent�
as it implements the POSIX algorithm� which speci
es the behavior based on the
number of arguments�

� The trap builtin �see Section ��� �Bourne Shell Builtins�� page ��� allows a DEBUG

pseudo�signal speci
cation� similar to EXIT� Commands speci
ed with a DEBUG trap
are executed after every simple command� The DEBUG trap is not inherited by shell
functions�

� The Bash type builtin is more extensive and gives more information about the names
it
nds �see Section ��� �Bash Builtins�� page ����

� The Bash umask builtin permits a
�p� option to cause the output to be displayed in
the form of a umask command that may be reused as input �see Section ��� �Bourne
Shell Builtins�� page ����

� Bash implements a csh�like directory stack� and provides the pushd� popd� and dirs

builtins to manipulate it �see Section ���� �The Directory Stack�� page 	��� Bash also
makes the directory stack visible as the value of the DIRSTACK shell variable�

� Bash interprets special backslash�escaped characters in the prompt strings when inter�
active �see Section ���� �Printing a Prompt�� page 		��

� The Bash restricted mode is more useful �see Section ���� �The Restricted Shell��
page 	��� the SVR��� shell restricted mode is too limited�

� The disown builtin can remove a job from the internal shell job table �see Section 	��
�Job Control Builtins�� page ��� or suppress the sending of SIGHUP to a job when the
shell exits as the result of a SIGHUP�

� The SVR��� shell has two privilege�related builtins �mldmode and priv� not present
in Bash�

� Bash does not have the stop or newgrp builtins�

� Bash does not use the SHACCT variable or perform shell accounting�

� The SVR��� sh uses a TIMEOUT variable like Bash uses TMOUT�

More features unique to Bash may be found in Chapter � �Bash Features�� page ���

����� Implementation Di
erences From The SVR��� Shell

Since Bash is a completely new implementation� it does not su�er from many of the
limitations of the SVR��� shell� For instance�

� Bash does not fork a subshell when redirecting into or out of a shell control structure
such as an if or while statement�

� Bash does not allow unbalanced quotes� The SVR��� shell will silently insert a needed
closing quote at EOF under certain circumstances� This can be the cause of some hard�
to�
nd errors�

Chapter �� Bourne Shell Style Features ��

� The SVR��� shell uses a baroque memory management scheme based on trapping
SIGSEGV� If the shell is started from a process with SIGSEGV blocked �e�g�� by using
the system�� C library function call�� it misbehaves badly�

� In a questionable attempt at security� the SVR��� shell� when invoked without the
�p�
option� will alter its real and e�ective UID and GID if they are less than some magic
threshold value� commonly ���� This can lead to unexpected results�

� The SVR��� shell does not allow users to trap SIGSEGV� SIGALRM� or SIGCHLD�

� The SVR��� shell does not allow the IFS� MAILCHECK� PATH� PS�� or PS� variables to
be unset�

� The SVR��� shell treats
$� as the undocumented equivalent of
���

� Bash allows multiple option arguments when it is invoked ��x �v�� the SVR��� shell
allows only one option argument ��xv�� In fact� some versions of the shell dump core
if the second argument begins with a
���

� The SVR��� shell exits a script if any builtin fails� Bash exits a script only if one of
the POSIX�� special builtins fails� and only for certain failures� as enumerated in the
POSIX�� standard�

� The SVR��� shell behaves di�erently when invoked as jsh �it turns on job control��

�� Bash Reference Manual

Chapter �� Bash Features ��

� Bash Features

This section describes features unique to Bash�

��� Invoking Bash

bash �long�opt� ��ir� ��abefhkmnptuvxdBCDHP� ��o option� �argument � � ��
bash �long�opt� ��abefhkmnptuvxdBCDHP� ��o option� �c string �argument � � ��
bash �long�opt� �s ��abefhkmnptuvxdBCDHP� ��o option� �argument � � ��

In addition to the single�character shell command�line options �see Section ��� �The Set
Builtin�� page ���� there are several multi�character options that you can use� These options
must appear on the command line before the single�character options in order for them to
be recognized�

��dump�po�strings

Equivalent to
�D�� but the output is in the GNU gettext PO �portable object�

le format�

��dump�strings

Equivalent to
�D��

��help Display a usage message on standard output and exit sucessfully�

��login Make this shell act as if it were directly invoked by login� This is equivalent to

exec �l bash� but can be issued from another shell� such as csh�
exec bash

��login� will replace the current shell with a Bash login shell�

��noediting

Do not use the GNU Readline library �see Chapter � �Command Line Editing��
page ��� to read interactive command lines�

��noprofile

Don�t load the system�wide startup
le
�etc�profile� or any of the personal
initialization
les
"��bash�profile��
"��bash�login�� or
"��profile� when
Bash is invoked as a login shell�

��norc Don�t read the
"��bashrc� initialization
le in an interactive shell� This is on
by default if the shell is invoked as sh�

��posix Change the behavior of Bash where the default operation di�ers from the
POSIX ������ standard to match the standard� This is intended to make Bash
behave as a strict superset of that standard� See Section ���� �Bash POSIX
Mode�� page 	�� for a description of the Bash POSIX mode�

��rcfile �lename

Execute commands from �lename �instead of
"��bashrc�� in an interactive
shell�

��restricted

Make the shell a restricted shell �see Section ���� �The Restricted Shell��
page 	���

�� Bash Reference Manual

��verbose

Equivalent to
�v��

��version

Show version information for this instance of Bash on the standard output and
exit successfully�

There are several single�character options that may be supplied at invocation which are
not available with the set builtin�

�c string Read and execute commands from string after processing the options� then exit�
Any remaining arguments are assigned to the positional parameters� starting
with ���

�i Force the shell to run interactively�

�r Make the shell a restricted shell �see Section ���� �The Restricted Shell��
page 	���

�s If this option is present� or if no arguments remain after option processing� then
commands are read from the standard input� This option allows the positional
parameters to be set when invoking an interactive shell�

�D A list of all double�quoted strings preceded by
�� is printed on the standard
ouput� These are the strings that are subject to language translation when
the current locale is not C or POSIX �see Section ������� �Locale Translation��
page ��� This implies the
�n� option� no commands will be executed�

�� A �� signals the end of options and disables further option processing� Any
arguments after the �� are treated as
lenames and arguments�

An interactive shell is one whose input and output are both connected to terminals �as
determined by isatty����� or one started with the
�i� option�

If arguments remain after option processing� and neither the
�c� nor the
�s� option
has been supplied� the
rst argument is assumed to be the name of a
le containing shell
commands �see Section ��� �Shell Scripts�� page ���� When Bash is invoked in this fashion�
�� is set to the name of the
le� and the positional parameters are set to the remaining
arguments� Bash reads and executes commands from this
le� then exits� Bash�s exit status
is the exit status of the last command executed in the script� If no commands are executed�
the exit status is ��

��� Bash Startup Files

This section describs how Bash executes its startup
les� If any of the
les exist but
cannot be read� Bash reports an error� Tildes are expanded in
le names as described above
under Tilde Expansion �see Section ����� �Tilde Expansion�� page ����

When Bash is invoked as an interactive login shell� it
rst reads and executes com�
mands from the
le
�etc�profile�� if that
le exists� After reading that
le� it looks for

"��bash�profile��
"��bash�login�� and
"��profile�� in that order� and reads and ex�
ecutes commands from the
rst one that exists and is readable� The
��noprofile� option
may be used when the shell is started to inhibit this behavior�

Chapter �� Bash Features ��

When a login shell exits� Bash reads and executes commands from the
le
"��bash�logout��
if it exists�

When an interactive shell that is not a login shell is started� Bash reads and executes
commands from
"��bashrc�� if that
le exists� This may be inhibited by using the
��norc�
option� The
��rcfile �le� option will force Bash to read and execute commands from �le

instead of
"��bashrc��

So� typically� your
"��bash�profile� contains the line

if � �f �"��bashrc� �� then � �"��bashrc�� fi

after �or before� any login�speci
c initializations�

When Bash is started non�interactively� to run a shell script� for example� it looks for the
variable BASH�ENV in the environment� expands its value if it appears there� and uses the
expanded value as the name of a
le to read and execute� Bash behaves as if the following
command were executed�

if � �n
�BASH�ENV
 �� then �
�BASH�ENV
� fi

but the value of the PATH variable is not used to search for the
le name�

If Bash is invoked with the name sh� it tries to mimic the startup behavior of historical
versions of sh as closely as possible� while conforming to the POSIX standard as well�

When invoked as an interactive login shell� it
rst attempts to read and execute com�
mands from
�etc�profile� and
"��profile�� in that order� The
��noprofile� option
may be used to inhibit this behavior� When invoked as an interactive shell with the name
sh� Bash looks for the variable ENV� expands its value if it is de
ned� and uses the expanded
value as the name of a
le to read and execute� Since a shell invoked as sh does not attempt
to read and execute commands from any other startup
les� the
��rcfile� option has no
e�ect� A non�interactive shell invoked with the name sh does not attempt to read any
startup
les�

When invoked as sh� Bash enters POSIX mode after the startup
les are read�

When Bash is started in POSIX mode� as with the
��posix� command line option� it
follows the POSIX standard for startup
les� In this mode� interactive shells expand the
ENV variable and commands are read and executed from the
le whose name is the expanded
value� No other startup
les are read�

Bash attempts to determine when it is being run by the remote shell daemon� usually
rshd� If Bash determines it is being run by rshd� it reads and executes commands from

"��bashrc�� if that
le exists and is readable� It will not do this if invoked as sh� The

��norc� option may be used to inhibit this behavior� and the
��rcfile� option may be
used to force another
le to be read� but rshd does not generally invoke the shell with those
options or allow them to be speci
ed�

��� Is This Shell Interactive�

As de
ned in Section ��� �Invoking Bash�� page ��� an interactive shell is one whose input
and output are both connected to terminals �as determined by isatty����� or one started
with the
�i� option�

�� Bash Reference Manual

To determine within a startup script whether Bash is running interactively or not� ex�
amine the variable �PS�� it is unset in non�interactive shells� and set in interactive shells�
Thus�

if � �z
�PS�
 �� then
echo This shell is not interactive

else
echo This shell is interactive

fi

Alternatively� startup scripts may test the value of the
�� special parameter� It contains
i when the shell is interactive� For example�

case
��
 in
�i�� echo This shell is interactive ��
�� echo This shell is not interactive ��
esac

��� Bash Builtin Commands

This section describes builtin commands which are unique to or have been extended in
Bash�

bind

bind ��m keymap� ��lpsvPSV�
bind ��m keymap� ��q function� ��u function� ��r keyseq�
bind ��m keymap� �f �lename
bind ��m keymap� keyseq�function�name

Display current Readline �see Chapter � �Command Line Editing�� page ��� key
and function bindings� or bind a key sequence to a Readline function or macro�
The binding syntax accepted is identical to that of
�inputrc� �see Section ���
�Readline Init File�� page ���� but each binding must be passed as a separate
argument� e�g��

C�x
C�r
�re�read�init�file�� Options� if supplied� have
the following meanings�

�m keymap

Use keymap as the keymap to be a�ected by the subsequent bind�
ings� Acceptable keymap names are emacs� emacs�standard�
emacs�meta� emacs�ctlx� vi� vi�command� and vi�insert� vi is
equivalent to vi�command� emacs is equivalent to emacs�standard�

�l List the names of all Readline functions�

�p Display Readline function names and bindings in such a way that
they can be re�read�

�P List current Readline function names and bindings�

�v Display Readline variable names and values in such a way that they
can be re�read�

�V List current Readline variable names and values�

Chapter �� Bash Features ��

�s Display Readline key sequences bound to macros and the strings
they output in such a way that they can be re�read�

�S Display Readline key sequences bound to macros and the strings
they output�

�f �lename

Read key bindings from �lename�

�q function

Query about which keys invoke the named function�

�u function

Unbind all keys bound to the named function�

�r keyseq Remove any current binding for keyseq�

The return status is zero unless an invalid option is supplied or an error occurs�

builtin

builtin �shell�builtin �args��

Run a shell builtin� passing it args� and return its exit status� This is useful
when de
ning a shell function with the same name as a shell builtin� retaining
the functionality of the builtin within the function� The return status is non�
zero if shell�builtin is not a shell builtin command�

command

command ��pVv� command �arguments � � ��

Runs command with arguments ignoring any shell function named command�
Only shell builtin commands or commands found by searching the PATH are
executed� If there is a shell function named ls� running
command ls� within the
function will execute the external command ls instead of calling the function
recursively� The
�p� option means to use a default value for �PATH that is
guaranteed to
nd all of the standard utilities� The return status in this case
is ��� if command cannot be found or an error occurred� and the exit status of
command otherwise�

If either the
�V� or
�v� option is supplied� a description of command is printed�
The
�v� option causes a single word indicating the command or
le name used
to invoke command to be displayed� the
�V� option produces a more verbose
description� In this case� the return status is zero if command is found� and
non�zero if not�

declare

declare ��afFrxi� ��p� �name��value��

Declare variables and give them attributes� If no names are given� then display
the values of variables instead�

The
�p� option will display the attributes and values of each name� When
�p�
is used� additional options are ignored� The
�F� option inhibits the display of
function de
nitions� only the function name and attributes are printed�
�F�
implies
�f�� The following options can be used to restrict output to variables
with the speci
ed attributes or to give variables attributes�

�	 Bash Reference Manual

�a Each name is an array variable �see Section ���� �Arrays�� page 	���

�f Use function names only�

�i The variable is to be treated as an integer� arithmetic evaluation
�see Section ��� �Shell Arithmetic�� page 	�� is performed when the
variable is assigned a value�

�r Make names readonly� These names cannot then be assigned values
by subsequent assignment statements or unset�

�x Mark each name for export to subsequent commands via the envi�
ronment�

Using
�� instead of
�� turns o� the attribute instead� When used in a function�
declare makes each name local� as with the local command�

The return status is zero unless an invalid option is encountered� an attempt
is made to de
ne a function using �f foo�bar� an attempt is made to assign
a value to a readonly variable� an attempt is made to assign a value to an
array variable without using the compound assignment syntax �see Section ����
�Arrays�� page 	��� one of the names is not a valid shell variable name� an
attempt is made to turn o� readonly status for a readonly variable� an attempt
is made to turn o� array status for an array variable� or an attempt is made to
display a non�existent function with
�f��

echo

echo ��neE� �arg � � ��

Output the args� separated by spaces� terminated with a newline� The return
status is always �� If
�n� is speci
ed� the trailing newline is suppressed� If the

�e� option is given� interpretation of the following backslash�escaped characters
is enabled� The
�E� option disables the interpretation of these escape charac�
ters� even on systems where they are interpreted by default� echo interprets
the following escape sequences�

a alert �bell�

b backspace

c suppress trailing newline

e escape

f form feed

n new line

r carriage return

t horizontal tab

v vertical tab

 backslash

nnn the character whose ASCII code is the octal value nnn �one to three
digits�

Chapter �� Bash Features ��

xnnn the character whose ASCII code is the hexadecimal value nnn �one
to three digits�

enable

enable ��n� ��p� ��f �lename� ��ads� �name � � ��

Enable and disable builtin shell commands� Disabling a builtin allows a disk
command which has the same name as a shell builtin to be executed with
specifying a full pathname� even though the shell normally searches for builtins
before disk commands� If
�n� is used� the names become disabled� Otherwise
names are enabled� For example� to use the test binary found via �PATH

instead of the shell builtin version� type
enable �n test��

If the
�p� option is supplied� or no name arguments appear� a list of shell
builtins is printed� With no other arguments� the list consists of all enabled
shell builtins� The
�a� option means to list each builtin with an indication of
whether or not it is enabled�

The
�f� option means to load the new builtin command name from shared
object �lename� on systems that support dynamic loading� The
�d� option will
delete a builtin loaded with
�f��

If there are no options� a list of the shell builtins is displayed� The
�s� option
restricts enable to the POSIX special builtins� If
�s� is used with
�f�� the
new builtin becomes a special builtin�

The return status is zero unless a name is not a shell builtin or there is an error
loading a new builtin from a shared object�

help

help �pattern�

Display helpful information about builtin commands� If pattern is speci
ed�
help gives detailed help on all commands matching pattern� otherwise a list of
the builtins is printed� The return status is zero unless no command matches
pattern�

let

let expression �expression�

The let builtin allows arithmetic to be performed on shell variables� Each
expression is evaluated according to the rules given below in Section ��� �Shell
Arithmetic�� page 	�� If the last expression evaluates to �� let returns ��
otherwise � is returned�

local

local name��value�

For each argument� a local variable named name is created� and assigned value�
local can only be used within a function� it makes the variable name have a
visible scope restricted to that function and its children� The return status is
zero unless local is used outside a function or an invalid name is supplied�

logout

�� Bash Reference Manual

logout �n�

Exit a login shell� returning a status of n to the shell�s parent�

printf

printf format �arguments�

Write the formatted arguments to the standard output under the control of the
format� The format is a character string which contains three types of objects�
plain characters� which are simply copied to standard output� character escape
sequences� which are converted and copied to the standard output� and format
speci
cations� each of which causes printing of the next successive argument�
In addition to the standard printf��� formats�
#b� causes printf to expand
backslash escape sequences in the corresponding argument� and
#q� causes
printf to output the corresponding argument in a format that can be reused
as shell input�

The format is reused as necessary to consume all of the arguments� If the for�
mat requires more arguments than are supplied� the extra format speci
cations
behave as if a zero value or null string� as appropriate� had been supplied�

read

read ��a aname� ��p prompt� ��er� �name � � ��

One line is read from the standard input� and the
rst word is assigned to
the
rst name� the second word to the second name� and so on� with leftover
words and their intervening separators assigned to the last name� If there are
fewer words read from the standard input than names� the remaining names are
assigned empty values� The characters in the value of the IFS variable are used
to split the line into words� If no names are supplied� the line read is assigned
to the variable REPLY� The return code is zero� unless end�of�
le is encountered�
Options� if supplied� have the following meanings�

�r If this option is given� a backslash�newline pair is not ignored� and
the backslash is considered to be part of the line�

�p prompt

Display prompt� without a trailing newline� before attempting to
read any input� The prompt is displayed only if input is coming
from a terminal�

�a aname The words are assigned to sequential indices of the array variable
aname� starting at �� All elements are removed from aname before
the assignment� Other name arguments are ignored�

�e Readline �see Chapter � �Command Line Editing�� page ��� is used
to obtain the line�

shopt

shopt ��pqsu� ��o� �optname � � ��

Toggle the values of variables controlling optional shell behavior� With no
options� or with the
�p� option� a list of all settable options is displayed� with
an indication of whether or not each is set� The
�p� option causes output to

Chapter �� Bash Features ��

be displayed in a form that may be reused as input� Other options have the
following meanings�

�s Enable �set� each optname�

�u Disable �unset� each optname�

�q Suppresses normal output� the return status indicates whether the
optname is set or unset� If multiple optname arguments are given
with
�q�� the return status is zero if all optnames are enabled�
non�zero otherwise�

�o Restricts the values of optname to be those de
ned for the
�o�
option to the set builtin �see Section ��� �The Set Builtin�� page ����

If either
�s� or
�u� is used with no optname arguments� the display is limited
to those options which are set or unset� respectively�

Unless otherwise noted� the shopt options are disabled �o�� by default�

The return status when listing options is zero if all optnames are enabled� non�
zero otherwise� When setting or unsetting options� the return status is zero
unless an optname is not a valid shell option�

The list of shopt options is�

cdable�vars

If this is set� an argument to the cd builtin command that is not
a directory is assumed to be the name of a variable whose value is
the directory to change to�

cdspell If set� minor errors in the spelling of a directory component in a cd
command will be corrected� The errors checked for are transposed
characters� a missing character� and a character too many� If a
correction is found� the corrected path is printed� and the command
proceeds� This option is only used by interactive shells�

checkhash

If this is set� Bash checks that a command found in the hash table
exists before trying to execute it� If a hashed command no longer
exists� a normal path search is performed�

checkwinsize

If set� Bash checks the window size after each command and� if
necessary� updates the values of LINES and COLUMNS�

cmdhist If set� Bash attempts to save all lines of a multiple�line command
in the same history entry� This allows easy re�editing of multi�line
commands�

dotglob If set� Bash includes
lenames beginning with a
�� in the results of

lename expansion�

execfail If this is set� a non�interactive shell will not exit if it cannot execute
the
le speci
ed as an argument to the exec builtin command� An
interactive shell does not exit if exec fails�

�� Bash Reference Manual

expand�aliases

If set� aliases are expanded as described below� under Aliases �see
Section ��� �Aliases�� page 	��� This option is enabled by default
for interactive shells�

extglob If set� the extended pattern matching features described above �see
Section ������� �Pattern Matching�� page ��� are enabled�

histappend

If set� the history list is appended to the
le named by the value of
the HISTFILE variable when the shell exits� rather than overwriting
the
le�

histreedit

If set� and Readline is being used� a user is given the opportunity
to re�edit a failed history substitution�

histverify

If set� and Readline is being used� the results of history substitu�
tion are not immediately passed to the shell parser� Instead� the
resulting line is loaded into the Readline editing bu�er� allowing
further modi
cation�

hostcomplete

If set� and Readline is being used� Bash will attempt to perform
hostname completion when a word containing a
�� is being com�
pleted �see Section ����	 �Commands For Completion�� page ����
This option is enabled by default�

huponexit

If set� Bash will send SIGHUP to all jobs when an interactive login
shell exits �see Section ����	 �Signals�� page �	��

interactive�comments

Allow a word beginning with
�� to cause that word and all remain�
ing characters on that line to be ignored in an interactive shell�
This option is enabled by default�

lithist If enabled� and the cmdhist option is enabled� multi�line commands
are saved to the history with embedded newlines rather than using
semicolon separators where possible�

mailwarn If set� and a
le that Bash is checking for mail has been accessed
since the last time it was checked� the message
The mail in mail�

�le has been read
 is displayed�

nocaseglob

If set� Bash matches
lenames in a case�insensitive fashion when
performing
lename expansion�

nullglob If set� Bash allows
lename patterns which match no
les to expand
to a null string� rather than themselves�

Chapter �� Bash Features ��

promptvars

If set� prompt strings undergo variable and parameter expansion af�
ter being expanded �see Section ���� �Printing a Prompt�� page 		��
This option is enabled by default�

shift�verbose

If this is set� the shift builtin prints an error message when the
shift count exceeds the number of positional parameters�

sourcepath

If set� the source builtin uses the value of PATH to
nd the directory
containing the
le supplied as an argument� This option is enabled
by default�

The return status when listing options is zero if all optnames are enabled� non�
zero otherwise� When setting or unsetting options� the return status is zero
unless an optname is not a valid shell option�

source

source �lename

A synonym for � �see Section ��� �Bourne Shell Builtins�� page ����

type

type ��atp� �name � � ��

For each name� indicate how it would be interpreted if used as a command
name�

If the
�t� option is used� type prints a single word which is one of
alias��

function��
builtin��
file� or
keyword�� if name is an alias� shell function�
shell builtin� disk
le� or shell reserved word� respectively� If the name is not
found� then nothing is printed� and type returns a failure status�

If the
�p� option is used� type either returns the name of the disk
le that
would be executed� or nothing if
�t� would not return
file��

If the
�a� option is used� type returns all of the places that contain an exe�
cutable named �le� This includes aliases and functions� if and only if the
�p�
option is not also used�

The return status is zero if any of the names are found� non�zero if none are
found�

typeset

typeset ��afFrxi� ��p� �name��value��

The typeset command is supplied for compatibility with the Korn shell� how�
ever� it has been deprecated in favor of the declare builtin command�

ulimit

ulimit ��acdflmnpstuvSH� �limit�

ulimit provides control over the resources available to processes started by the
shell� on systems that allow such control� If an option is given� it is interpreted
as follows�

�� Bash Reference Manual

�S Change and report the soft limit associated with a resource�

�H Change and report the hard limit associated with a resource�

�a All current limits are reported�

�c The maximum size of core
les created�

�d The maximum size of a process�s data segment�

�f The maximum size of
les created by the shell�

�l The maximum size that may be locked into memory�

�m The maximum resident set size�

�n The maximum number of open
le descriptors�

�p The pipe bu�er size�

�s The maximum stack size�

�t The maximum amount of cpu time in seconds�

�u The maximum number of processes available to a single user�

�v The maximum amount of virtual memory available to the process�

If limit is given� it is the new value of the speci
ed resource� Otherwise� the
current value of the soft limit for the speci
ed resource is printed� unless the

�H� option is supplied� When setting new limits� if neither
�H� nor
�S� is
supplied� both the hard and soft limits are set� If no option is given� then
�f�
is assumed� Values are in �����byte increments� except for
�t�� which is in
seconds�
�p�� which is in units of ����byte blocks� and
�n� and
�u�� which are
unscaled values�

The return status is zero unless an invalid option is supplied� a non�numeric
argument other than unlimited is supplied as a limit� or an error occurs while
setting a new limit�

��� The Set Builtin

This builtin is so complicated that it deserves its own section�

set

set ���abefhkmnptuvxBCHP� ��o option� �argument � � ��

If no options or arguments are supplied� set displays the names and values of
all shell variables and functions� sorted according to the current locale� in a
format that may be reused as input�

When options are supplied� they set or unset shell attributes� Options� if spec�
i
ed� have the following meanings�

�a Mark variables which are modi
ed or created for export�

�b Cause the status of terminated background jobs to be reported
immediately� rather than before printing the next primary prompt�

Chapter �� Bash Features ��

�e Exit immediately if a simple command �see Section ����� �Simple
Commands�� page �� exits with a non�zero status� unless the com�
mand that fails is part of an until or while loop� part of an if

statement� part of a �� or �� list� or if the command�s return status
is being inverted using ��

�f Disable
le name generation �globbing��

�h Locate and remember �hash� commands as they are looked up for
execution� This option is enabled by default�

�k All arguments in the form of assignment statements are placed in
the environment for a command� not just those that precede the
command name�

�m Job control is enabled �see Chapter 	 �Job Control�� page 	���

�n Read commands but do not execute them� this may be used to check
a script for syntax errors� This option is ignored by interactive
shells�

�o option�name

Set the option corresponding to option�name�

allexport

Same as �a�

braceexpand

Same as �B�

emacs Use an emacs�style line editing interface �see Chapter �
�Command Line Editing�� page ����

errexit Same as �e�

hashall Same as �h�

histexpand

Same as �H�

history Enable command history� as described in Section ���
�Bash History Facilities�� page ��� This option is on by
default in interactive shells�

ignoreeof

An interactive shell will not exit upon reading EOF�

keyword Same as �k�

monitor Same as �m�

noclobber

Same as �C�

noexec Same as �n�

noglob Same as �f�

�� Bash Reference Manual

notify Same as �b�

nounset Same as �u�

onecmd Same as �t�

physical Same as �P�

posix Change the behavior of Bash where the default opera�
tion di�ers from the POSIX ������ standard to match
the standard �see Section ���� �Bash POSIX Mode��
page 	��� This is intended to make Bash behave as a
strict superset of that standard�

privileged

Same as �p�

verbose Same as �v�

vi Use a vi�style line editing interface�

xtrace Same as �x�

�p Turn on privileged mode� In this mode� the �BASH�ENV and �ENV

les are not processed� shell functions are not inherited from the
environment� and the SHELLOPTS variable� if it appears in the en�
vironment� is ignored� This is enabled automatically on startup if
the e�ective user �group� id is not equal to the real user �group�
id� Turning this option o� causes the e�ective user and group ids
to be set to the real user and group ids�

�t Exit after reading and executing one command�

�u Treat unset variables as an error when performing parameter ex�
pansion� An error message will be written to the standard error�
and a non�interactive shell will exit�

�v Print shell input lines as they are read�

�x Print a trace of simple commands and their arguments after they
are expanded and before they are executed�

�B The shell will perform brace expansion �see Section ����� �Brace
Expansion�� page ���� This option is on by default�

�C Prevent output redirection using
	��
	��� and
�	� from overwriting
existing
les�

�H Enable
�� style history substitution �see Section ��� �History In�
teraction�� page ���� This option is on by default for interactive
shells�

�P If set� do not follow symbolic links when performing commands
such as cd which change the current directory� The physical direc�
tory is used instead� By default� Bash follows the logical chain of

Chapter �� Bash Features ��

directories when performing commands which change the current
directory�

For example� if
�usr�sys� is a symbolic link to
�usr�local�sys�
then�

� cd �usr�sys� echo �PWD
�usr�sys
� cd ��� pwd
�usr

If set �P is on� then�

� cd �usr�sys� echo �PWD
�usr�local�sys
� cd ��� pwd
�usr�local

�� If no arguments follow this option� then the positional parameters
are unset� Otherwise� the positional parameters are set to the ar�
guments� even if some of them begin with a
���

� Signal the end of options� cause all remaining arguments to be
assigned to the positional parameters� The
�x� and
�v� options
are turned o�� If there are no arguments� the positional parameters
remain unchanged�

Using
�� rather than
�� causes these options to be turned o�� The options can
also be used upon invocation of the shell� The current set of options may be
found in ���

The remaining N arguments are positional parameters and are assigned� in
order� to ��� ��� � � � �N� The special parameter � is set to N�

The return status is always zero unless an invalid option is supplied�

��	 Bash Conditional Expressions

Conditional expressions are used by the �� compound command and the test and �

builtin commands�

Expressions may be unary or binary� Unary expressions are often used to examine the
status of a
le� There are string operators and numeric comparison operators as well� If
any �le argument to one of the primaries is of the form
�dev�fd�N �� then
le descriptor
N is checked�

�a �le True if �le exists�

�b �le True if �le exists and is a block special
le�

�c �le True if �le exists and is a character special
le�

�d �le True if �le exists and is a directory�

�e �le True if �le exists�

�f �le True if �le exists and is a regular
le�

�	 Bash Reference Manual

�g �le True if �le exists and its set�group�id bit is set�

�k �le True if �le exists and its
sticky
 bit is set�

�p �le True if �le exists and is a named pipe �FIFO��

�r �le True if �le exists and is readable�

�s �le True if �le exists and has a size greater than zero�

�t fd True if
le descriptor fd is open and refers to a terminal�

�u �le True if �le exists and its set�user�id bit is set�

�w �le True if �le exists and is writable�

�x �le True if �le exists and is executable�

�O �le True if �le exists and is owned by the e�ective user id�

�G �le True if �le exists and is owned by the e�ective group id�

�L �le True if �le exists and is a symbolic link�

�S �le True if �le exists and is a socket�

�N �le True if �le exists and has been modi
ed since it was last read�

�le� �nt �le�

True if �le� is newer �according to modi
cation date� than �le��

�le� �ot �le�

True if �le� is older than �le��

�le� �ef �le�

True if �le� and �le� have the same device and inode numbers�

�o optname

True if shell option optname is enabled� The list of options appears in the
description of the
�o� option to the set builtin �see Section ��� �The Set Builtin��
page ����

�z string True if the length of string is zero�

�n string

string True if the length of string is non�zero�

string� �� string�

True if the strings are equal�
�� may be used in place of
����

string� �� string�

True if the strings are not equal�

string� � string�

True if string� sorts before string� lexicographically in the current locale�

string� 	 string�

True if string� sorts after string� lexicographically in the current locale�

Chapter �� Bash Features ��

arg� OP arg�

OP is one of
�eq��
�ne��
�lt��
�le��
�gt�� or
�ge�� These arithmetic binary
operators return true if arg� is equal to� not equal to� less than� less than or
equal to� greater than� or greater than or equal to arg�� respectively� Arg� and
arg� may be positive or negative integers�

��
 Bash Variables

These variables are set or used by Bash� but other shells do not normally treat them
specially�

BASH The full pathname used to execute the current instance of Bash�

BASH�ENV If this variable is set when Bash is invoked to execute a shell script� its value is
expanded and used as the name of a startup
le to read before executing the
script� See Section ��� �Bash Startup Files�� page ���

BASH�VERSION

The version number of the current instance of Bash�

BASH�VERSINFO

A readonly array variable whose members hold version information for this
instance of Bash� The values assigned to the array members are as follows�

BASH�VERSINFO���

The major version number �the release��

BASH�VERSINFO���

The minor version number �the version��

BASH�VERSINFO���

The patch level�

BASH�VERSINFO���

The build version�

BASH�VERSINFO�&�

The release status �e�g�� beta���

BASH�VERSINFO�'�

The value of MACHTYPE�

DIRSTACK An array variable �see Section ���� �Arrays�� page 	�� containing the current
contents of the directory stack� Directories appear in the stack in the order
they are displayed by the dirs builtin� Assigning to members of this array
variable may be used to modify directories already in the stack� but the pushd
and popd builtins must be used to add and remove directories� Assignment to
this variable will not change the current directory� If DIRSTACK is unset� it loses
its special properties� even if it is subsequently reset�

EUID The numeric e�ective user id of the current user� This variable is readonly�

FCEDIT The editor used as a default by the
�e� option to the fc builtin command�

�� Bash Reference Manual

FIGNORE A colon�separated list of su�xes to ignore when performing
lename comple�
tion� A
le name whose su�x matches one of the entries in FIGNORE is excluded
from the list of matched
le names� A sample value is
�o�"�

GLOBIGNORE

A colon�separated list of patterns de
ning the set of
lenames to be ignored
by
lename expansion� If a
lename matched by a
lename expansion pattern
also matches one of the patterns in GLOBIGNORE� it is removed from the list of
matches�

GROUPS An array variable containing the list of groups of which the current user is a
member� This variable is readonly�

histchars

Up to three characters which control history expansion� quick substitution� and
tokenization �see Section ��� �History Interaction�� page ���� The
rst character
is the history�expansion�char� that is� the character which signi
es the start of
a history expansion� normally
��� The second character is the character which
signi
es
quick substitution� when seen as the
rst character on a line� normally

$�� The optional third character is the character which indicates that the
remainder of the line is a comment when found as the
rst character of a word�
usually
��� The history comment character causes history substitution to be
skipped for the remaining words on the line� It does not necessarily cause the
shell parser to treat the rest of the line as a comment�

HISTCMD The history number� or index in the history list� of the current command� If
HISTCMD is unset� it loses its special properties� even if it is subsequently reset�

HISTCONTROL

Set to a value of
ignorespace�� it means don�t enter lines which begin with
a space or tab into the history list� Set to a value of
ignoredups�� it means
don�t enter lines which match the last entered line� A value of
ignoreboth�
combines the two options� Unset� or set to any other value than those above�
means to save all lines on the history list� The second and subsequent lines of
a multi�line compound command are not tested� and are added to the history
regardless of the value of HISTCONTROL�

HISTIGNORE

A colon�separated list of patterns used to decide which command lines should
be saved on the history list� Each pattern is anchored at the beginning of the
line and must fully specify the line �no implicit
�� is appended�� Each pattern
is tested against the line after the checks speci
ed by HISTCONTROL are applied�
In addition to the normal shell pattern matching characters�
�� matches the
previous history line�
�� may be escaped using a backslash� The backslash
is removed before attempting a match� The second and subsequent lines of a
multi�line compound command are not tested� and are added to the history
regardless of the value of HISTIGNORE�

HISTIGNORE subsumes the function of HISTCONTROL� A pattern of
�� is identical
to ignoredups� and a pattern of
� ��� is identical to ignorespace� Combining

Chapter �� Bash Features ��

these two patterns� separating them with a colon� provides the functionality of
ignoreboth�

HISTFILE The name of the
le to which the command history is saved� The default is

"��bash�history��

HISTSIZE The maximum number of commands to remember on the history list� The
default value is ����

HISTFILESIZE

The maximum number of lines contained in the history
le� When this variable
is assigned a value� the history
le is truncated� if necessary� to contain no more
than that number of lines� The default value is ���� The history
le is also
truncated to this size after writing it when an interactive shell exits�

HOSTFILE Contains the name of a
le in the same format as
�etc�hosts� that should
be read when the shell needs to complete a hostname� You can change the
le
interactively� the next time you attempt to complete a hostname� Bash will add
the contents of the new
le to the already existing database�

HOSTNAME The name of the current host�

HOSTTYPE A string describing the machine Bash is running on�

IGNOREEOF

Controls the action of the shell on receipt of an EOF character as the sole input�
If set� the value denotes the number of consecutive EOF characters that can be
read as the
rst character on an input line before the shell will exit� If the
variable exists but does not have a numeric value �or has no value� then the
default is ��� If the variable does not exist� then EOF signi
es the end of input
to the shell� This is only in e�ect for interactive shells�

INPUTRC The name of the Readline startup
le� overriding the default of
"��inputrc��

LANG Used to determine the locale category for any category not speci
cally selected
with a variable starting with LC��

LC�ALL This variable overrides the value of LANG and any other LC� variable specifying
a locale category�

LC�COLLATE

This variable determines the collation order used when sorting the results of

lename expansion� and determines the behavior of range expressions� equiv�
alence classes� and collating sequences within
lename expansion and pattern
matching �see Section ����� �Filename Expansion�� page ����

LC�CTYPE This variable determines the interpretation of characters and the behavior of
character classes within
lename expansion and pattern matching �see Sec�
tion ����� �Filename Expansion�� page ����

LC�MESSAGES

This variable determines the locale used to translate double�quoted strings pre�
ceded by a
�� �see Section ������� �Locale Translation�� page ���

	� Bash Reference Manual

LINENO The line number in the script or shell function currently executing�

MACHTYPE A string that fully describes the system type on which Bash is executing� in the
standard GNU cpu�company�system format�

MAILCHECK

How often �in seconds� that the shell should check for mail in the
les speci
ed
in the MAILPATH or MAIL variables�

OLDPWD The previous working directory as set by the cd builtin�

OPTERR If set to the value �� Bash displays error messages generated by the getopts

builtin command�

OSTYPE A string describing the operating system Bash is running on�

PIPESTATUS

An array variable �see Section ���� �Arrays�� page 	�� containing a list of
exit status values from the processes in the most�recently�executed foreground
pipeline �which may contain only a single command��

PPID The process id of the shell�s parent process� This variable is readonly�

PROMPT�COMMAND

If present� this contains a string which is a command to execute before the
printing of each primary prompt ��PS���

PS� The value of this variable is used as the prompt for the select command� If
this variable is not set� the select command prompts with
� �

PS& This is the prompt printed before the command line is echoed when the
�x�
option is set �see Section ��� �The Set Builtin�� page ���� The
rst character
of PS& is replicated multiple times� as necessary� to indicate multiple levels of
indirection� The default is
� ��

PWD The current working directory as set by the cd builtin�

RANDOM Each time this parameter is referenced� a random integer between � and ���	�
is generated� Assigning a value to this variable seeds the random number gen�
erator�

REPLY The default variable for the read builtin�

SECONDS This variable expands to the number of seconds since the shell was started�
Assignment to this variable resets the count to the value assigned� and the
expanded value becomes the value assigned plus the number of seconds since
the assignment�

SHELLOPTS

A colon�separated list of enabled shell options� Each word in the list is a valid
argument for the
�o� option to the set builtin command �see Section ��� �The
Set Builtin�� page ���� The options appearing in SHELLOPTS are those reported
as
on� by
set �o�� If this variable is in the environment when Bash starts up�
each shell option in the list will be enabled before reading any startup
les�
This variable is readonly�

Chapter �� Bash Features 	�

SHLVL Incremented by one each time a new instance of Bash is started� This is intended
to be a count of how deeply your Bash shells are nested�

TIMEFORMAT

The value of this parameter is used as a format string specifying how the tim�
ing information for pipelines pre
xed with the time reserved word should be
displayed� The
#� character introduces an escape sequence that is expanded to
a time value or other information� The escape sequences and their meanings
are as follows� the braces denote optional portions�

A literal
#��

#�p��l�R The elapsed time in seconds�

#�p��l�U The number of CPU seconds spent in user mode�

#�p��l�S The number of CPU seconds spent in system mode�

#P The CPU percentage� computed as ��U � �S� � �R�

The optional p is a digit specifying the precision� the number of fractional digits
after a decimal point� A value of � causes no decimal point or fraction to be
output� At most three places after the decimal point may be speci
ed� values
of p greater than � are changed to �� If p is not speci
ed� the value � is used�

The optional l speci
es a longer format� including minutes� of the form
MMmSS�FFs� The value of p determines whether or not the fraction is
included�

If this variable is not set� Bash acts as if it had the value

��
nreal
t#�lR
nuser
t#�lU
nsys
t#�lS�

If the value is null� no timing information is displayed� A trailing newline is
added when the format string is displayed�

TMOUT If set to a value greater than zero� the value is interpreted as the number of
seconds to wait for input after issuing the primary prompt� Bash terminates
after that number of seconds if input does not arrive�

UID The numeric real user id of the current user� This variable is readonly�

��� Shell Arithmetic

The shell allows arithmetic expressions to be evaluated� as one of the shell expansions
or by the let builtin�

Evaluation is done in long integers with no check for over�ow� though division by � is
trapped and �agged as an error� The following list of operators is grouped into levels of
equal�precedence operators� The levels are listed in order of decreasing precedence�

� � unary minus and plus

� " logical and bitwise negation

�� exponentiation

� � # multiplication� division� remainder

	� Bash Reference Manual

� � addition� subtraction

�� 		 left and right bitwise shifts

�� 	� � 	 comparison

�� �� equality and inequality

� bitwise AND

$ bitwise exclusive OR

� bitwise OR

�� logical AND

�� logical OR

expr expr � expr

conditional evaluation

� �� �� #� �� �� ��� 		� �� $� ��

assignment

Shell variables are allowed as operands� parameter expansion is performed before the
expression is evaluated� The value of a parameter is coerced to a long integer within an
expression� A shell variable need not have its integer attribute turned on to be used in an
expression�

Constants with a leading � are interpreted as octal numbers� A leading
�x� or
�X�
denotes hexadecimal� Otherwise� numbers take the form �base��n� where base is a decimal
number between � and 	� representing the arithmetic base� and n is a number in that
base� If base is omitted� then base �� is used� The digits greater than � are represented by
the lowercase letters� the uppercase letters�
��� and
��� in that order� If base is less than
or equal to �	� lowercase and uppercase letters may be used interchangably to represent
numbers between �� and ���

Operators are evaluated in order of precedence� Sub�expressions in parentheses are
evaluated
rst and may override the precedence rules above�

��� Aliases

Aliases allow a string to be substituted for a word when it is used as the
rst word of a
simple command� The shell maintains a list of aliases that may be set and unset with the
alias and unalias builtin commands�

The
rst word of each simple command� if unquoted� is checked to see if it has an alias�
If so� that word is replaced by the text of the alias� The alias name and the replacement
text may contain any valid shell input� including shell metacharacters� with the exception
that the alias name may not contain
��� The
rst word of the replacement text is tested
for aliases� but a word that is identical to an alias being expanded is not expanded a second
time� This means that one may alias ls to
ls �F
� for instance� and Bash does not try to
recursively expand the replacement text� If the last character of the alias value is a space
or tab character� then the next command word following the alias is also checked for alias
expansion�

Chapter �� Bash Features 	�

Aliases are created and listed with the alias command� and removed with the unalias
command�

There is no mechanism for using arguments in the replacement text� as in csh� If
arguments are needed� a shell function should be used �see Section ��� �Shell Functions��
page ����

Aliases are not expanded when the shell is not interactive� unless the expand�aliases

shell option is set using shopt �see Section ��� �Bash Builtins�� page ����

The rules concerning the de
nition and use of aliases are somewhat confusing� Bash
always reads at least one complete line of input before executing any of the commands
on that line� Aliases are expanded when a command is read� not when it is executed�
Therefore� an alias de
nition appearing on the same line as another command does not
take e�ect until the next line of input is read� The commands following the alias de
nition
on that line are not a�ected by the new alias� This behavior is also an issue when functions
are executed� Aliases are expanded when a function de
nition is read� not when the function
is executed� because a function de
nition is itself a compound command� As a consequence�
aliases de
ned in a function are not available until after that function is executed� To be
safe� always put alias de
nitions on a separate line� and do not use alias in compound
commands�

For almost every purpose� aliases are superseded by shell functions�

����� Alias Builtins

alias

alias ��p� �name��value� � � ��

Without arguments or with the
�p� option� alias prints the list of aliases
on the standard output in a form that allows them to be reused as input� If
arguments are supplied� an alias is de
ned for each name whose value is given�
If no value is given� the name and value of the alias is printed�

unalias

unalias ��a� �name � � � �

Remove each name from the list of aliases� If
�a� is supplied� all aliases are
removed�

���
 Arrays

Bash provides one�dimensional array variables� Any variable may be used as an array�
the declare builtin will explicitly declare an array� There is no maximum limit on the size
of an array� nor any requirement that members be indexed or assigned contiguously� Arrays
are zero�based�

An array is created automatically if any variable is assigned to using the syntax

name�subscript��value

The subscript is treated as an arithmetic expression that must evaluate to a number greater
than or equal to zero� To explicitly declare an array� use

	� Bash Reference Manual

declare �a name

The syntax

declare �a name�subscript�

is also accepted� the subscript is ignored� Attributes may be speci
ed for an array variable
using the declare and readonly builtins� Each attribute applies to all members of an
array�

Arrays are assigned to using compound assignments of the form

name��value� � � � valuen�

where each value is of the form ��subscript���string� If the optional subscript is supplied�
that index is assigned to� otherwise the index of the element assigned is the last index
assigned to by the statement plus one� Indexing starts at zero� This syntax is also ac�
cepted by the declare builtin� Individual array elements may be assigned to using the
name�subscript��value syntax introduced above�

Any element of an array may be referenced using ��name�subscript��� The braces are
required to avoid con�icts with the shell�s
lename expansion operators� If the subscript is

�� or
��� the word expands to all members of the array name� These subscripts di�er only
when the word appears within double quotes� If the word is double�quoted� ��name����
expands to a single word with the value of each arraymember separated by the
rst character
of the IFS variable� and ��name���� expands each element of name to a separate word�
When there are no array members� ��name���� expands to nothing� This is analogous to
the expansion of the special parameters
�� and
��� ���name�subscript�� expands to the
length of ��name�subscript��� If subscript is
�� or
��� the expansion is the number of
elements in the array� Referencing an array variable without a subscript is equivalent to
referencing element zero�

The unset builtin is used to destroy arrays� unset name�subscript� destroys the array
element at index subscript� unset name� where name is an array� removes the entire array�
A subscript of
�� or
�� also removes the entire array�

The declare� local� and readonly builtins each accept a
�a� option to specify an array�
The read builtin accepts a
�a� option to assign a list of words read from the standard input
to an array� and can read values from the standard input into individual array elements�
The set and declare builtins display array values in a way that allows them to be reused
as input�

���� The Directory Stack

The directory stack is a list of recently�visited directories� The pushd builtin adds direc�
tories to the stack as it changes the current directory� and the popd builtin removes speci
ed
directories from the stack and changes the current directory to the directory removed� The
dirs builtin displays the contents of the directory stack�

The contents of the directory stack are also visible as the value of the DIRSTACK shell
variable�

dirs

Chapter �� Bash Features 	�

dirs ��N � �N� ��clvp�

Display the list of currently remembered directories� Directories are added to
the list with the pushd command� the popd command removes directories from
the list�

�N Displays the Nth directory �counting from the left of the list printed
by dirs when invoked without options�� starting with zero�

�N Displays the Nth directory �counting from the right of the list
printed by dirs when invoked without options�� starting with zero�

�c Clears the directory stack by deleting all of the elements�

�l Produces a longer listing� the default listing format uses a tilde to
denote the home directory�

�p Causes dirs to print the directory stack with one entry per line�

�v Causes dirs to print the directory stack with one entry per line�
pre
xing each entry with its index in the stack�

popd

popd ��N � �N� ��n�

Remove the top entry from the directory stack� and cd to the new top directory�
When no arguments are given� popd removes the top directory from the stack
and performs a cd to the new top directory� The elements are numbered from
� starting at the
rst directory listed with dirs� i�e�� popd is equivalent to popd
���

�N Removes theNth directory �counting from the left of the list printed
by dirs�� starting with zero�

�N Removes the Nth directory �counting from the right of the list
printed by dirs�� starting with zero�

�n Suppresses the normal change of directory when removing directo�
ries from the stack� so that only the stack is manipulated�

pushd

pushd �dir � �N � �N� ��n�

Save the current directory on the top of the directory stack and then cd to dir�
With no arguments� pushd exchanges the top two directories�

�N Brings the Nth directory �counting from the left of the list printed
by dirs� starting with zero� to the top of the list by rotating the
stack�

�N Brings the Nth directory �counting from the right of the list printed
by dirs� starting with zero� to the top of the list by rotating the
stack�

�n Suppresses the normal change of directory when adding directories
to the stack� so that only the stack is manipulated�

		 Bash Reference Manual

dir Makes the current working directory be the top of the stack� and
then executes the equivalent of
cd dir�� cds to dir�

���� Controlling the Prompt

The value of the variable PROMPT�COMMAND is examined just before Bash prints each
primary prompt� If it is set and non�null� then the value is executed just as if it had been
typed on the command line�

In addition� the following table describes the special characters which can appear in the
prompt variables�

a A bell character�

d The date� in
Weekday Month Date
 format �e�g��
Tue May �	
��

e An escape character�

h The hostname� up to the
rst
���

H The hostname�

n A newline�

r A carriage return�

s The name of the shell� the basename of �� �the portion following the
nal slash��

t The time� in ���hour HH�MM�SS format�

T The time� in ���hour HH�MM�SS format�

� The time� in ���hour am�pm format�

u The username of the current user�

v The version of Bash �e�g�� �����

V The release of Bash� version � patchlevel �e�g�� �������

w The current working directory�

W The basename of �PWD�

� The history number of this command�

� The command number of this command�

� If the e�ective uid is �� �� otherwise ��

nnn The character whose ASCII code is the octal value nnn�

 A backslash�

� Begin a sequence of non�printing characters� This could be used to embed a
terminal control sequence into the prompt�

� End a sequence of non�printing characters�

Chapter �� Bash Features 	�

���� The Restricted Shell

If Bash is started with the name rbash� or the
��restricted� option is supplied at
invocation� the shell becomes restricted� A restricted shell is used to set up an environment
more controlled than the standard shell� A restricted shell behaves identically to bash with
the exception that the following are disallowed�

� Changing directories with the cd builtin�

� Setting or unsetting the values of the SHELL or PATH variables�

� Specifying command names containing slashes�

� Specifying a
lename containing a slash as an argument to the � builtin command�

� Importing function de
nitions from the shell environment at startup�

� Parsing the value of SHELLOPTS from the shell environment at startup�

� Redirecting output using the
	��
	���
�	��
	���
�	�� and
		� redirection operators�

� Using the exec builtin to replace the shell with another command�

� Adding or deleting builtin commands with the
�f� and
�d� options to the enable

builtin�

� Specifying the
�p� option to the command builtin�

� Turning o� restricted mode with
set �r� or
set �o restricted��

���� Bash POSIX Mode

Starting Bash with the
��posix� command�line option or executing
set �o posix� while
Bash is running will cause Bash to conform more closely to the POSIX�� standard by
changing the behavior to match that speci
ed by POSIX�� in areas where the Bash default
di�ers�

The following list is what�s changed when
POSIX mode� is in e�ect�

�� When a command in the hash table no longer exists� Bash will re�search �PATH to
nd
the new location� This is also available with
shopt �s checkhash��

�� The
	�� redirection does not redirect stdout and stderr�

�� The message printed by the job control code and builtins when a job exits with a
non�zero status is
Done�status���

�� Reserved words may not be aliased�

�� The POSIX�� PS� and PS� expansions of
�� to the history number and
��� to
�� are
enabled� and parameter expansion is performed on the values of PS� and PS� regardless
of the setting of the promptvars option�

	� Interactive comments are enabled by default� �Bash has them on by default anyway��

�� The POSIX�� startup
les are executed ��ENV� rather than the normal Bash
les�

�� Tilde expansion is only performed on assignments preceding a command name� rather
than on all assignment statements on the line�

�� The default history
le is
"��sh�history� �this is the default value of �HISTFILE��

��� The output of
kill �l� prints all the signal names on a single line� separated by spaces�

	� Bash Reference Manual

��� Non�interactive shells exit if �lename in � �lename is not found�

��� Non�interactive shells exit if a syntax error in an arithmetic expansion results in an
invalid expression�

��� Redirection operators do not perform
lename expansion on the word in the redirection
unless the shell is interactive�

��� Function names must be valid shell names� That is� they may not contain characters
other than letters� digits� and underscores� and may not start with a digit� Declaring
a function with an invalid name causes a fatal syntax error in non�interactive shells�

��� POSIX��
special� builtins are found before shell functions during command lookup�

�	� If a POSIX�� special builtin returns an error status� a non�interactive shell exits�
The fatal errors are those listed in the POSIX�� standard� and include things like
passing incorrect options� redirection errors� variable assignment errors for assignments
preceding the command name� and so on�

��� If the cd builtin
nds a directory to change to using �CDPATH� the value it assigns to
the PWD variable does not contain any symbolic links� as if
cd �P� had been executed�

��� If �CDPATH is set� the cd builtin will not implicitly append the current directory to it�
This means that cd will fail if no valid directory name can be constructed from any of
the entries in �CDPATH� even if the a directory with the same name as the name given
as an argument to cd exists in the current directory�

��� A non�interactive shell exits with an error status if a variable assignment error occurs
when no command name follows the assignment statements� A variable assignment
error occurs� for example� when trying to assign a value to a readonly variable�

��� A non�interactive shell exits with an error status if the iteration variable in a for

statement or the selection variable in a select statement is a readonly variable�

��� Process substitution is not available�

��� Assignment statements preceding POSIX�� special builtins persist in the shell envi�
ronment after the builtin completes�

��� The export and readonly builtin commands display their output in the format re�
quired by POSIX���

There is other POSIX�� behavior that Bash does not implement� Speci
cally�

�� Assignment statements a�ect the execution environment of all builtins� not just special
ones�

Chapter 	� Job Control 	�

� Job Control

This chapter discusses what job control is� how it works� and how Bash allows you to
access its facilities�

	�� Job Control Basics

Job control refers to the ability to selectively stop �suspend� the execution of processes
and continue �resume� their execution at a later point� A user typically employs this facility
via an interactive interface supplied jointly by the system�s terminal driver and Bash�

The shell associates a job with each pipeline� It keeps a table of currently executing jobs�
which may be listed with the jobs command� When Bash starts a job asynchronously� it
prints a line that looks like�

��� �'(&)

indicating that this job is job number � and that the process ID of the last process in
the pipeline associated with this job is ��	��� All of the processes in a single pipeline are
members of the same job� Bash uses the job abstraction as the basis for job control�

To facilitate the implementation of the user interface to job control� the system main�
tains the notion of a current terminal process group ID� Members of this process group
�processes whose process group ID is equal to the current terminal process group ID� re�
ceive keyboard�generated signals such as SIGINT� These processes are said to be in the
foreground� Background processes are those whose process group ID di�ers from the termi�
nal�s� such processes are immune to keyboard�generated signals� Only foreground processes
are allowed to read from or write to the terminal� Background processes which attempt
to read from �write to� the terminal are sent a SIGTTIN �SIGTTOU� signal by the terminal
driver� which� unless caught� suspends the process�

If the operating system on which Bash is running supports job control� Bash contains
facilities to use it� Typing the suspend character �typically
$Z�� Control�Z� while a process
is running causes that process to be stopped and returns control to Bash� Typing the
delayed suspend character �typically
$Y�� Control�Y� causes the process to be stopped
when it attempts to read input from the terminal� and control to be returned to Bash� The
user then manipulates the state of this job� using the bg command to continue it in the
background� the fg command to continue it in the foreground� or the kill command to
kill it� A
$Z� takes e�ect immediately� and has the additional side e�ect of causing pending
output and typeahead to be discarded�

There are a number of ways to refer to a job in the shell� The character
#� introduces a
job name� Job number n may be referred to as
#n�� A job may also be referred to using a
pre
x of the name used to start it� or using a substring that appears in its command line�
For example�
#ce� refers to a stopped ce job� Using
ce�� on the other hand� refers to any
job containing the string
ce� in its command line� If the pre
x or substring matches more
than one job� Bash reports an error� The symbols
##� and
#�� refer to the shell�s notion
of the current job� which is the last job stopped while it was in the foreground or started
in the background� The previous job may be referenced using
#��� In output pertaining to
jobs �e�g�� the output of the jobs command�� the current job is always �agged with a
���
and the previous job with a
���

�� Bash Reference Manual

Simply naming a job can be used to bring it into the foreground�
#�� is a synonym for

fg #��� bringing job � from the background into the foreground� Similarly�
#� �� resumes
job � in the background� equivalent to
bg #��

The shell learns immediately whenever a job changes state� Normally� Bash waits until
it is about to print a prompt before reporting changes in a job�s status so as to not interrupt
any other output� If the the
�b� option to the set builtin is enabled� Bash reports such
changes immediately �see Section ��� �The Set Builtin�� page ����

If an attempt to exit Bash is while jobs are stopped� the shell prints a message warning
that there are stopped jobs� The jobs command may then be used to inspect their status�
If a second attempt to exit is made without an intervening command� Bash does not print
another warning� and the stopped jobs are terminated�

	�� Job Control Builtins

bg

bg �jobspec�

Resume the suspended job jobspec in the background� as if it had been started
with
��� If jobspec is not supplied� the current job is used� The return status
is zero unless it is run when job control is not enabled� or� when run with job
control enabled� if jobspec was not found or jobspec speci
es a job that was
started without job control�

fg

fg �jobspec�

Resume the job jobspec in the foreground and make it the current job� If
jobspec is not supplied� the current job is used� The return status is that of
the command placed into the foreground� or non�zero if run when job control
is disabled or� when run with job control enabled� jobspec does not specify a
valid job or jobspec speci
es a job that was started without job control�

jobs

jobs ��lpnrs� �jobspec�
jobs �x command �arguments�

The
rst form lists the active jobs� The options have the following meanings�

�l List process IDs in addition to the normal information�

�n Display information only about jobs that have changed status since
the user was last noti
ed of their status�

�p List only the process ID of the job�s process group leader�

�r Restrict output to running jobs�

�s Restrict output to stopped jobs�

If jobspec is given� output is restricted to information about that job� If jobspec
is not supplied� the status of all jobs is listed�

Chapter 	� Job Control ��

If the
�x� option is supplied� jobs replaces any jobspec found in command or
arguments with the corresponding process group ID� and executes command�
passing it arguments� returning its exit status�

kill

kill ��s sigspec� ��n signum� ��sigspec� jobspec or pid
kill �l �exit status�

Send a signal speci
ed by sigspec or signum to the process named by job speci
�
cation jobspec or process ID pid� sigspec is either a signal name such as SIGINT
�with or without the SIG pre
x� or a signal number� signum is a signal number�
If sigspec and signum are not present� SIGTERM is used� The
�l� option lists
the signal names� If any arguments are supplied when
�l� is given� the names
of the signals corresponding to the arguments are listed� and the return status
is zero� exit status is a number specifying a signal number or the exit status
of a process terminated by a signal� The return status is zero if at least one
signal was successfully sent� or non�zero if an error occurs or an invalid option
is encountered�

wait

wait �jobspec�pid�

Wait until the child process speci
ed by process ID pid or job speci
cation
jobspec exits and return the exit status of the last command waited for� If a
job spec is given� all processes in the job are waited for� If no arguments are
given� all currently active child processes are waited for� and the return status
is zero� If neither jobspec nor pid speci
es an active child process of the shell�
the return status is ����

disown

disown ��ar� ��h� �jobspec � � ��

Without options� each jobspec is removed from the table of active jobs� If the

�h� option is given� the job is not removed from the table� but is marked so
that SIGHUP is not sent to the job if the shell receives a SIGHUP� If jobspec is
not present� and neither the
�a� nor
�r� option is supplied� the current job is
used� If no jobspec is supplied� the
�a� option means to remove or mark all
jobs� the
�r� option without a jobspec argument restricts operation to running
jobs�

suspend

suspend ��f�

Suspend the execution of this shell until it receives a SIGCONT signal� The
�f�
option means to suspend even if the shell is a login shell�

When job control is not active� the kill and wait builtins do not accept jobspec argu�
ments� They must be supplied process IDs�

	�� Job Control Variables

�� Bash Reference Manual

auto�resume

This variable controls how the shell interacts with the user and job control� If
this variable exists then single word simple commands without redirections are
treated as candidates for resumption of an existing job� There is no ambiguity
allowed� if there is more than one job beginning with the string typed� then the
most recently accessed job will be selected� The name of a stopped job� in this
context� is the command line used to start it� If this variable is set to the value

exact�� the string supplied must match the name of a stopped job exactly� if
set to
substring�� the string supplied needs to match a substring of the name
of a stopped job� The
substring� value provides functionality analogous to
the
# � job ID �see Section 	�� �Job Control Basics�� page 	��� If set to any
other value� the supplied string must be a pre
x of a stopped job�s name� this
provides functionality analogous to the
#� job ID�

Chapter �� Using History Interactively ��

� Using History Interactively

This chapter describes how to use the GNU History Library interactively� from a user�s
standpoint� It should be considered a user�s guide� For information on using the GNU
History Library in other programs� see the GNU Readline Library Manual�

�� Bash History Facilities

When the
�o history� option to the set builtin is enabled �see Section ��� �The Set
Builtin�� page ���� the shell provides access to the command history� the list of commands
previously typed� The text of the last HISTSIZE commands �default ���� is saved in a
history list� The shell stores each command in the history list prior to parameter and
variable expansion but after history expansion is performed� subject to the values of the shell
variables HISTIGNORE and HISTCONTROL� When the shell starts up� the history is initialized
from the
le named by the HISTFILE variable �default
"��bash�history��� HISTFILE is
truncated� if necessary� to contain no more than the number of lines speci
ed by the value
of the HISTFILESIZE variable� When an interactive shell exits� the last HISTSIZE lines
are copied from the history list to HISTFILE� If the histappend shell option is set �see
Section ��� �Bash Builtins�� page ���� the lines are appended to the history
le� otherwise
the history
le is overwritten� If HISTFILE is unset� or if the history
le is unwritable� the
history is not saved� After saving the history� the history
le is truncated to contain no
more than �HISTFILESIZE lines� If HISTFILESIZE is not set� no truncation is performed�

The builtin command fc may be used to list or edit and re�execute a portion of the
history list� The history builtin can be used to display or modify the history list and
manipulate the history
le� When using the command�line editing� search commands are
available in each editing mode that provide access to the history list�

The shell allows control over which commands are saved on the history list� The
HISTCONTROL and HISTIGNORE variables may be set to cause the shell to save only a subset
of the commands entered� The cmdhist shell option� if enabled� causes the shell to attempt
to save each line of a multi�line command in the same history entry� adding semicolons
where necessary to preserve syntactic correctness� The lithist shell option causes the
shell to save the command with embedded newlines instead of semicolons� See Section ���
�Bash Builtins�� page ��� for a description of shopt�

�� Bash History Builtins

Bash provides two builtin commands that allow you to manipulate the history list and
history
le�

fc

fc ��e ename� ��nlr� ��rst� �last�
fc �s �pat�rep� �command�

Fix Command� In the
rst form� a range of commands from �rst to last is
selected from the history list� Both �rst and last may be speci
ed as a string
�to locate the most recent command beginning with that string� or as a number
�an index into the history list� where a negative number is used as an o�set from

�� Bash Reference Manual

the current command number�� If last is not speci
ed it is set to �rst� If �rst is
not speci
ed it is set to the previous command for editing and ��	 for listing�
If the
�l� �ag is given� the commands are listed on standard output� The
�n�
�ag suppresses the command numbers when listing� The
�r� �ag reverses the
order of the listing� Otherwise� the editor given by ename is invoked on a
le
containing those commands� If ename is not given� the value of the following
variable expansion is used� ��FCEDIT����EDITOR��vi��� This says to use the
value of the FCEDIT variable if set� or the value of the EDITOR variable if that
is set� or vi if neither is set� When editing is complete� the edited commands
are echoed and executed�

In the second form� command is re�executed after each instance of pat in the
selected command is replaced by rep�

A useful alias to use with the fc command is r��fc �s�� so that typing
r cc�
runs the last command beginning with cc and typing
r� re�executes the last
command �see Section ��� �Aliases�� page 	���

history

history ��c� �n�
history ��anrw� ��lename�
history �ps arg

Display the history list with line numbers� Lines pre
xed with with a
�� have
been modi
ed� An argument of n says to list only the last n lines� Options� if
supplied� have the following meanings�

�w Write out the current history to the history
le�

�r Read the current history
le and append its contents to the history
list�

�a Append the new history lines �history lines entered since the be�
ginning of the current Bash session� to the history
le�

�n Append the history lines not already read from the history
le to
the current history list� These are lines appended to the history
le
since the beginning of the current Bash session�

�c Clear the history list� This may be combined with the other options
to replace the history list completely�

�s The args are added to the end of the history list as a single entry�

�p Perform history substitution on the args and display the result on
the standard output� without storing the results in the history list�

When the
�w��
�r��
�a�� or
�n� option is used� if �lename is given� then it is
used as the history
le� If not� then the value of the HISTFILE variable is used�

�� History Expansion

The History library provides a history expansion feature that is similar to the history
expansion provided by csh� This section describes the syntax used to manipulate the history
information�

Chapter �� Using History Interactively ��

History expansions introduce words from the history list into the input stream� making
it easy to repeat commands� insert the arguments to a previous command into the current
input line� or
x errors in previous commands quickly�

History expansion takes place in two parts� The
rst is to determine which line from the
history list should be used during substitution� The second is to select portions of that line
for inclusion into the current one� The line selected from the history is called the event� and
the portions of that line that are acted upon are called words� Variousmodi�ers are available
to manipulate the selected words� The line is broken into words in the same fashion that
Bash does� so that several words surrounded by quotes are considered one word� History
expansions are introduced by the appearance of the history expansion character� which is

�� by default� Only

� and
�� may be used to escape the history expansion character�

Several shell options settable with the shopt builtin �see Section ��� �Bash Builtins��
page ��� may be used to tailor the behavior of history expansion� If the histverify shell
option is enabled� and Readline is being used� history substitutions are not immediately
passed to the shell parser� Instead� the expanded line is reloaded into the Readline editing
bu�er for further modi
cation� If Readline is being used� and the histreedit shell option
is enabled� a failed history expansion will be reloaded into the Readline editing bu�er for
correction� The
�p� option to the history builtin command may be used to see what
a history expansion will do before using it� The
�s� option to the history builtin may
be used to add commands to the end of the history list without actually executing them�
so that they are available for subsequent recall� This is most useful in conjunction with
Readline�

The shell allows control of the various characters used by the history expansion mecha�
nism with the histchars variable�

���� Event Designators

An event designator is a reference to a command line entry in the history list�

� Start a history substitution� except when followed by a space� tab� the end of
the line�
�� or
���

�n Refer to command line n�

��n Refer to the command n lines back�

�� Refer to the previous command� This is a synonym for
�����

�string Refer to the most recent command starting with string�

� string� �

Refer to the most recent command containing string� The trailing
 � may be
omitted if the string is followed immediately by a newline�

$string�$string�$

Quick Substitution� Repeat the last command� replacing string� with string��
Equivalent to ���s�string��string���

�� The entire command line typed so far�

�	 Bash Reference Manual

���� Word Designators

Word designators are used to select desired words from the event� A
�� separates the
event speci
cation from the word designator� It may be omitted if the word designator
begins with a
$��
���
���
��� or
#�� Words are numbered from the beginning of the line�
with the
rst word being denoted by � �zero�� Words are inserted into the current line
separated by single spaces�

� �zero� The �th word� For many applications� this is the command word�

n The nth word�

$ The
rst argument� that is� word ��

� The last argument�

The word matched by the most recent
 string � search�

x�y A range of words�
�y � abbreviates
��y ��

� All of the words� except the �th� This is a synonym for
����� It is not an error
to use
�� if there is just one word in the event� the empty string is returned in
that case�

x� Abbreviates
x���

x� Abbreviates
x��� like
x��� but omits the last word�

If a word designator is supplied without an event speci
cation� the previous command
is used as the event�

���� Modi�ers

After the optional word designator� you can add a sequence of one or more of the following
modi
ers� each preceded by a
���

h Remove a trailing pathname component� leaving only the head�

t Remove all leading pathname components� leaving the tail�

r Remove a trailing su�x of the form
�su�x�� leaving the basename�

e Remove all but the trailing su�x�

p Print the new command but do not execute it�

q Quote the substituted words� escaping further substitutions�

x Quote the substituted words as with
q�� but break into words at spaces� tabs�
and newlines�

s�old�new�

Substitute new for the
rst occurrence of old in the event line� Any delimiter
may be used in place of
��� The delimiter may be quoted in old and new with a
single backslash� If
�� appears in new� it is replaced by old� A single backslash
will quote the
��� The
nal delimiter is optional if it is the last character on
the input line�

Chapter �� Using History Interactively ��

� Repeat the previous substitution�

g Cause changes to be applied over the entire event line� Used in conjunction
with
s�� as in gs�old�new�� or with
���

�� Bash Reference Manual

Chapter �� Command Line Editing ��

	 Command Line Editing

This chapter describes the basic features of the GNU command line editing interface�

��� Introduction to Line Editing

The following paragraphs describe the notation used to represent keystrokes�

The text C�k is read as
Control�K� and describes the character produced when the k

key is pressed while the Control key is depressed�

The text M�k is read as
Meta�K� and describes the character produced when the meta
key �if you have one� is depressed� and the k key is pressed� If you do not have a meta key�
the identical keystroke can be generated by typing ESC �rst� and then typing k � Either
process is known as metafying the k key�

The text M�C�k is read as
Meta�Control�k� and describes the character produced by
metafying C�k �

In addition� several keys have their own names� Speci
cally� DEL � ESC � LFD � SPC �
RET � and TAB all stand for themselves when seen in this text� or in an init
le �see
Section ��� �Readline Init File�� page ����

��� Readline Interaction

Often during an interactive session you type in a long line of text� only to notice that the

rst word on the line is misspelled� The Readline library gives you a set of commands for
manipulating the text as you type it in� allowing you to just
x your typo� and not forcing
you to retype the majority of the line� Using these editing commands� you move the cursor
to the place that needs correction� and delete or insert the text of the corrections� Then�
when you are satis
ed with the line� you simply press RETURN � You do not have to be at
the end of the line to press RETURN � the entire line is accepted regardless of the location
of the cursor within the line�

����� Readline Bare Essentials

In order to enter characters into the line� simply type them� The typed character appears
where the cursor was� and then the cursor moves one space to the right� If you mistype a
character� you can use your erase character to back up and delete the mistyped character�

Sometimes you may miss typing a character that you wanted to type� and not notice
your error until you have typed several other characters� In that case� you can type C�b to
move the cursor to the left� and then correct your mistake� Afterwards� you can move the
cursor to the right with C�f �

When you add text in the middle of a line� you will notice that characters to the right
of the cursor are
pushed over� to make room for the text that you have inserted� Likewise�
when you delete text behind the cursor� characters to the right of the cursor are
pulled
back� to
ll in the blank space created by the removal of the text� A list of the basic bare
essentials for editing the text of an input line follows�

C�b Move back one character�

�� Bash Reference Manual

C�f Move forward one character�

DEL Delete the character to the left of the cursor�

C�d Delete the character underneath the cursor�

Printing characters
Insert the character into the line at the cursor�

C� Undo the last editing command� You can undo all the way back to an empty
line�

����� Readline Movement Commands

The above table describes the most basic possible keystrokes that you need in order to
do editing of the input line� For your convenience� many other commands have been added
in addition to C�b � C�f � C�d � and DEL � Here are some commands for moving more rapidly
about the line�

C�a Move to the start of the line�

C�e Move to the end of the line�

M�f Move forward a word� where a word is composed of letters and digits�

M�b Move backward a word�

C�l Clear the screen� reprinting the current line at the top�

Notice how C�f moves forward a character� while M�f moves forward a word� It is a loose
convention that control keystrokes operate on characters while meta keystrokes operate on
words�

����� Readline Killing Commands

Killing text means to delete the text from the line� but to save it away for later use�
usually by yanking �re�inserting� it back into the line� If the description for a command
says that it
kills� text� then you can be sure that you can get the text back in a di�erent
�or the same� place later�

When you use a kill command� the text is saved in a kill�ring� Any number of consecutive
kills save all of the killed text together� so that when you yank it back� you get it all� The
kill ring is not line speci
c� the text that you killed on a previously typed line is available
to be yanked back later� when you are typing another line�

Here is the list of commands for killing text�

C�k Kill the text from the current cursor position to the end of the line�

M�d Kill from the cursor to the end of the current word� or if between words� to the
end of the next word�

M�DEL Kill from the cursor the start of the previous word� or if between words� to the
start of the previous word�

C�w Kill from the cursor to the previous whitespace� This is di�erent than M�DEL

because the word boundaries di�er�

Chapter �� Command Line Editing ��

Here is how to yank the text back into the line� Yanking means to copy the most�
recently�killed text from the kill bu�er�

C�y Yank the most recently killed text back into the bu�er at the cursor�

M�y Rotate the kill�ring� and yank the new top� You can only do this if the prior
command is C�y or M�y �

����� Readline Arguments

You can pass numeric arguments to Readline commands� Sometimes the argument acts
as a repeat count� other times it is the sign of the argument that is signi
cant� If you
pass a negative argument to a command which normally acts in a forward direction� that
command will act in a backward direction� For example� to kill text back to the start of
the line� you might type
M�� C�k��

The general way to pass numeric arguments to a command is to type meta digits before
the command� If the
rst
digit� typed is a minus sign � � �� then the sign of the argument
will be negative� Once you have typed one meta digit to get the argument started� you can
type the remainder of the digits� and then the command� For example� to give the C�d

command an argument of ��� you could type
M�� � C�d��

����� Searching for Commands in the History

Readline provides commands for searching through the command history �see Section ���
�Bash History Facilities�� page ��� for lines containing a speci
ed string� There are two
search modes� incremental and non�incremental�

Incremental searches begin before the user has
nished typing the search string� As each
character of the search string is typed� Readline displays the next entry from the history
matching the string typed so far� An incremental search requires only as many characters
as needed to
nd the desired history entry� The ESC character is used to terminate an
incremental search� C�j will also terminate the search� C�g will abort an incremental search
and restore the original line� When the search is terminated� the history entry containing
the search string becomes the current line� To
nd other matching entries in the history
list� type C�s or C�r as appropriate� This will search backward or forward in the history
for the next entry matching the search string typed so far� Any other key sequence bound
to a Readline command will terminate the search and execute that command� For instance�
a RET will terminate the search and accept the line� thereby executing the command from
the history list�

Non�incremental searches read the entire search string before starting to search for
matching history lines� The search string may be typed by the user or be part of the
contents of the current line�

��� Readline Init File

Although the Readline library comes with a set of emacs�like keybindings installed by
default� it is possible to use a di�erent set of keybindings� Any user can customize programs
that use Readline by putting commands in an inputrc
le in his home directory� The name

�� Bash Reference Manual

of this
le is taken from the value of the shell variable INPUTRC� If that variable is unset�
the default is
"��inputrc��

When a program which uses the Readline library starts up� the init
le is read� and the
key bindings are set�

In addition� the C�x C�r command re�reads this init
le� thus incorporating any changes
that you might have made to it�

����� Readline Init File Syntax

There are only a few basic constructs allowed in the Readline init
le� Blank lines are
ignored� Lines beginning with a
�� are comments� Lines beginning with a
�� indicate
conditional constructs �see Section ����� �Conditional Init Constructs�� page ���� Other
lines denote variable settings and key bindings�

Variable Settings
You can modify the run�time behavior of Readline by altering the values of
variables in Readline using the set command within the init
le� Here is how to
change from the default Emacs�like key binding to use vi line editing commands�

set editing�mode vi

A great deal of run�time behavior is changeable with the following variables�

bell�style

Controls what happens when Readline wants to ring the termi�
nal bell� If set to
none�� Readline never rings the bell� If set to

visible�� Readline uses a visible bell if one is available� If set to

audible� �the default�� Readline attempts to ring the terminal�s
bell�

comment�begin

The string to insert at the beginning of the line when the insert�
comment command is executed� The default value is
�
�

completion�ignore�case

If set to
on�� Readline performs
lename matching and completion
in a case�insensitive fashion� The default value is
off��

completion�query�items

The number of possible completions that determines when the user
is asked whether he wants to see the list of possibilities� If the
number of possible completions is greater than this value� Readline
will ask the user whether or not he wishes to view them� otherwise�
they are simply listed� The default limit is ����

convert�meta

If set to
on�� Readline will convert characters with the eighth bit set
to an ASCII key sequence by stripping the eighth bit and prepend�
ing an ESC character� converting them to a meta�pre
xed key se�
quence� The default value is
on��

Chapter �� Command Line Editing ��

disable�completion

If set to
On�� Readline will inhibit word completion� Completion
characters will be inserted into the line as if they had been mapped
to self�insert� The default is
off��

editing�mode

The editing�mode variable controls which default set of key bind�
ings is used� By default� Readline starts up in Emacs editing mode�
where the keystrokes are most similar to Emacs� This variable can
be set to either
emacs� or
vi��

enable�keypad

When set to
on�� Readline will try to enable the application keypad
when it is called� Some systems need this to enable the arrow keys�
The default is
off��

expand�tilde

If set to
on�� tilde expansion is performed when Readline attempts
word completion� The default is
off��

horizontal�scroll�mode

This variable can be set to either
on� or
off�� Setting it to
on�
means that the text of the lines being edited will scroll horizontally
on a single screen line when they are longer than the width of the
screen� instead of wrapping onto a new screen line� By default� this
variable is set to
off��

keymap Sets Readline�s idea of the current keymap for key binding com�
mands� Acceptable keymap names are emacs� emacs�standard�
emacs�meta� emacs�ctlx� vi� vi�command� and vi�insert� vi is
equivalent to vi�command� emacs is equivalent to emacs�standard�
The default value is emacs� The value of the editing�mode variable
also a�ects the default keymap�

mark�directories

If set to
on�� completed directory names have a slash appended�
The default is
on��

mark�modified�lines

This variable� when set to
on�� causes Readline to display an as�
terisk �
��� at the start of history lines which have been modi
ed�
This variable is
off� by default�

input�meta

If set to
on�� Readline will enable eight�bit input �it will not strip
the eighth bit from the characters it reads�� regardless of what the
terminal claims it can support� The default value is
off�� The
name meta�flag is a synonym for this variable�

�� Bash Reference Manual

output�meta

If set to
on�� Readline will display characters with the eighth bit
set directly rather than as a meta�pre
xed escape sequence� The
default is
off��

print�completions�horizontally

If set to
on�� Readline will display completions with matches sorted
horizontally in alphabetical order� rather than down the screen�
The default is
off��

show�all�if�ambiguous

This alters the default behavior of the completion functions� If set
to
on�� words which have more than one possible completion cause
the matches to be listed immediately instead of ringing the bell�
The default value is
off��

visible�stats

If set to
on�� a character denoting a
le�s type is appended to the

lename when listing possible completions� The default is
off��

Key Bindings
The syntax for controlling key bindings in the init
le is simple� First you have
to know the name of the command that you want to change� The following
sections contain tables of the command name� the default keybinding� if any�
and a short description of what the command does�

Once you know the name of the command� simply place the name of the key
you wish to bind the command to� a colon� and then the name of the command
on a line in the init
le� The name of the key can be expressed in di�erent
ways� depending on which is most comfortable for you�

keyname� function�name or macro
keyname is the name of a key spelled out in English� For example�

Control�u� universal�argument
Meta�Rubout� backward�kill�word
Control�o�
	 output

In the above example� C�u is bound to the function universal�

argument� and C�o is bound to run the macro expressed on the
right hand side �that is� to insert the text
	 output� into the line��

keyseq
� function�name or macro
keyseq di�ers from keyname above in that strings denoting an en�
tire key sequence can be speci
ed� by placing the key sequence in
double quotes� Some GNU Emacs style key escapes can be used� as
in the following example� but the special character names are not
recognized�

C�u
� universal�argument

C�x
C�r
� re�read�init�file

e���"
�
Function Key �

Chapter �� Command Line Editing ��

In the above example� C�u is bound to the function universal�

argument �just as it was in the
rst example��
 C�x C�r � is bound to
the function re�read�init�file� and
 ESC � � � " � is bound
to insert the text
Function Key ���

The following GNU Emacs style escape sequences are available when specifying
key sequences�

�C� control pre
x

�M� meta pre
x

�e an escape character

�� backslash

�

�� �

In addition to the GNU Emacs style escape sequences� a second set of backslash
escapes is available�

a alert �bell�

b backspace

d delete

f form feed

n newline

r carriage return

t horizontal tab

v vertical tab

nnn the character whose ASCII code is the octal value nnn �one to three
digits�

xnnn the character whose ASCII code is the hexadecimal value nnn �one
to three digits�

When entering the text of a macro� single or double quotes must be used to
indicate a macro de
nition� Unquoted text is assumed to be a function name� In
the macro body� the backslash escapes described above are expanded� Backslash
will quote any other character in the macro text� including

� and
��� For
example� the following binding will make
C�x
� insert a single

� into the line�

C�x

�

����� Conditional Init Constructs

Readline implements a facility similar in spirit to the conditional compilation features
of the C preprocessor which allows key bindings and variable settings to be performed as
the result of tests� There are four parser directives used�

�	 Bash Reference Manual

�if The �if construct allows bindings to be made based on the editing mode� the
terminal being used� or the application using Readline� The text of the test
extends to the end of the line� no characters are required to isolate it�

mode The mode� form of the �if directive is used to test whether Readline
is in emacs or vi mode� This may be used in conjunction with the

set keymap� command� for instance� to set bindings in the emacs�
standard and emacs�ctlx keymaps only if Readline is starting out
in emacs mode�

term The term� form may be used to include terminal�speci
c key bind�
ings� perhaps to bind the key sequences output by the terminal�s
function keys� The word on the right side of the
�� is tested against
both the full name of the terminal and the portion of the terminal
name before the
rst
��� This allows sun to match both sun and
sun�cmd� for instance�

application

The application construct is used to include application�speci
c set�
tings� Each program using the Readline library sets the application
name� and you can test for it� This could be used to bind key se�
quences to functions useful for a speci
c program� For instance� the
following command adds a key sequence that quotes the current or
previous word in Bash�

�if Bash
� Quote the current or previous word

C�xq
�

eb

ef

�endif

�endif This command� as seen in the previous example� terminates an �if command�

�else Commands in this branch of the �if directive are executed if the test fails�

�include This directive takes a single
lename as an argument and reads commands and
bindings from that
le�

�include �etc�inputrc

����� Sample Init File

Here is an example of an inputrc
le� This illustrates key binding� variable assignment�
and conditional syntax�

Chapter �� Command Line Editing ��

� This file controls the behaviour of line input editing for
� programs that use the Gnu Readline library� Existing programs
� include FTP! Bash! and Gdb�
�
� You can re�read the inputrc file with C�x C�r�
� Lines beginning with ��� are comments�
�
� First! include any systemwide bindings and variable assignments from
� �etc�Inputrc
�include �etc�Inputrc

�
� Set various bindings for emacs mode�

set editing�mode emacs

�if mode�emacs

Meta�Control�h� backward�kill�word Text after the function name is ignored

�
� Arrow keys in keypad mode
�
�

M�OD
� backward�char
�

M�OC
� forward�char
�

M�OA
� previous�history
�

M�OB
� next�history
�
� Arrow keys in ANSI mode
�

M��D
� backward�char

M��C
� forward�char

M��A
� previous�history

M��B
� next�history
�
� Arrow keys in * bit keypad mode
�
�

M�
C�OD
� backward�char
�

M�
C�OC
� forward�char
�

M�
C�OA
� previous�history
�

M�
C�OB
� next�history
�
� Arrow keys in * bit ANSI mode
�
�

M�
C��D
� backward�char
�

M�
C��C
� forward�char
�

M�
C��A
� previous�history

�� Bash Reference Manual

�

M�
C��B
� next�history

C�q� quoted�insert

�endif

� An old�style binding� This happens to be the default�
TAB� complete

� Macros that are convenient for shell interaction
�if Bash
� edit the path

C�xp
�
PATH���PATH�
e
C�e
C�a
ef
C�f

� prepare to type a quoted word �� insert open and close double quotes
� and move to just after the open quote

C�x

�

C�b

� insert a backslash �testing backslash escapes in sequences and macros�

C�x

�

� Quote the current or previous word

C�xq
�

eb

ef

� Add a binding to refresh the line! which is unbound

C�xr
� redraw�current�line
� Edit variable on current line�

M�
C�v
�

C�a
C�k�
C�y
M�
C�e
C�a
C�y�

�endif

� use a visible bell if one is available
set bell�style visible

� don�t strip characters to) bits when reading
set input�meta on

� allow iso�latin� characters to be inserted rather than converted to
� prefix�meta sequences
set convert�meta off

� display characters with the eighth bit set directly rather than
� as meta�prefixed characters
set output�meta on

� if there are more than �'� possible completions for a word! ask the
� user if he wants to see all of them
set completion�query�items �'�

� For FTP
�if Ftp

C�xg
�
get
M�

C�xt
�
put
M�

Chapter �� Command Line Editing ��

M��
� yank�last�arg
�endif

��� Bindable Readline Commands

This section describes Readline commands that may be bound to key sequences�

����� Commands For Moving

beginning�of�line �C�a�

Move to the start of the current line�

end�of�line �C�e�

Move to the end of the line�

forward�char �C�f�

Move forward a character�

backward�char �C�b�

Move back a character�

forward�word �M�f�

Move forward to the end of the next word� Words are composed of letters and
digits�

backward�word �M�b�

Move back to the start of this� or the previous� word� Words are composed of
letters and digits�

clear�screen �C�l�

Clear the screen and redraw the current line� leaving the current line at the top
of the screen�

redraw�current�line ��

Refresh the current line� By default� this is unbound�

����� Commands For Manipulating The History

accept�line �Newline! Return�

Accept the line regardless of where the cursor is� If this line is non�empty� add it
to the history list according to the setting of the HISTCONTROL and HISTIGNORE

variables� If this line was a history line� then restore the history line to its
original state�

previous�history �C�p�

Move
up� through the history list�

next�history �C�n�

Move
down� through the history list�

beginning�of�history �M���

Move to the
rst line in the history�

�� Bash Reference Manual

end�of�history �M�	�

Move to the end of the input history� i�e�� the line currently being entered�

reverse�search�history �C�r�

Search backward starting at the current line and moving
up� through the his�
tory as necessary� This is an incremental search�

forward�search�history �C�s�

Search forward starting at the current line and moving
down� through the the
history as necessary� This is an incremental search�

non�incremental�reverse�search�history �M�p�

Search backward starting at the current line and moving
up� through the his�
tory as necessary using a non�incremental search for a string supplied by the
user�

non�incremental�forward�search�history �M�n�

Search forward starting at the current line and moving
down� through the the
history as necessary using a non�incremental search for a string supplied by the
user�

history�search�forward ��

Search forward through the history for the string of characters between the
start of the current line and the current cursor position �the point�� This is a
non�incremental search� By default� this command is unbound�

history�search�backward ��

Search backward through the history for the string of characters between the
start of the current line and the point� This is a non�incremental search� By
default� this command is unbound�

yank�nth�arg �M�C�y�

Insert the
rst argument to the previous command �usually the second word on
the previous line�� With an argument n� insert the nth word from the previous
command �the words in the previous command begin with word ��� A negative
argument inserts the nth word from the end of the previous command�

yank�last�arg �M��! M���

Insert last argument to the previous command �the last word of the previous
history entry�� With an argument� behave exactly like yank�nth�arg� Succes�
sive calls to yank�last�arg move back through the history list� inserting the
last argument of each line in turn�

����� Commands For Changing Text

delete�char �C�d�

Delete the character under the cursor� If the cursor is at the beginning of the
line� there are no characters in the line� and the last character typed was not
bound to delete�char� then return EOF�

Chapter �� Command Line Editing ��

backward�delete�char �Rubout�

Delete the character behind the cursor� A numeric argument means to kill the
characters instead of deleting them�

quoted�insert �C�q! C�v�

Add the next character typed to the line verbatim� This is how to insert key
sequences like C�q � for example�

self�insert �a! b! A! �! �! ����

Insert yourself�

transpose�chars �C�t�

Drag the character before the cursor forward over the character at the cursor�
moving the cursor forward as well� If the insertion point is at the end of the
line� then this transposes the last two characters of the line� Negative arguments
don�t work�

transpose�words �M�t�

Drag the word behind the cursor past the word in front of the cursor moving
the cursor over that word as well�

upcase�word �M�u�

Uppercase the current �or following� word� With a negative argument� upper�
case the previous word� but do not move the cursor�

downcase�word �M�l�

Lowercase the current �or following� word� With a negative argument� lowercase
the previous word� but do not move the cursor�

capitalize�word �M�c�

Capitalize the current �or following� word� With a negative argument� capitalize
the previous word� but do not move the cursor�

����� Killing And Yanking

kill�line �C�k�

Kill the text from the current cursor position to the end of the line�

backward�kill�line �C�x Rubout�

Kill backward to the beginning of the line�

unix�line�discard �C�u�

Kill backward from the cursor to the beginning of the current line� The killed
text is saved on the kill�ring�

kill�whole�line ��

Kill all characters on the current line� no matter where the cursor is� By default�
this is unbound�

kill�word �M�d�

Kill from the cursor to the end of the current word� or if between words� to the
end of the next word� Word boundaries are the same as forward�word�

�� Bash Reference Manual

backward�kill�word �M�DEL�

Kill the word behind the cursor� Word boundaries are the same as backward�
word�

unix�word�rubout �C�w�

Kill the word behind the cursor� using white space as a word boundary� The
killed text is saved on the kill�ring�

delete�horizontal�space ��

Delete all spaces and tabs around point� By default� this is unbound�

kill�region ��

Kill the text between the point and the mark �saved cursor position�� This text
is referred to as the region� By default� this command is unbound�

copy�region�as�kill ��

Copy the text in the region to the kill bu�er� so it can be yanked right away�
By default� this command is unbound�

copy�backward�word ��

Copy the word before point to the kill bu�er� The word boundaries are the
same as backward�word� By default� this command is unbound�

copy�forward�word ��

Copy the word following point to the kill bu�er� The word boundaries are the
same as forward�word� By default� this command is unbound�

yank �C�y�

Yank the top of the kill ring into the bu�er at the current cursor position�

yank�pop �M�y�

Rotate the kill�ring� and yank the new top� You can only do this if the prior
command is yank or yank�pop�

����� Specifying Numeric Arguments

digit�argument �M��! M��! ��� M���

Add this digit to the argument already accumulating� or start a new argument�
M� starts a negative argument�

universal�argument ��

This is another way to specify an argument� If this command is followed by one
or more digits� optionally with a leading minus sign� those digits de
ne the ar�
gument� If the command is followed by digits� executing universal�argument

again ends the numeric argument� but is otherwise ignored� As a special case�
if this command is immediately followed by a character that is neither a digit
or minus sign� the argument count for the next command is multiplied by four�
The argument count is initially one� so executing this function the
rst time
makes the argument count four� a second time makes the argument count six�
teen� and so on� By default� this is not bound to a key�

Chapter �� Command Line Editing ��

����	 Letting Readline Type For You

complete �TAB�

Attempt to do completion on the text before the cursor� This is application�
speci
c� Generally� if you are typing a
lename argument� you can do
lename
completion� if you are typing a command� you can do command completion�
if you are typing in a symbol to GDB� you can do symbol name completion�
if you are typing in a variable to Bash� you can do variable name completion�
and so on� Bash attempts completion treating the text as a variable �if the text
begins with
���� username �if the text begins with
"��� hostname �if the text
begins with
���� or command �including aliases and functions� in turn� If none
of these produces a match�
lename completion is attempted�

possible�completions �M� �

List the possible completions of the text before the cursor�

insert�completions �M���

Insert all completions of the text before point that would have been generated
by possible�completions�

menu�complete ��

Similar to complete� but replaces the word to be completed with a single match
from the list of possible completions� Repeated execution of menu�complete
steps through the list of possible completions� inserting each match in turn�
At the end of the list of completions� the bell is rung and the original text is
restored� An argument of n moves n positions forward in the list of matches�
a negative argument may be used to move backward through the list� This
command is intended to be bound to TAB� but is unbound by default�

complete�filename �M���

Attempt
lename completion on the text before point�

possible�filename�completions �C�x ��

List the possible completions of the text before point� treating it as a
lename�

complete�username �M�"�

Attempt completion on the text before point� treating it as a username�

possible�username�completions �C�x "�

List the possible completions of the text before point� treating it as a username�

complete�variable �M���

Attempt completion on the text before point� treating it as a shell variable�

possible�variable�completions �C�x ��

List the possible completions of the text before point� treating it as a shell
variable�

complete�hostname �M���

Attempt completion on the text before point� treating it as a hostname�

possible�hostname�completions �C�x ��

List the possible completions of the text before point� treating it as a hostname�

�� Bash Reference Manual

complete�command �M���

Attempt completion on the text before point� treating it as a command name�
Command completion attempts to match the text against aliases� reserved
words� shell functions� shell builtins� and
nally executable
lenames� in that
order�

possible�command�completions �C�x ��

List the possible completions of the text before point� treating it as a command
name�

dynamic�complete�history �M�TAB�

Attempt completion on the text before point� comparing the text against lines
from the history list for possible completion matches�

complete�into�braces �M���

Perform
lename completion and return the list of possible completions en�
closed within braces so the list is available to the shell �see Section ����� �Brace
Expansion�� page ����

����
 Keyboard Macros

start�kbd�macro �C�x ��

Begin saving the characters typed into the current keyboard macro�

end�kbd�macro �C�x ��

Stop saving the characters typed into the current keyboard macro and save the
de
nition�

call�last�kbd�macro �C�x e�

Re�execute the last keyboard macro de
ned� by making the characters in the
macro appear as if typed at the keyboard�

����� Some Miscellaneous Commands

re�read�init�file �C�x C�r�

Read in the contents of the inputrc
le� and incorporate any bindings or variable
assignments found there�

abort �C�g�

Abort the current editing command and ring the terminal�s bell �subject to the
setting of bell�style��

do�uppercase�version �M�a! M�b! M�x! � � ��

If the meta
ed character x is lowercase� run the command that is bound to the
corresponding uppercase character�

prefix�meta �ESC�

Make the next character typed be meta
ed� This is for keyboards without a
meta key� Typing
ESC f� is equivalent to typing
M�f��

undo �C��! C�x C�u�

Incremental undo� separately remembered for each line�

Chapter �� Command Line Editing ��

revert�line �M�r�

Undo all changes made to this line� This is like executing the undo command
enough times to get back to the beginning�

tilde�expand �M�"�

Perform tilde expansion on the current word�

set�mark �C���

Set the mark to the current point� If a numeric argument is supplied� the mark
is set to that position�

exchange�point�and�mark �C�x C�x�

Swap the point with the mark� The current cursor position is set to the saved
position� and the old cursor position is saved as the mark�

character�search �C���

A character is read and point is moved to the next occurrence of that character�
A negative count searches for previous occurrences�

character�search�backward �M�C���

A character is read and point is moved to the previous occurrence of that
character� A negative count searches for subsequent occurrences�

insert�comment �M���

The value of the comment�begin variable is inserted at the beginning of the
current line� and the line is accepted as if a newline had been typed� This
makes the current line a shell comment�

dump�functions ��

Print all of the functions and their key bindings to the Readline output stream�
If a numeric argument is supplied� the output is formatted in such a way that
it can be made part of an inputrc
le� This command is unbound by default�

dump�variables ��

Print all of the settable variables and their values to the Readline output stream�
If a numeric argument is supplied� the output is formatted in such a way that
it can be made part of an inputrc
le� This command is unbound by default�

dump�macros ��

Print all of the Readline key sequences bound to macros and the strings they
ouput� If a numeric argument is supplied� the output is formatted in such a
way that it can be made part of an inputrc
le� This command is unbound by
default�

glob�expand�word �C�x ��

The word before point is treated as a pattern for pathname expansion� and the
list of matching
le names is inserted� replacing the word�

glob�list�expansions �C�x g�

The list of expansions that would have been generated by glob�expand�word

is displayed� and the line is redrawn�

display�shell�version �C�x C�v�

Display version information about the current instance of Bash�

�	 Bash Reference Manual

shell�expand�line �M�C�e�

Expand the line as the shell does� This performs alias and history expansion
as well as all of the shell word expansions �see Section ��� �Shell Expansions��
page ����

history�expand�line �M�$�

Perform history expansion on the current line�

magic�space ��

Perform history expansion on the current line and insert a space �see Section ���
�History Interaction�� page ����

alias�expand�line ��

Perform alias expansion on the current line �see Section ��� �Aliases�� page 	���

history�and�alias�expand�line ��

Perform history and alias expansion on the current line�

insert�last�argument �M��! M���

A synonym for yank�last�arg�

operate�and�get�next �C�o�

Accept the current line for execution and fetch the next line relative to the
current line from the history for editing� Any argument is ignored�

emacs�editing�mode �C�e�

When in vi editing mode� this causes a switch back to emacs editing mode� as
if the command
set �o emacs� had been executed�

��� Readline vi Mode

While the Readline library does not have a full set of vi editing functions� it does contain
enough to allow simple editing of the line� The Readline vi mode behaves as speci
ed in
the POSIX ������ standard�

In order to switch interactively between emacs and vi editing modes� use the
set �o

emacs� and
set �o vi� commands �see Section ��� �The Set Builtin�� page ���� The Readline
default is emacs mode�

When you enter a line in vi mode� you are already placed in
insertion� mode� as if you
had typed an
i�� Pressing ESC switches you into
command� mode� where you can edit the
text of the line with the standard vi movement keys� move to previous history lines with

k� and subsequent lines with
j�� and so forth�

Chapter �� Installing Bash ��

 Installing Bash

This chapter provides basic instructions for installing Bash on the various supported
platforms� The distribution supports nearly every version of Unix �and� someday� GNU��
Other independent ports exist for MS�DOS� OS��� Windows ��� and Windows NT�

��� Basic Installation

These are installation instructions for Bash�

The configure shell script attempts to guess correct values for various system�dependent
variables used during compilation� It uses those values to create a
Makefile� in each
directory of the package �the top directory� the
builtins� and
doc� directories� and the
each directory under
lib��� It also creates a
config�h�
le containing system�dependent
de
nitions� Finally� it creates a shell script named config�status that you can run in the
future to recreate the current con
guration� a
le
config�cache� that saves the results
of its tests to speed up recon
guring� and a
le
config�log� containing compiler output
�useful mainly for debugging configure�� If at some point
config�cache� contains results
you don�t want to keep� you may remove or edit it�

If you need to do unusual things to compile Bash� please try to
gure out how
configure could check whether or not to do them� and mail di�s or instructions to
hbash�maintainers�gnu�orgi so they can be considered for the next release�

The
le
configure�in� is used to create configure by a program called Autoconf� You
only need
configure�in� if you want to change it or regenerate configure using a newer
version of Autoconf� If you do this� make sure you are using Autoconf version ���� or newer�

If you need to change
configure�in� or regenerate configure� you will need to create
two
les�
�distribution� and
�patchlevel��
�distribution� should contain the major
and minor version numbers of the Bash distribution� for example
������
�patchlevel�
should contain the patch level of the Bash distribution�
�� for example� The script

support�mkconffiles� has been provided to automate the creation of these
les�

The simplest way to compile Bash is�

�� cd to the directory containing the source code and type
��configure� to con
gure
Bash for your system� If you�re using csh on an old version of System V� you might
need to type
sh ��configure� instead to prevent csh from trying to execute configure
itself�

Running configure takes awhile� While running� it prints some messages telling which
features it is checking for�

�� Type
make� to compile Bash and build the bashbug bug reporting script�

�� Optionally� type
make tests� to run the Bash test suite�

�� Type
make install� to install bash and bashbug� This will also install the manual
pages and Info
le�

You can remove the program binaries and object
les from the source code directory by
typing
make clean�� To also remove the
les that configure created �so you can compile
Bash for a di�erent kind of computer�� type
make distclean��

�� Bash Reference Manual

��� Compilers and Options

Some systems require unusual options for compilation or linking that the configure

script does not know about� You can give configure initial values for variables by setting
them in the environment� Using a Bourne�compatible shell� you can do that on the command
line like this�

CC�c*% CFLAGS��O� LIBS��lposix ��configure

On systems that have the env program� you can do it like this�

env CPPFLAGS��I�usr�local�include LDFLAGS��s ��configure

The con
guration process uses GCC to build Bash if it is available�

��� Compiling For Multiple Architectures

You can compile Bash for more than one kind of computer at the same time� by placing
the object
les for each architecture in their own directory� To do this� you must use a
version of make that supports the VPATH variable� such as GNU make� cd to the directory
where you want the object
les and executables to go and run the configure script from the
source directory� You may need to supply the
��srcdir�PATH� argument to tell configure
where the source
les are� configure automatically checks for the source code in the
directory that configure is in and in
����

If you have to use a make that does not supports the VPATH variable� you can compile Bash
for one architecture at a time in the source code directory� After you have installed Bash
for one architecture� use
make distclean� before recon
guring for another architecture�

Alternatively� if your system supports symbolic links� you can use the
support�mkclone�
script to create a build tree which has symbolic links back to each
le in the source directory�
Here�s an example that creates a build directory in the current directory from a source
directory
�usr�gnu�src�bash������

bash �usr�gnu�src�bash�����support�mkclone �s �usr�gnu�src�bash���� �

The mkclone script requires Bash� so you must have already built Bash for at least one
architecture before you can create build directories for other architectures�

��� Installation Names

By default�
make install� will install into
�usr�local�bin��
�usr�local�man�� etc�
You can specify an installation pre
x other than
�usr�local� by giving configure the
option
��prefix�PATH��

You can specify separate installation pre
xes for architecture�speci
c
les and architecture�
independent
les� If you give configure the option
��exec�prefix�PATH��
make install�
will use
PATH� as the pre
x for installing programs and libraries� Documentation and other
data
les will still use the regular pre
x�

Chapter �� Installing Bash ��

��� Specifying the System Type

There may be some features configure can not
gure out automatically� but needs to
determine by the type of host Bash will run on� Usually configure can
gure that out�
but if it prints a message saying it can not guess the host type� give it the
��host�TYPE�
option�
TYPE� can either be a short name for the system type� such as
sun&�� or a canonical
name with three
elds�
CPU�COMPANY�SYSTEM� �e�g��
sparc�sun�sunos&�������

See the
le
support�config�sub� for the possible values of each
eld�

��	 Sharing Defaults

If you want to set default values for configure scripts to share� you can create a site
shell script called config�site that gives default values for variables like CC� cache�

file� and prefix� configure looks for
PREFIX�share�config�site� if it exists� then

PREFIX�etc�config�site� if it exists� Or� you can set the CONFIG�SITE environment vari�
able to the location of the site script� A warning� the Bash configure looks for a site
script� but not all configure scripts do�

��
 Operation Controls

configure recognizes the following options to control how it operates�

��cache�file�FILE

Use and save the results of the tests in FILE instead of
��config�cache�� Set
FILE to
�dev�null� to disable caching� for debugging configure�

��help Print a summary of the options to configure� and exit�

��quiet

��silent

�q Do not print messages saying which checks are being made�

��srcdir�DIR

Look for the Bash source code in directory DIR� Usually configure can deter�
mine that directory automatically�

��version

Print the version of Autoconf used to generate the configure script� and exit�

configure also accepts some other� not widely used� boilerplate options�

��� Optional Features

The Bash configure has a number of
��enable�FEATURE� options� where FEATURE
indicates an optional part of Bash� There are also several
��with�PACKAGE� options�
where PACKAGE is something like
gnu�malloc� or
purify�� To turn o� the default use
of a package� use
��without�PACKAGE�� To con
gure Bash without a feature that is
enabled by default� use
��disable�FEATURE��

Here is a complete list of the
��enable�� and
��with�� options that the Bash configure
recognizes�

��� Bash Reference Manual

��with�afs

De
ne if you are using the Andrew File System from Transarc�

��with�curses

Use the curses library instead of the termcap library� This should be supplied
if your system has an inadequate or incomplete termcap database�

��with�glibc�malloc

Use the GNU libc version of malloc in
lib�malloc�gmalloc�c�� This is not
the version of malloc that appears in glibc version �� but a modi
ed version
of the malloc from glibc version �� This is somewhat slower than the default
malloc� but wastes less space on a per�allocation basis� and will return memory
to the operating system under some circumstances�

��with�gnu�malloc

Use the GNU version of malloc in
lib�malloc�malloc�c�� This is not the
same malloc that appears in GNU libc� but an older version derived from the
��� BSD malloc� This malloc is very fast� but wastes some space on each
allocation� This option is enabled by default� The
NOTES�
le contains a list of
systems for which this should be turned o�� and configure disables this option
automatically for a number of systems�

��with�purify

De
ne this to use the Purify memory allocation checker from Pure Software�

��enable�minimal�config

This produces a shell with minimal features� close to the historical Bourne shell�

There are several
��enable�� options that alter how Bash is compiled and linked� rather
than changing run�time features�

��enable�profiling

This builds a Bash binary that produces pro
ling information to be processed
by gprof each time it is executed�

��enable�static�link

This causes Bash to be linked statically� if gcc is being used� This could be
used to build a version to use as root�s shell�

The
minimal�config� option can be used to disable all of the following options� but it
is processed
rst� so individual options may be enabled using
enable�FEATURE��

All of the following options except for
disabled�builtins� and
usg�echo�default�
are enabled by default� unless the operating system does not provide the necessary support�

��enable�alias

Allow alias expansion and include the alias and unalias builtins �see Sec�
tion ��� �Aliases�� page 	���

��enable�array�variables

Include support for one�dimensional array shell variables �see Section ���� �Ar�
rays�� page 	���

Chapter �� Installing Bash ���

��enable�bang�history

Include support for csh�like history substitution �see Section ��� �History In�
teraction�� page ����

��enable�brace�expansion

Include csh�like brace expansion � b�a!b�c �� bac bbc �� See Section �����
�Brace Expansion�� page ��� for a complete description�

��enable�command�timing

Include support for recognizing time as a reserved word and for displaying
timing statistics for the pipeline following time� This allows pipelines as well
as shell builtins and functions to be timed�

��enable�cond�command

Include support for the �� conditional command �see Section ����� �Conditional
Constructs�� page ���

��enable�directory�stack

Include support for a csh�like directory stack and the pushd� popd� and dirs

builtins �see Section ���� �The Directory Stack�� page 	���

��enable�disabled�builtins

Allow builtin commands to be invoked via
builtin xxx� even after xxx has
been disabled using
enable �n xxx�� See Section ��� �Bash Builtins�� page ���
for details of the builtin and enable builtin commands�

��enable�dparen�arithmetic

Include support for the ��� � ��� command �see Section ����� �Conditional Con�
structs�� page ���

��enable�extended�glob

Include support for the extended pattern matching features described above
under Section ������� �Pattern Matching�� page ���

��enable�help�builtin

Include the help builtin� which displays help on shell builtins and variables�

��enable�history

Include command history and the fc and history builtin commands�

��enable�job�control

This enables the job control features �see Chapter 	 �Job Control�� page 	��� if
the operating system supports them�

��enable�process�substitution

This enables process substitution �see Section ����	 �Process Substitution��
page ��� if the operating system provides the necessary support�

��enable�prompt�string�decoding

Turn on the interpretation of a number of backslash�escaped characters in
the �PS�� �PS�� �PS�� and �PS& prompt strings� See Section ���� �Printing
a Prompt�� page 		� for a complete list of prompt string escape sequences�

��� Bash Reference Manual

��enable�readline

Include support for command�line editing and history with the Bash version of
the Readline library �see Chapter � �Command Line Editing�� page ����

��enable�restricted

Include support for a restricted shell� If this is enabled� Bash� when called
as rbash� enters a restricted mode� See Section ���� �The Restricted Shell��
page 	�� for a description of restricted mode�

��enable�select

Include the select builtin� which allows the generation of simple menus �see
Section ����� �Conditional Constructs�� page ���

��enable�usg�echo�default

Make the echo builtin expand backslash�escaped characters by default� without
requiring the
�e� option� This makes the Bash echo behave more like the
System V version�

The
le
config�h�top� contains C Preprocessor
�define� statements for options which
are not settable from configure� Some of these are not meant to be changed� beware of
the consequences if you do� Read the comments associated with each de
nition for more
information about its e�ect�

Appendix A� Reporting Bugs ���

Appendix A Reporting Bugs

Please report all bugs you
nd in Bash� But
rst� you should make sure that it really is
a bug� and that it appears in the latest version of Bash that you have�

Once you have determined that a bug actually exists� use the bashbug command to
submit a bug report� If you have a
x� you are encouraged to mail that as well� Suggestions
and
philosophical� bug reports may be mailed to hbug�bash�gnu�orgi or posted to the
Usenet newsgroup gnu�bash�bug�

All bug reports should include�

� The version number of Bash�

� The hardware and operating system�

� The compiler used to compile Bash�

� A description of the bug behaviour�

� A short script or
recipe� which exercises the bug and may be used to reproduce it�

bashbug inserts the
rst three items automatically into the template it provides for
ling a
bug report�

Please send all reports concerning this manual to hchet�po�CWRU�Edui�

��� Bash Reference Manual

Appendix B� Index of Shell Builtin Commands ���

Appendix B Index of Shell Builtin Commands

�
� ��

�
� ��

�
� ��

A
alias ��

B
bg ��

bind ��

break ��

builtin ��

C
cd ��

command ��

continue �� ��

D
declare ��

dirs ��

disown �� �	

E
echo ��

enable �� ��

eval ��

exec ��

exit ��

export �� ��

F
fc ��

fg ��

G
getopts ��

H
hash �	

help ��

history ��

J
jobs ��

K
kill �	

L
let ��

local ��

logout ��

P
popd ��

printf �

pushd ��

pwd �	

R
read �

readonly �� �	

return ��

S
set ��

shift ��

shopt �

source �	

suspend �	

T
test ��

times ��

trap ��

type �	

typeset �	

U
ulimit �	

umask ��

unalias ��

unset ��

W
wait �	

��	 Bash Reference Manual

Appendix C� Shell Reserved Words ���

Appendix C Shell Reserved Words

�
� �

�
�� 	�

�
�� 	�

�
� 		

�
� 		

C
case �

D
do �

done �

E
elif �

else �

esac �

F
fi �

for �

function �� 	�

I
if �

in �

S
select � 	�

T
then �

time �

U
until �

W
while �

��� Bash Reference Manual

Appendix D� Parameter and Variable Index ���

Appendix D Parameter and Variable Index

�
� 	�

�
� 	�

�
	 � 	�

�

 � 	�

�
� 	�

�
� 	�

�

 � 	�

� 	�� 	�

� 	�

A
auto resume �� �	� ��

B
BASH ��

BASH ENV ��

BASH VERSINFO ��

BASH VERSION �� ��

bell�style�
�

C
CDPATH �� ��

comment�begin ��
�

completion�query�items ��
�

convert�meta �
�

D
DIRSTACK �� ��

disable�completion �
�

E
editing�mode �
�

enable�keypad �
�

EUID ��

expand�tilde �
�

F
FCEDIT ��

FIGNORE ��� �

G
GLOBIGNORE �� ��� �

GROUPS� ��� �

H
histchars �� ��� �

HISTCMD ��� �

HISTCONTROL ��� �

HISTFILE ��� ��

HISTFILESIZE �� ��� ��

HISTIGNORE �� ��� �

HISTSIZE ��� ��

HOME ��

horizontal�scroll�mode ��
�

HOSTFILE ��� ��

HOSTNAME ��� ��

HOSTTYPE ��� ��

I
IFS ��

IGNOREEOF �� ��� ��

input�meta��
�

INPUTRC ��� ��

K
keymap �
�

L
LANG ��� ��

LC ALL ��� ��

LC COLLATE ��� ��

LC CTYPE� ��� ��

��� Bash Reference Manual

LC MESSAGES �� ��� ��

LINENO� ��� ��

M
MACHTYPE �� ��� ��

MAIL ��

MAILCHECK ��� ��

MAILPATH �� ��

mark�modified�lines ��
�

meta�flag ��
�

O
OLDPWD� ��� ��

OPTARG �� ��

OPTERR� ��� ��

OPTIND �� ��

OSTYPE� ��� ��

output�meta �
�

P
PATH ��

PIPESTATUS �� ��� ��

PPID ��� ��

PROMPT COMMAND �� ��� ��

PS� ��

PS� ��

PS� ��� ��

PS� ��� ��

PWD ��� ��

R
RANDOM� ��� ��

REPLY ��� ��

S
SECONDS ��� ��

SHELLOPTS �� ��� ��

SHLVL ��� �	

show�all�if�ambiguous ��
�

T
TIMEFORMAT �� ��� �	

TMOUT ��� �	

U
UID ��� �	

V
visible�stats �
�

Appendix E� Function Index ���

Appendix E Function Index

A
abort �C�g� ��

accept�line �Newline� Return��� � � � � � � � � � � � � �
�

alias�expand�line �� ��

B
backward�char �C�b�
�

backward�delete�char �Rubout� �� � � � � � � � � � � � � ��

backward�kill�line �C�x Rubout� � � � � � � � � � � � � �	

backward�kill�word �M�DEL� �� � � � � � � � � � � � � �	� ��

backward�word �M�b�
�

beginning�of�history �M��� � � � � � � � � � � � � � � � � � �
�

beginning�of�line �C�a�
�

C
call�last�kbd�macro �C�x e� � � � � � � � � � � � � � � � � � ��

capitalize�word �M�c� ��� �	

character�search �C���� � � � � � � � � � � � � � � � � � � ��� ��

character�search�backward �M�C��� � � � � � � ��� ��

clear�screen �C�l�
�

complete �TAB� ��

complete�command �M��� �� ��

complete�filename �M��� ��

complete�hostname �M�
� ��

complete�into�braces �M��� � � � � � � � � � � � � � � � � � � ��

complete�username �M��� ��

complete�variable �M�	� ��

copy�backward�word �� �	� ��

copy�forward�word �� �	� ��

copy�region�as�kill ��� � � � � � � � � � � � � � � � � � � �	� ��

D
delete�char �C�d� ��

delete�horizontal�space �� � � � � � � � � � � � � � � �	� ��

digit�argument �M��� M��� ��� M��� � � � � � � � � � � ��

display�shell�version �C�x C�v� � � � � � � � � � � � � ��

do�uppercase�version �M�a� M�b� M�x� � � �� � � ��

downcase�word �M�l� ��� �	

dump�functions �� ��� ��

dump�macros �� ��� ��

dump�variables �� ��� ��

dynamic�complete�history �M�TAB� �� � � � � � � � � � ��

E
emacs�editing�mode �C�e� ��

end�kbd�macro �C�x �� ��

end�of�history �M���
�� ��

end�of�line �C�e�
�

exchange�point�and�mark �C�x C�x� � � � � � � ��� ��

F
forward�char �C�f�
�

forward�search�history �C�s� � � � � � � � � � � � �
�� ��

forward�word �M�f�
�

G
glob�expand�word �C�x
� ��

glob�list�expansions �C�x g� � � � � � � � � � � � � � � � � ��

H
history�and�alias�expand�line �� � � � � � � � � � � � ��

history�expand�line �M��� ��

history�search�backward �� � � � � � � � � � � � � � �
�� ��

history�search�forward �� � � � � � � � � � � � � � � �
�� ��

I
insert�comment �M��� ��� ��

insert�completions �M�
� ��

insert�last�argument �M��� M� �� � � � � � � � � � � � � ��

K
kill�line �C�k� �	

kill�region �� �	� ��

kill�whole�line �� �	

kill�word �M�d� �	

M
magic�space �� ��

menu�complete �� ��

N
next�history �C�n�
�

non�incremental�forward�search�history �M�n�

�
�� ��

non�incremental�reverse�search�history �M�p�

�
�� ��

O
operate�and�get�next �C�o� � � � � � � � � � � � � � � � � � � ��

��� Bash Reference Manual

P
possible�command�completions �C�x �� � � � � � � ��

possible�completions �M��� � � � � � � � � � � � � � � � � � � ��

possible�filename�completions �C�x �� � � � � � ��

possible�hostname�completions �C�x
� � � � � � ��

possible�username�completions �C�x �� � � � � � ��

possible�variable�completions �C�x 	� � � � � � ��

prefix�meta �ESC� ��

previous�history �C�p� ��
�

Q
quoted�insert �C�q� C�v� � � � � � � � � � � � � � � � � � ��� �	

R
re�read�init�file �C�x C�r� � � � � � � � � � � � � � � � � � ��

redraw�current�line ��
�

reverse�search�history �C�r� � � � � � � � � � � � �
�� ��

revert�line �M�r� ��� ��

S
self�insert �a� b� A� �� �� ���� � � � � � � � � � ��� �	

set�mark �C�
� ��� ��

shell�expand�line �M�C�e� �� � � � � � � � � � � � � � � � � � ��

start�kbd�macro �C�x �� ��

T
tilde�expand �M��� ��� ��

transpose�chars �C�t� ��� �	

transpose�words �M�t� ��� �	

U
undo �C� � C�x C�u� ��

universal�argument �� ��

unix�line�discard �C�u� �	

unix�word�rubout �C�w�� � � � � � � � � � � � � � � � � � � �	� ��

upcase�word �M�u� ��� �	

Y
yank �C�y� �	� ��

yank�last�arg �M��� M� � � � � � � � � � � � � � � � � � �
�� ��

yank�nth�arg �M�C�y� ��
�� ��

yank�pop �M�y� �	� ��

Appendix F� Concept Index ���

Appendix F Concept Index

A
alias expansion ��

arithmetic evaluation �	

arithmetic expansion � 	

arithmetic� shell �	

arrays ��

B
background ��

Bash con�guration ��

Bash installation ��

Bourne shell �

brace expansion � 	�

builtin �

C
command editing ��

command execution ��

command expansion ��

command history ��

command search ��

command substitution � 	

command timing� �

commands� conditional �

commands� grouping � 		

commands� lists�

commands� looping �

commands� pipelines �

commands� shell �

commands� simple �

comments� shell �

con�guration ��

control operator �

D
directory stack ��

E
editing command lines ��

environment ��

evaluation� arithmetic �	

event designators ��

execution environment ��

exit status �� ��

expansion � 	�

expansion� arithmetic � 	

expansion� brace � 	�

expansion� �lename � 	�

expansion� parameter � 	�

expansion� pathname � 	�

expansion� tilde � 	�

expressions� arithmetic �	

expressions� conditional ��

F
�eld �

�lename �

�lename expansion � 	�

foreground ��

functions� shell � 	�

H
history builtins ��

history events ��

history expansion ��

history list ��

History� how to use ��

I
identi�er �

initialization �le� readline �
	

installation ��

interaction� readline ��

interactive shell ��� ��

J
job �

job control �� ��

K
kill ring �
�

killing text �
�

L
localization �

M
matching� pattern ��

metacharacter �

N
name �

��� Bash Reference Manual

notation� readline ��

O
operator� shell �

P
parameter expansion � 	�

parameters � 	�

parameters� positional � 	�

parameters� special � 	�

pathname expansion � 	�

pattern matching ��

pipeline �

POSIX �

POSIX Mode ��

process group �

process group ID �

process substitution � 	�

prompting ��

Q
quoting �

quoting� ANSI �

R
Readline� how to use ��

redirection� �	

reserved word �

restricted shell ��

return status �

S
shell arithmetic �	

shell function � 	�

shell script ��

shell variable � 	�

signal� �

signal handling ��

special builtin �

startup �les ��

suspending jobs� ��

T
tilde expansion � 	�

token �

V
variable� shell � 	�

W
word �

word splitting � 	�

Y
yanking text �
�

i

Table of Contents

� Introduction �
��� What is Bash� �
��� What is a shell� �

� De�nitions �

� Basic Shell Features� �
��� Shell Syntax �

����� Shell Operation �
����� Quoting �

������� Escape Character � 	
������� Single Quotes � 	
������� Double Quotes � 	
������� ANSI�C Quoting � 	
������� Locale�Speci
c Translation � � � � � � � � � � � � � � �

����� Comments �
��� Shell Commands �

����� Simple Commands �
����� Pipelines �
����� Lists of Commands �
����� Looping Constructs �
����� Conditional Constructs �
����	 Grouping Commands ��

��� Shell Functions� ��
��� Shell Parameters ��

����� Positional Parameters ��
����� Special Parameters ��

��� Shell Expansions ��
����� Brace Expansion ��
����� Tilde Expansion ��
����� Shell Parameter Expansion �	
����� Command Substitution ��
����� Arithmetic Expansion ��
����	 Process Substitution ��
����� Word Splitting ��
����� Filename Expansion ��

������� Pattern Matching ��
����� Quote Removal ��

��	 Redirections ��
��	�� Redirecting Input ��
��	�� Redirecting Output ��
��	�� Appending Redirected Output � � � � � � � � � � � � � � � � � � ��

ii Bash Reference Manual

��	�� Redirecting Standard Output and Standard Error
� ��

��	�� Here Documents ��
��	�	 Duplicating File Descriptors ��
��	�� Opening File Descriptors for Reading and Writing

� ��
��� Executing Commands ��

����� Simple Command Expansion ��
����� Command Search and Execution � � � � � � � � � � � � � � � � ��
����� Command Execution Environment � � � � � � � � � � � � � � ��
����� Environment ��
����� Exit Status� �	
����	 Signals �	

��� Shell Scripts ��

� Bourne Shell Style Features � � � � � � � � � � � � � � � ��
��� Bourne Shell Builtins ��
��� Bourne Shell Variables ��
��� Other Bourne Shell Features ��

����� Major Di�erences From The SVR��� Bourne Shell
� ��

����� Implementation Di�erences From The SVR��� Shell
� ��

� Bash Features ��
��� Invoking Bash ��
��� Bash Startup Files ��
��� Is This Shell Interactive� ��
��� Bash Builtin Commands ��
��� The Set Builtin ��
��	 Bash Conditional Expressions ��
��� Bash Variables ��
��� Shell Arithmetic � 	�
��� Aliases � 	�

����� Alias Builtins � 	�
���� Arrays � 	�
���� The Directory Stack � 	�
���� Controlling the Prompt � 		
���� The Restricted Shell � 	�
���� Bash POSIX Mode � 	�

	 Job Control � 	�
	�� Job Control Basics � 	�
	�� Job Control Builtins ��
	�� Job Control Variables ��

iii

 Using History Interactively � � � � � � � � � � � � � � � �
�
��� Bash History Facilities ��
��� Bash History Builtins ��
��� History Expansion� ��

����� Event Designators ��
����� Word Designators �	
����� Modi
ers �	

� Command Line Editing � � � � � � � � � � � � � � � � � � �
�
��� Introduction to Line Editing ��
��� Readline Interaction ��

����� Readline Bare Essentials ��
����� Readline Movement Commands � � � � � � � � � � � � � � � � � ��
����� Readline Killing Commands ��
����� Readline Arguments ��
����� Searching for Commands in the History � � � � � � � � � ��

��� Readline Init File ��
����� Readline Init File Syntax ��
����� Conditional Init Constructs ��
����� Sample Init File �	

��� Bindable Readline Commands ��
����� Commands For Moving ��
����� Commands For Manipulating The History � � � � � � � ��
����� Commands For Changing Text � � � � � � � � � � � � � � � � � ��
����� Killing And Yanking ��
����� Specifying Numeric Arguments � � � � � � � � � � � � � � � � � ��
����	 Letting Readline Type For You � � � � � � � � � � � � � � � � � ��
����� Keyboard Macros ��
����� Some Miscellaneous Commands � � � � � � � � � � � � � � � � � ��

��� Readline vi Mode �	

� Installing Bash �

��� Basic Installation� ��
��� Compilers and Options ��
��� Compiling For Multiple Architectures ��
��� Installation Names ��
��� Specifying the System Type ��
��	 Sharing Defaults ��
��� Operation Controls ��
��� Optional Features ��

Appendix A Reporting Bugs � � � � � � � � � � � � � � � �
�

Appendix B Index of Shell Builtin Commands
� �
�

iv Bash Reference Manual

Appendix C Shell Reserved Words � � � � � � � � � �

Appendix D Parameter and Variable Index � � �
�

Appendix E Function Index � � � � � � � � � � � � � � � � ���

Appendix F Concept Index � � � � � � � � � � � � � � � � ���

