ASM386 Assembly Language
Reference

Order Number: 469165-003

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:
Literature Distribution Center
Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641
Or you can call the following toll-free number: 1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local
Intel sales office. For your convenience, international sales office addresses are printed on the last page of
this document. Contact your local sales office to obtain the latest specifications before placing your order.

Intel Corporation (Intel) makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel assumes no
responsibility for any errors that may appear in this document. Intel makes no commitment to update nor to
keep current the information contained in this document. No part of this document may be copied or
reproduced in any form or by any means without prior written consent of Intel. Intel retains the right to make
changes to these specifications at any time, without notice.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's Software License Agreement.
U.S. GOVERNMENT RESTRICTED RIGHTS: These software products and documentation were
developed at private expense and are provided with "RESTRICTED RIGHTS." Use, duplication, or
disclosure by the Government is subject to restrictions as set forth in FAR 52.227-14 and

DFAR 252.227-7013 et seq. or its successor.

The Intel logo, i960, Pentium, and iRMX are registered trademarks of Intel Corporation, registered in the
United States of America and other countries. Above, i287, i386, i387, i486, Intel287, Intel386, Intel387,
Intel486, Intel487 and EtherExpress are trademarks of Intel Corporation.

Adaptec is a registered trademark of Adaptec, Inc. AT, IBM and PS/2 are registered trademarks and PC/XT
is a trademark of International Business Machines Corporation. All Borland products are trademarks or
registered trademarks of Borland International, Inc. CodeView, Microsoft, MS, MS-DOS and XENIX are
registered trademarks of Microsoft Corporation. Comtrol is a registered trademark and HOSTESS is a
trademark of Comtrol Corporation. DT2806 is a trademark of Data Translation, Inc. Ethernet is a registered
trademark of Xerox Corporation. Hayes is a registered trademark of Hayes Microcomputer Products.
Hazeltine and Executive 80 are trademarks of Hazeltine Corporation. Hewlett-Packard is a registered
trademark of Hewlett-Packard Co. MIXO is a registered trademark of MIX Software, Incorporated. MIX is an
acronym for Modular Interface eXtension. MPI is a trademark of Centralp Automatismes (S.A.). NetWare
and Novell are registered trademarks of Novell Corp. NFS is a trademark of Sun Microsystems, Inc. Phar
Lap is a trademark of Phar Lap Software, Inc. Soft-Scope is a registered trademark of Concurrent Sciences,
inc. TeleVideo is a trademark of TeleVideo Systems, Inc. UNIX is a registered trademark in the United
States and other countries, licensed exclusively through X/Open Company Limited. VAX is a registered
trademark and VMS is a trademark of Digital Equipment Corporation. Visual Basic and Visual C++ are
trademarks of Microsoft Corporation. All Watcom products are trademarks or registered trademarks of
Watcom International Corp. Windows, Windows 95 and Windows for Workgroups are registered trademarks
and Windows NT is a trademark of Microsoft in the U.S. and other countries. Wyse is a registered trademark
of Wyse Technology. Zentec is a trademark of Zentec Corporation. Other trademarks and brands are the
property of their respective owners.

Copyright © 1991 - 1995 Intel Corporation, All Rights Reserved

REVISION HISTORY DATE
-001 Original Issue 12/91
-002 Update for Release 2.0 of the OS 08/92
-003 Update for Release 2.2 of the OS 11/95

Quick Contents

Chapter 1. Introduction

Chapter 2. Segmentation

Chapter 3. Program Linkage Directives
Chapter 4. Defining and Initializing Data
Chapter 5. Accessing Data

Chapter 6. Processor Instructions
Chapter 7. Floating-point Instructions
Chapter 8. Textmacros

Chapter 9. Codemacros

Appendix A. Processor Architecture Summary

Appendix B. Sample Program

Appendix C. Keywords and Reserved Words

Appendix D. ASCII Tables

Appendix E. Differences Between ASM386 and ASM286
Appendix F. Differences Between the Intel386™ and 376

Processors

Appendix G. Differences Between the Intel386 and Intel486™
Processors

Index

Service Information

ASM386 Assembly Language Reference

Notational Conventions

This manual uses the following conventions:

UPPERCASE

italic

[]

In syntax descriptions, uppercase indicates keywords or
reserved words that must be spelled exactly as shown. They
can be entered in either uppercase or lowercase.

Within the text, uppercase indicates a mnemonic, operator,
or example code.

An item in italic is a metasymbol that may be replaced with
an item that fulfills the rules for that symbol.

In syntax descriptions, square brackets indicate an optional
part of a statement. If square brackets are required, the
syntax shows them in bold fact type, as [].

However, in certain register expressions, brackets are
required within the actual statement. The descriptions of
such statements will indicate this requirement.

In syntax descriptions, an ellipsis indicates that the preceding
argument or parameter may be repeated.

In syntax descriptions, an ellipsis, preceded by a comma and
enclosed in brackets, indicates that the immediately
preceding item may be repeated, but that each repetition
must be separated by a comma.

In examples, a vertical ellipsis indicates that some lines of
code have been omitted.

« In syntax descriptions, any punctuation other than ellipses and brackets must
be entered as shown. For example, the colon in the following syntax
description must be included in a statement:

label:[instruction]

e User input, command syntax and computer output are printed
like this, in regular monospaced text.

e In examples combining user input and computer output,
user input is printed like this, in bold monospaced

text.

Throughout this manual, the word "may" means "is permitted to".

|:| Note

Notes indicate important information.

A CAUTION

Cautions indicate situations which may damage hardware or data.

Related Publications

The following Intel manuals contain detailed information about processor
architecture and the assembler for your development system:

« 80386 Programmer's Reference Manuatler number 230985, describes
processor architecture from an application or system programmer's point of
view.

 ASMS386 Macro Assembler Operating Instructiomsler number 451290 for
DOS and 167675 for VAX/VMS, describes the assembler controls, assembler
output, and assembler error messages.

* Intel386™ DX Microprocessor Hardware Reference Manoeder number
231732, describes the processor from a system engineer's or hardware
designer's point of view.

The following Intel manuals contain detailed information about using floating-
point coprocessors with the processor:

e 80386 Programmer's Reference Manuatler number 230985, Chapter 11,
describes coprocessing and multiprocessing.

e 80387 Programmer's Reference Manuatler number 231917.

e IAPX 286 Programmer's Reference Manuwaber number 210498, Numerics
Supplement section, provides information about the Intel287™ coprocessor.

You may also need the processor systems utilities manual(s).

ASM386 Assembly Language Reference 5

Contents

1 Introduction
ADOUL ThiS MANUALcoeiiiii e 23
ADOUL THIiS CRAPLEI ...ttt e e e e e e e 23
LeXiCal EIBMENLSouiiiii e 24

(O g =T =Tt (] G =] SRR 24

ToKens and SEPAratorS.........ccooiiiiiiiiiiiiiiiiiiiii e e e e e e e e e e 24
LOQICAl SPACES ..vvvuiiiiiie i 25
D= 1] T (=T €T PP 25
IAENETIEIS .o 26
Continued Statements and COMMENLS.............coovvvviiiiiiiieiiieeiieeeeeeviiiieens 26
AsSEMDBIEr StateMENTScoiii i 29
ASSEMDIET DIFECLIVES ...vvveiiiiiiiiiiiiii s 29
AssemMDBIEr INSLIUCLIONSvviiiiiiiiiiiiii e 31
Specifying Assembler StatemMeNtS...........uvuvviiiiiiiiii 38
Specifying Directive Statements............coovvvvvivviiiiiiiiieeeeiiiiiiiiiiiinnns 38
Specifying Instruction Statements...........cccccovvveeiiiiiiiie e, 39
Assembler Program StrUuCtUIre..........coevieeiiiiiiiii e s a0 40
NAME DIFCHIVE ...t 41
STACKSEG DIr€CHVE......cceveeiiiiiiiiiiiiiieiee e 42
SEGMENT Directive for Data Segments.......cccoeeeevvvvviviiiiie e, 42
SEGMENT Directive for the Code Segment............cceeevvveevvvveiiiiennneenn, 43
ASSUME DIFCHVE.....cceiiiiiiiiiiii ettt 44
END DIFECLIVE ...vvtviiiiei ittt s 45
Initializing Segment Registers with INStructions.............ccccccceeieieeeeeens 45
Initializing DS, ES, FS, and GS..........ccooiiiiiiiiiiiiie e 46
INItIALIZING SS. it a7
2 Segmentation
Overview of SegmMeNtatioNc.uuu e 49
Defining Code, Data, and Stack Segmentsccccceviiiiieeeeeeeeeeeeeeeee, 51
SEGMENT..ENDS Dir€CHIVEcccoeiiiiiiiieeeee et 51
Specifying EO, ER, RO, or RW ACCESS........ccvvvvviiiiiiiiiiiiiiiiiiiienenns 52
Specifying USE32 0r USELBcuuiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e 52

ASM386 Assembly Language Reference Contents 7

Specifying PUBLIC or COMMON...........cuuuiiiiiiiiieeiiiiieeeiiiiiiiiennn
Multiple Definitions for a Segment..............uvvvvveviiiiiiiinniinninnnnnnnn
Lexically Nested or Embedded Segment Definitions

STACKSEG Dilr€CHVE .. .cuiieiiei et e eeennns

Combining Stack and Data Segmentsccccceeevvviiiiiiiiinneennnnn.

ASSUMING SEOMENT ACCESS ...iiiiiiiiiiiiiiieeieiieieiaeeereeeeeeenenennensssss ———

ASSUME DIFECHVE ...ttt
Specifying Segment Selectors with ASSUME...........ccccvvvveeenn.n.
Specifying ASSUME NOTHING and ASSUME CS:NOTHING....

Program Linkage Directives
Modular Programming with NAME and ENDccccooiiiiiiiiccenens

NAME DIFECLIVE ...ivveieiii et eeaaaes
END DIFECHIVE....uiiiiieiii et
Defining Shared Data with PUBLIC, EXTRN, and COMMcccccc.....
PUBLIC DIFECLIVEvuiiiiiieeeie et
EXTRN Dir€CHVE....cvuiiiiiiiiie et
Placement of EXTRNiiiiiiiii e

COMM DITECLIVE .. ettt s e a e eas

67
68
69
71
71
72
73
74

Defining And Initializing Data

Overview of Assembler Labels and Variablesccoooviiviiiiiiiinninnnnn.
Assembler Label and Variable TYPeSuuvvviiiiiiiiiiiiiiiiiiiiieeeneenn

Assembler Data ValUEs..........ooouiiieiieieee e e s

DaAta TYPES ..ottt aaas
Numeric Data Value Ranges..........ccoovvviiviiviiiiiiiiiiiiiiiiiiene s
Specifying Assembler Data Values.............ccccceeiiiiiie,
Initializing Variablescccee i
How the Assembler Evaluates Constant Expressions
VANADIES ..o ————— s
Simple Data AlIOCALIONSvvvviiiiiiiiiiee e
Variable AtrDULEScoviieeie e
Defining and Initializing Variables of a Simple Typeccccvvvvvveeeeeee.
DBIT Dir€CLVE.....cceiiiiiieieeeee et e e e e e
DB DIFECHIVE ..ot
DW DIFECHIVE ...ttt e e
DD DIlECLIVEceeiiiieeeeeiiitee ettt e e e e e e e e e e eeeeaees
D e BT = Tox 1)Y= TP
[T I €= Tod 1Y
DT DIFECLIVE oo
Defining Compound Types and Their Variables..............ccccevvvvnnnnnn.

Contents

79

Record Allocation StatemMeNt..........coveiiviiiiiiiiieeiee e 102
STRUC DirBCHVE vttt e e 104
Structure Allocation StatemMENt..........cviiiiiiiiie e 106
DUP ClAUSE....ouniiitieeii ettt et e e e e e e e e eaaeaeen 109
0= o 1] F 111
Label AfFIDULES ..oveiiiiicie e 112
The LOCAtion COUNTEL......cccvuiiiiii et 113
(@] 2 LT BT =Tox 11 ISP 114
EVEN DIFECHIVE ...ttt 114
ALIGN DIFECLIVE .vuiiiiiiciiie e 115
LABEL DilrBCHIVE ...uuiiiiiiiiii ettt 116
Defining Implicit NEAR LabelS......cccoooiiiiiiiiii, 118
[2 (O O B[¢=To1 1) V7 TP 119
USING SYMDBOKIC DAtauuueciiiiiiiiie e e 122
L@ TW B = Tox {11 123
PURGE DIFECHIVE .. ccvuiiiiiieeiie ettt e e e e 125

Accessing Data

Overview of Assembler EXPresSSioNnSccoouuuiiiiiiiiiiiiiiie e 127
CoNStANt EXPrESSIONS ...uutiiiiiiii e eiieeeieiiiire e e e e e e e e e e e 128
AdAresSS EXPreSSIONS......cceviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeiiitis s s e e aeaeeeeeeseeenrnne 128

Variable and Label Names as Address Expressionscccuue.. 129
Register EXPreSSIONS.....cooceiiiiiiiiieeeeeeiii e enmmmme s 129
Combining Simple Address and Register Expressions 130
Structure Fields in Address EXPressionseeeeeeeevieeeeeenn. 131
Relocatable EXPresSioNS ... 132

(O] 01T £=1 (0] 1= TUT U 134
(@] o1 -1 o] gl o ¢=To=To (=] o [od SRR 136
1SOIAtION OPEIALOrS .. oo i i e e e e e 137
Multiplication and DiviSiON OPEratorsS.............uuvveevereeieieeeeereeeeeeeeeeeeeee 138
Shift OPEratorsS ... ccooiii i 139
Addition and Subtraction Operators. ... 140
Relational OPeratorS.........ccvviuiiii e e e e e 141
(oo [[or-1 I @] o<1 -1 (o] £ T 142
Attribute Value OPEeratorscocevveviiiiiiee e 144

THIS OPEIatOr....cccuuieieii e e e e e mmemmmm e 144
5] =l C R @] 01T = 1 (o] S 145
OFFSET OPEratOr.......ccvevieiiieee e e e e e e e e eea e eees 146
BITOFFSET OPEIratOr.....cccuuieiiiiieeiieeiiieeeeiieeeeseeene e e e e eaneeennns 147
LENGTH OpPerator.......cccvuieiiieeeiiii i e e eeeeie e e e e e s mewmmmnn 149
TYPE OPEIrator.......ciieiieeeii e e e emm e 149

ASM386 Assembly Language Reference Contents 9

SIZE OPEIALON ...ttt 151

STACKSTART OPEIALOL......uiieeieieeaeiiieeeiie e 152
Attribute OVErride OPEIatOrSuueeeriiiiiiieiee e e e e e e e eeaeaaees 152
Segment Override OPeratorccoeeeeeeeeeeeeeeeeeeeeeeeeeee 153
PTR OPEIALON .. .ciieiiieit et eenas 155
SHORT OPEIALQL.....ccuuiiiiieiiiieeii et e e 157
Record Specific OPEratorS..........uuuvevveeiiiiriiiiiiiieeeiieeieenien s 158
WIDTH OPEIALOF ...t eiiiiiiiii ettt eeeeeee s 158
MASK OPEIALON. ...ttt ettt e e e e eees 159
Using Field Names as Shift Counts............cccceeevii i, 160
INSLIUCLION OPEIANGScevvviiiiiiiiiiiiie et eeeeeeeeeeeeeeeeee 161
Register Operandsccoeeeeeiiiiiiiiiieeeee 161
IMMmediate OPErandS.........oovviiiiiiiiiiiiie e 162
V=T o g [o] YA @ o 1=T =T o o PR 162
Memory Addressing Methods...........coooeviiiiiieiiiiii e 163
Direct Memory AddreSSiNg......coeeeiveeiiieii e 164
Indirect MemMOory AddreSSiNgoiieeeveeeeiiiie e e e 164
Register Indirect AAdressing...........ceevieeiieiiiiiiie e, 166
Based AdAreSSinNg........coveviieiiiiieeeie e 166
Based Indexed AdAresSsing.........ccoevieeeiiieiiiiiie e 167
INndexed AdAreSSING.......ccouuuiiiiiiiiii e e 167
SCAIING e 168
Default Segment Registers and Anonymous References 169
2 1Y Lo £ =1ST] T Vo 170
6 Processor Instructions
Overview of the Processor INStruction Set............uueiviiiiiiiiiiiiiinieeceeiiien, 171
Data Transfer INStrUCLIONScvvvvviiiiiiiiiiiiiiiiiiiiii s 172
Instructions That Assign Data Valuesccccoeeeeiiieeeeee, 172
Instructions That Adjust Dataceevvvvvviiiiviiiiiiiiiiiiiiiiieens 176
Instructions That Make Stack Transfers..........cccccvvvveees cmmmmnnes 177
Instructions That Yield Definitive Flag Values...............cccccuvnnee 178
Conditional Instructions That Test Flag Values............................. 179
Control INSLIUCLIONS ...oooiee e e 180
SYSLEM INSLIUCLIONS ...iiiiiiiiiiiiiiiiiiiiiie e e e e e e eeaeaen 181
INSLrUCHION StAtEMENTS ...coiiiiii e 182
Instruction Statement SYNtAXoovvvviiiiiiiiiiii e 182
INSLrUCHION ALEHDULESeiiveiiiiiiiiiiee e 183
Address Size AtHDULE ... 184
Operand Size AUHDULEuvvveeiiii s 184
Stack Size ALDULEoooiiiie e 185

10 Contents

Instruction Encoding FOrmatooooviiiiiiiiiiiiiiiiiicceeeeeveevevvvvveiiieeees 185

INstruction PrefiX COUESovvvvviviiiiiiiiiiiiiiiiviieiviiei s 186
MOORM and SIB BYLES........uuuuuiiiiiiieeiiiiiieiiiiiiiiies e e e e e e eeeeeaeeanes 188
Processor Instruction Set Reference ... 193
How to Read the Instruction Set Reference Pages............ccccceeeeviennnnnn. 193
OPCOAE COIUMN....eiiiiiiiee e e e e e e e e e e e e eeeeeeees 194
INStruction ColUMN......cooiiiiiiii 195
ClOCKS COIUMN ...t 200
Description ColUMN..........ooiiiiiiii e 201
OPEration SECHON.......ceiiiiiiieceie e e e e 201
DISCUSSION SECHON......iiiiiiiiiiiiiiiiiiiiirr e e e e e e e e e e eeeeens 207
Flags Affected SeCtion..........ccooiiiiiiiiiiiii e 207
Exceptions by Mode Section ... 207
How to LOOK Up an INStrUCLIONeeveeiiiiieiii e, 210
Processor INSIUCHONS. . ..uiiiie e 212
AAA ASCII Adjust after Addition............ccccceeeeiiieeiieeeee e, 212
AAD ASCII Adjust AX before Division...........cccceveeveviiineeeennnnnn, 214
AAM ASCII Adjust AX after Multiplycceeeiiiiiiiiiieenn 215
AAS ASCII Adjust AL after Subtractioncccccoeeeeiiiiiinnee. 216
ADC Add With Carry......ccceviiiiii e 218
ADD (Integer) Add.......ccovviiiiii i s 220
AND Logical AND 222
ARPL Adjust RPL Field of Selector...........cccvvvvviiiiieviveiiiieeeee, 224
BOUND Check Array Index Against Boundsccccoeveeeeeeninnnnns 226
BSF Bit SCAN FOrWard..........uuuiiiiiiiiiee e 228
BSR Bit SCAN REVEISE ..uuvuiiiiiii i 230
BSWAP Byte Swap (not available on Intel386 or
376 PrOCESSOIS)..ceuuuueeeeeitteereeeiiseeeeeetaseeeeetasaeeeertaeeeennnnaaaaees 232
BT Bt TSIttt 233
BTC Bit Test and Complement.........cccoovieeieeeiiiiiiiiieeeeeeeiiiies 236
BTR Bit Test and ReSEet.......ccovvuuiiiiiiiieiii e 239
BTS Bit TeStand Setl.......covieiiiiiiiiiieeiieee e 242
(07 N I I 07 1| I = o ToT =T 11] - 245
CBW/CWDE Convert Byte to Word/Convert Word to Dword 252
CLC Clear Carry Flaguuuueueeiiniiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeiiiiies 253
CLD Clear DireCtion FIagccoooviiiiieeiiiiiiiieeei 254
CLI Clear INterrupt FIaguuuveviiiiiiiiiiieeeee e 255
CLTS Clear Task Switched Flag in CRO........cccccccvvviiiiiiiiniinnnnnn. 256
CMC Complement Carry Flag..........cccooeeeiiiiinieieeeeeeeeeeeeeeeeeee 257
CMP Compare TWO Operands.........cooeevveeeeeiiiieeeeeeeeeeeeeeeeeeeeeee 258

CMPS/CMPSB/CMPSW/CMPSD Compare String Operands 260
CMPXCHG Compare Exchange (not available on Intel386
OF 376 PrOCESSOIS) ... eeeeitieeertiiiiaaaa s e e e e et et eeeabb b a e e e eeeeeees 263

ASM386 Assembly Language Reference Contents 11

6 Processor Instructions (continued)
CWD/CDQ Convert Word to Dword/Convert Dword to Qword.. 265

DAA Decimal Adjust AL after Addition..................cceeeeee. 267
DAS Decimal Adjust AL after Subtraction..................cooeeeeiinn 268
DEC Decrement by L......ccoooiiiiiiiiiiiiiiiiieiiiiiiiiins e 269
DIV UNnsigned DIVIAEoovviviiiiiiiiiiiiiine e 270
ENTER Make Stack Frame for Procedure Parameters 272
[I o - 1 RSP 274
IDIV SIigNed DIVIAEcvviiiiiiiiiiiiiieiiieeee e eeeeeeeeevieeenees 275
IMUL Signed MUtIPIYoovviiiiiiiieeeeeeeiiies 277
IN INPUL FrOM POIt e 280
INC Increment BY L.....oooiiiiiiiiiiiiiiiiiiieriie e 282
INS/INSB/INSW/INSD Input from Port to Stringccvvvveeee. 283
INT/INTO Transfer Control to Interrupt Procedure..................... 286
INVD Invalidate Data Cache (not available on Intel386 or 376

0] 011 TSTYo) £ 292
INVLPG Invalidate Paging Cache Entry (not available on

INtEI386 OF 376 PrOCESSOIS) ..evvvvriiieeeieeiiiiieeeeeeeeireea e e e e e eaeen s 293
IRET/IRETD Interrupt REtUIMNccoovvviiiiieeeeeece e 294
Jcc Jump if Condition IS Metccovvvviiiii e 299
JMP JUMD e e e 304
LAHF Load Flags into AH RegiSter.........cccoovvvvviiiiiieviiiiiiieeeeas 310
LAR Load Access RIghtS.........cceiiiiiiiiiiiii e 311
LDS/LES/LFS/LGS/LSS Load Full Pointer.........cccccceeeeeeenennnnn. 314
LEA Load Effective Address ..., 317
LEAVE High Level Procedure EXit.........cccoevvviiiiierieiiiiiiineeeeeenns 319

LGDT/LIDT Load Global/Interrupt Descriptor Table Register ... 320
LGDTW/LGDTD/LIDTW/LIDTD Load Global/Interrupt
Descriptor Table Register with WORD/DWORD Operand.. 322

LLDT Load Local Descriptor Table Register........ccccccvvvciiveeennnns 324
LMSW Load Machine Status Word ..., 326
LOCK Assert Bus LOCK# Signal PrefiX.......ccccccoiiiiiiiis . 327
LODS/LODSB/LODSW/LODSD Load String Operand......... 329
LOOP/LOOPcond Loop Control with (E)CX Counter 331
LSL Load Segment LimMit..........eeeiiiniiiiiiieeeeeeeee e 333
LTR Load Task REQISIer.......uuuuueiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeiiiiis 336
MOV MOVE DAtceeeevriiiiieiiiiiiie e s 338
MOV Move to/from Special Registers..........cccccoeevvviiiinnnnnnn. 341
MOVS/MOVSB/MOVSW/MOVSD Move String to String...... 343
MOVSX Move with Sign-Extendooo oo 346
MOVZX Move with Zero-Extend.............ccccoiiiiiiiiii, 347
MUL Unsigned Multiplication of AL, AX or EAX ... 348
NEG Two's Complement Negationuueeeeeiiinnneeeieeeeeeeeen 350

12 Contents

NOP NO OPEratiONccoeiiiiiieeieeiiiiiiiiiees e s s 351

NOT One's Complement Negation............ccceeeeeiiiiiiiiee, 352
OR Logical INCIUSIVE ORccooiiiiiiiiiiiiiiiir e 353
OUT OUPUL tO POIt ... 355
OUTS/OUTSB/OUTSW/OUTSD Output String to Patrt.......... 357
POP POP Stack TOP «.ooeeeeiiiiiiiiieeeeeeeiieiii e 360
POPA/POPAD Pop All General RegiSters...........cvvviiieeeeeeennn. 363
POPF/POPFD Pop Stack into FLAGS or EFLAGS Register. 365
PUSH Push Operand onto the Stack..........cccceeeiviiiiiiiiiieiiiiiiiinnnns 367
PUSHA/PUSHAD Push all General Registers.............cccc.uuue. 369
PUSHF/PUSHFD Push Flags Register onto the Stack.......... 371
RCL/RCR/ROL/ROR ROtaAte.......ccceiiiiiiiiiiieee e 372
RET Return from Procedurecccccvvviiiiiieeeeiiiiiiiiieeeeeeeeeeen 381
SAHF Store AHINtO Flagscooveeiiiiiiiie e 386
SAL/SAR/SHL/SHR Shiff.......cuvviiiiiiiiiiiiiiiiiiiie e 387
SBB Integer Subtraction with Borrow...........cc..oooovvvviiiiininn e, 391
SCAS/SCASB/SCASW/SCASD Compare String Data.......... 393
SETcc Byte Set on Conditionccooveeviiiiiiiieiceeecie e 395

SGDT/SIDT Store Global/Interrupt Descriptor Table Register 397
SGDTW/SGDTD/SIDTW/SIDTD Store Global/Interrupt
Descriptor Table Register with WORD/DWORD Operand.. 399

SHLD Double Precision Shift Leftccccceeviiiiiiiee e, 400
SHRD Double Precision Shift Right........ccccccovvviiiiiiiniieriin, 402
SLDT Store Local Descriptor Table Register.........ccccvvvvieieeeennnns 404
SMSW Store Machine Status Word............oooccvveeveeiinnninieeeeeeenn 405
STC SetCarry Flagccovvuiiiiieeeeies e 406
STD SetDirection Flagcccuviiieiiiiiiii e 407
STl Set INterrupt FIag.....cooveeeiii e 408
STOS/STOSB/STOSW/STOSD Store String Data................. 409
STR Store Task ReQIStErccovviiiiiiiiiiiiiiie e 411
SUB Integer SUbtraCtion............cooiviiiiiiiiiiiiiiiiiiii e 412
TEST Logical COMPAre.........cciiiiiiiiiiiiiiiiiire e 414
VERR/VERW Verify a Segment for Reading or Writing............. 416
WAIT Wait until BUSY# Pin is Inactive (HIGH) ... 418
WBINVD Write Back And Invalidate Data Cache

(not available on Intel386 or 376 ProcesSOorS)uevvvvveereveenns 419
XADD Exchange Add (not available on Intel386 or

376 PrOCESSOIS). . ueuiiieeeeee ettt et 420
XCHG Exchange Register/Memory with Register...........ccccccee... 422
XLAT/XLATB Table Look-up Translationccccceevvvvevennnne 424
XOR Logical EXclusive OR..........ccoooiiiiiiiiiiiiiiieeeeeeeeeeeies 426

ASM386 Assembly Language Reference Contents 13

14

Floating-Point Instructions

Floating-point Coprocessor ArchiteCturecooiiieiiiiiiiiiiineeeeeeeinn 429
Floating-poinNt STACKuuuueiiiiiiiiiie e 430
TNV o 1011 o SRS 431

SEAtUS WOIo a e 433
CONTOL WOT. ..o e e e e e e e e eeeeeaees 435
JLIE=To AL o] o ISP 438
Operation Locator FOrMAatSuueeiiiiiiiiiiieeeeiieieeeeeeeeeeeeeeeeviiiieeees 439
Floating-point Coprocessor Data Formats...........ccccccvvvvvviiiiiiiieceeeeee, 440

(0] o] foTol=T1]o 1 g @] o] = 11 o] o W TSR 443
NUMETIC PrOCESSINGcciiiiiiiiiiiiieeieiiiiiiise s e e ereen e e e e e 444

Overview of the Floating-point Coprocessor Instruction Set...................... 446
Data Transfer INStrUCIONScovvvviiiiiiiiiiiiiiiiiiiiii s 446
Constant INSTIUCLIONSvuvviiiiiiiiieiee e eeeeee 447
AlgebraiC INSrUCLIONS........coii i 448
Comparison INStTUCHIONSuoiiiiiiie e emeeeeean 451
Transcendental INStIUCLIONSueeiiiiiiii e 452
Coprocessor Control INStrUCtiONS..........vviiiie e, 453

Floating-point Coprocessor Instruction Set Referenceccccevvvveeieennnn, 454
How to Read the Instruction Set Reference Pages.........ccccvvvvvvvvvennnnnn. 45¢

(@] oTolo o[- I @Fo] [V 511 o 1S 454
INStruction ColUMNooiiiiiiiiiiii e 455
ClOCKS COIUMNS.....oviiiiiiiiiiiee e 455
Description COlUMN.......covviiiii e e eeeeeeee 455
DISCUSSION SECHON. ...ttt 456
ot =Y o1 [0] ST 1 o 456
How to Look Up an INStruCtionccoevuveiiiiieiiieiiie e 456
F2XM1 CompPUE Y =2 - L. 457
FABS ADSOIUte ValUe........oooviiiiiiiiiiiiiiiie e 458
FADD/FADDP Real Addition............uueiiiiiieiiiiiiiiiciiiiiieeee e 459
FBLD BCD Load to Realcoovvvvviiiiiiiiieeeecine e 460
FBSTP BCD Store and POP .ccooooveviiiiieeeeeeeeeeeeeeeee 461
FCHS Change Sign of Real NUMDEer.........ccccoiiiiiiiiiiiiiiiiieens 462
FCLEX/FNCLEX Clear Floating-point Coprocessor Exceptions 463
FCOM/FCOMP/FCOMPP Compare Real Numbers.............. 464
FCOS Compute Y = COS(X) cooveeeiiiiieieieieeeeeeeeeeeeeeeeee e 466
FDECSTP Decrement Floating-point Stack Pointer.................... 467
FDIV/FDIVP/FDIVR/FDIVRP Real Divide/Real
REVEISE DIVIAEu i 468
FFREE Free Floating-point Stack ENntry...........ccocoeeiiiiiiiiiiiiinnns 469
FIADD Integer Add to Real.........uuuiiiiiiiiiiiiiiii e 470
FICOM/FICOMP Integer Compare with Real.............cccuvveeeeeee. 471
Contents

FIDIV/IFIDIVR Integer Divide into Real...............coeeeeeiiieees 473

FILD Integer Load into Realcoooeeeeiiiiiiiiieeiiiiis 474
FIMUL Integer Multiply with Real..........cccooeiiiiiiini, 475
FINCSTP Increment Floating-point Stack Pointer....................... 476
FINIT/ENINIT Initialize Floating-point Coprocessor................... 477
FIST/FISTP Integer Store from Realccccccciiiiin, 479
FISUB/FISUBR Integer Subtract from Realoo. 480
FLD Load Real.......ccoiiiiiiiiiiiiieeeeee e 481
FLDCW Load Floating-point Coprocessor Control Word............ 482
FLDENV Load Floating-point Coprocessor Environment............ 483
FLDcon Load Real CONSLaNtccvvvveeriiiiiiiiiiiiiee e 484
FMUL/FMULP Multiply Real.........coccoiiiiiiiiiiiieee e, 485
FNOP NO OPEerationuuueueiiiiiiiiiieeeeiiieeeeeeeeeeeeeeeeeeveaeeseeees 486
FPATAN Compute R = Partial Arctangent ..., 487
FPREM/FPREM1 Partial Remainder...........occovvieviieeniiiiiiiieeneenn, 489
FPTAN Compute Y = Partial Tan(X)cccooeveeeviiiiiiiiieeeeeeeeviinnnn. 492
FRNDINT Round to INtEQerccevviiiiii e, 493

FRSTOR Restore Floating-point Coprocessor Machine State 494
FSAVE/FNSAVE Save Floating-point Coprocessor

MacChing Stateooviiiiiii 495
FSCALE Scale Exponentof Real.......cccoooeevviiiiiiiiiiiiiiiiiie e, 499
FSETPM Set Protected MOAevuvvviiiiiiiiiiiieieeiieeeeee e 500
FSIN Compute Y = SiN(X) cooeeeeeeeiiii e 501
FSINCOS Compute Y =Sin(X) and Y = CoS(X)ooeevvrvrrvrerrnnnnnn 502
FSQRT Square ROOT.......ccuiviiiiiieiiiie e v 503
FST/FSTP Store Real/Store Real and Pop..........ccccooveeevv e 504
FSTCW/FNSTCW Store Floating-point Coprocessor

CONFOL WOK ..ot 505
FSTENV/FNSTENV Store Floating-point Coprocessor

1Y T (0] o1 0= o) S 506
FSTSW/FNSTSW Store Floating-point Coprocessor Status Word 507
FSUB/FSUBP/FSUBR/FSUBRP Subtract Real...................... 508
FTST Test Real (Compare t0 Zero)ccooevvvvveiiiiieeeeeeeeeeeeeeeeeeeee 509
FUCOM/FUCOMP/FUCOMPP Unordered Comparison of

Real NUMDEIS ... e e e eees 510
FWAIT Wait for Floating-point Operation Complete 512
FXAM Examine Floating-point Stack TOPeevvvvvviiiiiiiiiniinnns 513
FXCH Exchange Real Numbers in Stack............ccooeiiiiiieeeennnn. 514
FXTRACT Extract Exponent and Significand of Real................. 515
FYL2X Compute Y * l0@X........cccooiiiiiiiiiiiiiiic i 517
FYL2XP1 Compute Y * log(X + 1) cccoooiiiiiiiiiiiiiiiiiieec, 517

ASM386 Assembly Language Reference Contents 15

8

16

Textmacros

(12T YT RN 519
MACIO PrOCESSING. . uuuuiiiieeiiieieeiieiie e e et a e e e e e e e e eeeeeeane 521
Macro Calls and Call Patterns.........ccooocoviiiiiiiie e 521
Macro Processor Scanning Modes and Macro Expansians........... 522
Predefined MAaCIOS.........coiiieiiiiie e e e e 523
MaCIO ArQUIMENTScceti ittt e e e e 525

BalanCed TeXt.....oiiiiiiii e 525
Delimiters in Call Patterns.........ccoooveiiiiiiiiii e 526
IAENTIFIEIS (oo 527
EXPIESSIONS. ..tteiiiie e e ettt e et e e e e e e e e e 527

Argument Evaluations ...t 528

Predefined Macro REfEreNCeuiiiiiiiiiiiiie e 52¢
)] N = o o T 530
2] = Tod (T 1Y, = Vol o 534
RS otz 1o L3N, = Uod o N 535
COMMENT MACKO.....uiiiiii et e e e e e e e aaans 537
METACHAR MACIO.....cieiiieiii e e e e e e e e e e eeees 538
Y I 1V = T o 539
] = Y, = 1o o 540
Y = Tod o PP PT PN 541
R AT 1 Y = Yo o 543
REPEAT MACKO ...ttt et e e e e 544
I I\ = Tod o PP PPRUPTUPRN 545
String CompPariSON MACIOSuvuiieeiieeeiiiee e ee e e e e e e et e e e eeeraan 546
I V1Y = T o 548
S0 = A0 I 1Y/ = Vo] o T 548
N O o T/ Tl o T 549
COoNSO0IE 1/O MACIOS......uuiieiiieiiiee ettt e e e et o e 551

Scanning Modes, Delimiters, and Macro EXpansions..............ccccceevvvvnnnnnnn. 552
Normal and Literal Scanning MOUES...........uuuuvuiiiiiiiiiiiieeee e 552
MaCIO DelIMITEIS.u i 553

Literal DelimItersue i 553

Implied Blank Delimiters. ..o 555

Identifier DElIMILErScoovviiiii e 555
Algorithm for Evaluating Macro Calls............cccoeeeiii 556
Contents

9 Codemacros

OVEBIVIBW. ..ttt ettt e ettt e e e ettt e e e e e bt e e e e eaa e e e eeaban e eas 559
Codemacro Definitions and CallSccoeviiiiiiiiiiieeeeeeeeeeee, 560
Processor INStruCtion FOIMAL...........uuueieeieiiiiiieiecieieeee e e e e e e e ee e 562

CodemAaCcrO REFEIENCEuuviiiiiiii i e e e 565
CODEMACRO DIr€CHVE.cceiiieei ittt ettt e e 566
Formal Parameters and SPecCifiers........ccocoviiiiiie 568
Formal Parameter MOdIfiers............oooviviiiiiiiiiiiiiicee e 569
Formal Parameter Range SPecCifiers......ccccovvvviiiiiiiieeeeee, 571
PREFIX67 DIr€CLVEccceeeiiiiiiiiiieeeititiie e emmmmmoe s 572
PREFIX66 DIr€CLIVEccceeiiiiiiiiiieeeeiiiiiiiii e emmmmmoe s 572
SEGFIX DIFECHVE ...ccevvviiiiiiiiiiiiiiiee st eees e 574
NOSEGFIX DIFECHVE.....uuuiiiieie et 575
WARNING Dir€CHVE ...uvvviiiiiieiiiieeeeeeeeeeeeeeeee e e 576
MODRM DIFECLIVE ...ttt it e e ettt e e s e e e e e e aeeeeees 577
Data Initialization DIFeCHIVES..........ccoviiiiiiiiiiiiiiirr e 578
Record Initialization DIreCHIVEuvuiiiiiiiiiiiiiee e 579
Using the Dot Operator to Shift Parameters.........cccooovvevvvviiiieiiiieeeennnn, 580
PROCLEN FUNCHON......ciiiiiiiiiiiiiiee ettt 581
Relative Displacement DIreCtiVES...........ceiiiiiiiiiiiiiii e 582

Matching Codemacro Calls to Their Definitionsccccooeeevvviiiiiiieneennns 584

A Processor Architecture Summary

BasiC Processor FOIMALS.ccooiuuiiiiieiieiiiie et e 588
Data TYPe FOIMALS ... oo 588
ProCESSOr REQISIEIS. ..uuuiiiieeiiiieeeeeetti et n e e e e e e e eeeeees 591

General, Segment, Status and Instruction Registersccccvvvunn. 591
SYSteM REQISLEIS ..oooi i 594

Processor Memory Organizationcooovviiiiiiiiiiiiiieeeceeeeeeeeeeeeeeeeveeeaeeeees 596
Segment Selection and Effective Address Computation............ccccee..... 597
Segmented Memory Managementuvveveveeeriiiirreneineiiiieenns 599
Segment Descriptors... 601

Descriptor Address Translatlon Flelds 602
Descriptor Access Rights (AR)oooviiiiiiiiiiiiiiiiiiiieeeeeeviiiiees 602
Descriptor Tables and Selector Format.............ccoovvvvvvviiiiiiiieeviiiviiiiinnnn 603
Processor Protection, Gate Descriptors, and Task Switches.................. 604
Protection and Privilege LEVEISccooviiiiiiiiiieeeee, 605
Protected Control Transfers Use Gate Descriptors............cccccvvvvenee. 606
Call Gate Descriptor Format..........ccooooeeviiiiiiii e, 607
Task Gate, TSS Descriptor, and TSS Format.............cceevvvvvivnennnn. 607
I/O Permission Bit Mapcccuuiiiieiiiiie e 610
ASM386 Assembly Language Reference Contents 17

ProCeSSOr FIagS.....covvviiiiiiiiiiiee et a e e e e e 612

) c= LU LSRN = To [TSR 613
(O T¢ YA = - o [SSRPPP 614
Parity Flag.......oovvviiiiiiiiiiie e 615
Auxiliary Carry Flag........uuueeeiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee 615
ZEIO Flag.....coiiiieeeee e 615
SIGN FIAQ et 615
OVErflOW FIag......coovviiiiiiiiiiiiiiiie e 616

Control and System Control FIagSuevvvviiiiiiiiiiiiiiiiiiiinieeeeeeenee e 616

Processor Exceptions and INterruptscooeeeeeiiiiiiiiiiieeeeeeeeeeeeeeees 61!

Identifying INTEITUPLS....cooiiii e 619

Simultaneous Exceptions and Interrupts ..., 621

Interrupt Descriptor Table ... 621

Error Codes for EXCEPLiONS........covviviiiiiiiiiiiiiiiiiiiieiiviiiii s 623

Processor Exception ConditioNS...........ccccuuiiiiieiiiiiiiiiin e 624
Interrupt O -- DiVide ErTOr.......ccuviiiieiiiiiii e 624
Interrupt 1 -- Debug EXCEpPLioNS.......cooveiviieiiiiii e, 624
INtErrupt 2 -- NMI...eee e 624
Interrupt 3 -- Breakpoint...........ooii e 624
Interrupt 4 —- OVErflowcooevviiii e, 625
Interrupt 5 -- Bounds ChecK.........ccovivviiiiiiiiiiceece e 625
#UD 6 -- Undefined Opcode (No Error Code).......cccceeeveeevvveennnnnnn. 625
#NM 7 -- No Math Unit Available (No Error Code).............cc....... 626
#DF 8 -- Double Fault (Zero Error Code).........cceeeeeeeeeeeees mommmn 626
Interrupt 9 -- Coprocessor Segment OVerrun........ccccvvevevvneeeeennnnnn 626
#TS 10 -- Invalid Task State Segment (Selector Error Code) 627
#NP 11 -- Not Present (Selector Error Code).........ccvvvveevieeeeeninennnns 627
#SS 12 -- Stack Fault (Selector or Zero Error Code)ccceee.e 628
#GP 13 -- General Protection (Selector or Zero Error Code) 629
#PF 14 -- Page Fault (Type of Fault)...........ueiiiiiiiiini, 630
#MF 16 -- Math Fault (No Error Code) ..., 631

B Sample Program
SAMPIE SOUICE COUE ...vunniiiiiiiii et 63:
Y= g a] o] (I I 1 o U 640
C Keywords And Reserved Words 651
18 Contents

ASCII| Tables

655

Differences Between ASM386 and ASM286

New Processor Registers

NEW INSEIUCTIONS. ... ettt e et e e e e e e e e e e e eaeens

Processor Paging Mechanism
Addressing Differences.
DaALA TY PO .. iiee ettt ettt ettt e ea e
2 Y F= Vo TT 01U =1 o o PR
Assembler Directives
Assembler Operators
Assembler ArithmMetiCoooiiii e
Prefix66 and Prefix67 Codemacro Directives

Differences Between the Intel386 [1 and 376
Processors

663

Differences Between the Intel386 and Intel486 [J

Processors

667

Index

669

Service Information

ASM386 Assembly Language Reference

Contents

Inside Back Cover

Tables

1-1.
1-2.
1-3.
4-1.
4-2.
5-1.
5-2.
5-3.
5-4.
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
6-8.
6-9.
6-10.
6-11.
6-12.
6-13.
6-14.
6-15.
6-16.
6-17.
6-18.
6-19.
6-20.
6-21.
6-22.
7-1.
7-2.
7-3.
7-4.
7-5.
7-6.
7-7.
7-8.
7-9.
7-10.

20

ASSEMDIEr DIFECHIVES ... eeees 29
ProcesSOr INSIUCHIONSuvvviiiiii et e e 31
Floating-point INSrUCTIONS.uuuiiiiiiiiiire e e e e ae e e e e e e 36
Assembler Variable Types and Numerical Value Rangesccco....... 81
Assembler Data Value Specification Rules..............ccooeeiiiiiiiiiieeeee, 82
ASSEMDIEr OPEIatOrS ...ciiiiiiiiiiiiieiiieieieeiitete et eaeneeeeeenanes 134
Assembler Operator PreCERUBNCEuuuuuriiiiiiiee et 13
TYPE Operator RESUILSuuviuiiiiiiiiiiiiiiie s emmmmmmmmm e 150

PTR ReSUIt AtHDULES .oeeieiieeeiee s 155
External 1/O INSIIUCHIONSuvveeeiiiii i 172
Internal Load and Store INStrUCtIONSevvviiviiiiiiiiiiiiiiiiiiiiii s 17:
Instructions That Make Uncalculated Value Assignmentscccccceveennn. 174
Instructions That Make Calculated Value AsSignmentscccevvvvveiininn. 175
Data Conversion INSITUCHIONS..........uvviiiiiiiiiiiiiiiiiiiiiiieeiieeeieeeeee e s 176

Shift and Rotate INStIUCLIONScvviiiiiiiiiiiiiii e 17¢
Stack Transfer INSIIUCHIONSuueiiieee e 177
Processor Instructions That Yield Definitive Flag Values.......................... 178
Conditional Instructions That Test Flag Valuesccccoooeevvviiiiiiiineeeeeenns 180
Control Transfer INStrUCtiONS.......ccoooiiiiiii e, 180
Processor Control INStrUCHIONScvvviiiiiiiiiiiiiiiiiiiiiiiiiii e s 180
Generation of Address and Operand Size Prefixes..........ccccevvvvvceeemmnnnn. 187
16-Bit Addressing Forms with ModRM Byte in Hexadecimal 190
32-Bit Addressing Forms with ModRM Byte in Hexadecimal 191
32-Bit Addressing Forms with SIB Byte in Hexadecimalcccee. 192
Processor Exceptions and INtEIrUPLSueviieciiieeiiiis e 20
Operands and Implicit Destinations for DIV..........ccccoovvieiiiiiciiiie e, 270
Operands and Implicit Destinations for IDIV............cccvvviiiiiie e 275
When IMUL Clears CF and OFccoooiiiiiiiiiiiiiiiiiiiieeieieieeees 278
JMP Label Types, Operand Sizes and Instructions.................vvvvmmmceenen.. 308
System Descriptor Types for LAR ... 312
System Descriptor TYPes fOr LSL. ..., 334
Summary of Real Format Parametersuvuuviieiiiiiiiiiiiiiiiinseeeeees 44
RoUNAING MELNOAS.......uvviiiiiie e 444
Data Transfer INStrUCHIONSovviiiiceeec e 44¢
Constant INSTIUCHIONScovveiiei i o s 447
Algebraic INSIFUCHIONSuviiiiiiiie e 448
Basic Arithmetic Instruction and Operand FOrmscccccccoevvv e, 449
Comparison INSIUCHIONSooiiiiiiiiiiiiiiieiieeieeee e eeeeeeen s 451
Transcendental INStrUCHIONSvviiiii i e 452
Processor Control INSrUCLIONSiiviiiieiiiiie e 453
Condition Code after FCOM(P/PP) .coooooiieee e 465

Contents

7-11. Condition Code after FICOM(P)uuuuuiiiiiiiiiiieieee e 471
7-12. Floating-point Coprocessor State Following FINIT/FNINIT...........ccccceee. 478
7-13. FPATAN Final ReSUIt OCLaNt...........cvvviiiiiiiiiiiiiiiiieiiiiiieieie s s 487

7-14. Condition Code after FPREM/FPREMI..........cccovvvviiiiiiiiiiiiiiiiiiiiiiiiieaee 490
7-15. Condition Code after FTSTcciiiiiiiiiiiiieeeiiiiii e e e e 509
7-16. Condition Code after FUCOM(P/PR)......uuiiiiiiieiiiiiiiiiiiiiiiiiiis e 511
7-17. Condition Code after FXAMuuuiiiiiie e 513

8-1. Predefined MACIOScooeei e 524
8-2. Predefined Macro Call Patterns..........uuuueieiiiiiiiiiiiieiiieeseseees e 529
9-1. Codemacro Syntax SUMMATYcooeeiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeee e 565

A-1. Default Segment Register Selection RUIES...............coovvviwmmmmmmnmeeeeeennns 597

A-2. Processor Exceptions and INterruptS ... 620
C-1. ASSEMDBIEr KEYWOIUS......cceeiiiiiiiiiii et

C-2. Assembler Reserved WOrdS...... ...

D-1. ASCII Collating SEQUENCEcccvviiiiieeeeeiiiie e e e e e s

D-2. ASCII Non-Printable Characters

Figures

1-1. Template for an Assembler Program ... 40
1-2. An ASM386 Example Programccccceeeeeeeeeeieieeeeeeeeeeeee 41
4-1. Partial Record Definition TEMPIAE..........vvvuviiiiiiiiiiiie e 101
5-1. Effective Address CalCulationouuveviviiiiiiviiiiiiiiiiiiiiiiiinenaneenn 164

6-1. Instruction ENCOding FOrMaAt..........uuuureiiiiiiiiiiieieeiiiieee e eenmmocs 185

6-2. ModRM and SIB Byte FOrmMatSooovviiiiiiiiiee 188
6-3. BitOffset for BIT[EAX,21]cvviviiiiiiiiiiiiiiiiiiinrienininnneneesnnnnnn s eeseenees 203

6-4. VLT g To T YA =71 A [T 1= q] o [204
7-1. Floating-point Coprocessor Stack Fieldsceuvvvvviiiiiiiiiiiiiiiiiiiiiiiiieeeee 430
7-2. 16-Dit ENVIFONMENTS....uiiiiiiiiiiii e e e e e 432
7-3. 32-Dit ENVIFONMENTS...coiiiiiiiiecce e e e e e e e 433
7-4. Status Word FOIMALcooviiiiiiiicc e 434
7-5. Control Word FOIMAL.........coooiiiiiiiiiiiceeeeiee e e e e e 436
7-6. LI T Ao o I o] 1 ' = ST 438
7-7. 16-bit Opcode, IP, and Op Environment Formats.............cccevvvvviiieeeeeeecennnn, 439
7-8. 32-bit Opcode, IP, and OP Environment Formats..................ccceeeeeeee. 440

7-9. Data FOIMALS.t e et 441
7-10. Floating-point Coprocessor Machine State Layout after FSAVE 497
9-1. Instruction Encoding FOrmMat...........ccoovviiiiii e e 562

9-2. ModRM and SIB Byte FOrMatsS...........ceeviieiiiiiiiiie e e e e e e 563
A-1. Fundamental Data TYPES......ccuuuuiiieiiiiiiiieeeeeeeeiin e e e e et e smmenmmmmme e 588

A-2. Processor Data Types and Storage Formats............cccceei v cmmceeeeeenennnn 589

A-3. General, Segment, Status, and Instruction Registers..........ccccoevveevvvenennns 592

A-4. Processor Stack with Stack Frame...........ccooeo 593

ASM386 Assembly Language Reference Contents 21

Figures (continued)

A-5.
A-6.
A-7.
A-8.
A-9.

A-10.
A-11.
A-12.
A-13.
A-14.
A-15.
A-16.
A-17.
A-18.
A-19.
A-20.
A-21.
A-22.

G-1.
G-2.
G-3.

22

System Control REQISIEISuuiiiiiiieiii e 594
Memory Segmentation Model for ASM386 Programsccoecvvvvvvnnnnns 596
Effective ADdress CalCulationueeeeeiiiiiiiiiiiieiieeee e e 598
Processor Address Translation OVEIVIEW............evvvviiiiiieeeeeeeeeeeeeeeinnns 599
Segment Address Translation in a Paged System....................cccew... 600
General Segment Descriptor FOrmMatS...........eieiiieeeiiiiiieiiiiiiiieee e 601
Y= (= Tod (o] g o 1 4= APPSR 603
Processor Privilege Check for Data ACCESS.......ooevvvviviiiiiiiiiiiiiiiiee e, 605
Call Gate DesCriptor FOrMAL..........ccovvviuiiiiiiiiiiie et e e 607
Task Gate DeSCriptor FOMMAL...........covvvuuiiiiiiiiiiie e e e 607
TSS Descriptor Format for 32-bit TSS......oviiiiiiii e, 608
General Segment Descriptor FOrmMatS..........ueeiiiieeeiiiiiieiiiiiiiiiee e 609
1/O AdAreSs Bit MAP......ccoiiiiiieiiiiiiiie et 611
Processor EFLAGS REQISIEL......ciiciiiiiie e ee e 612
Status Flags FOrMAL........coooiiiiiii e e 613
Control Flags and IOPL FOrmat..........cccooeeiiiiiiiiiiiiciin e 616
Interrupt Descriptor Table and RegiSter........ccooovvviiiiiiiiiiiiii e, 621

] D I CT= 11T B =TS o] o) (o] 5= 622
INtel486 Processor Control REQISIErS.........uviiiii i 66¢
Intel486 Processor Page Table/Directory Entry Format..............cceevvvvvvnnnnn. 66¢
INtel486 Processor EFLAGS REQISter.......c.covvviiiiiiieeiiieeiiie e 67C

Contents

Introduction

About This Manual

ASM386 supports the Pentignand Intel486" microprocessors and the entire
Intel386" family, including the Intel386, Intel386 SX, and 376 microprocessors, as
well as the Intel287, Intel387" and Intel387 SX floating-point coprocessors.
Throughout this manual, the word "processor" refers to any of the above
microprocessors and the words "floating-point coprocessor" refer to any of the
above coprocessors, as well as the Pentium and Intel486 processors' built-in
floating-point functions.

This manual is a reference for the ASM386 assembly language. It assumes that
you are familiar with assembly language programming and 8086/286/Intel386
processor architecture. Read Appendix A if you are already familiar with the
8086/286 processor architecture(s). If you aren't, se@0B&6 Programmer's
Reference Manual

About This Chapter

This chapter introduces the assembly language. It has three major sections:
* Lexical Elements

This section describes the assembler character set, tokens, separators,
identifiers, comments, and the difference between source file lines and logical
statement lines.

e Statements

This section introduces the assembler directives, processor instruction set, and
floating-point instruction set.

e Program Structure

This section provides a template for assembler programs together with a simple
example program (see Appendix B for another example program). It
summarizes the essential parts of every ASM386 program.

ASM386 Assembly Language Reference Chapter 1 23

Lexical Elements

This section describes the lexical elements of the assembly language, except for its
keywords and reserved words.

See also: Keywords and reserved words, Appendix C

Character Set

The assembler character set is a subset of the ASCII character set. Each characte
in a source file should be one of the following:

Alphanumerics: ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkimnopqrstuvwxyz
0123456789

Special Characters:+-*/()[]<>;"."2?@ $ &

Logical Delimiters: space tab carriage_return line_feed

If a program contains any character that is not in the preceding set, the assembler
treats the character as a logical space.

Uppercase and lowercase letters are not distinguished from each other except in
character strings. For examptgz andXYzare interchangeable, buyZ ' and
'XYZ are not equivalent character strings.

The special characters and combinations of special characters have particular
meanings in a program, as described throughout this manual.

See also: ASCII character set, Appendix D

Tokens and Separators

24

A token is the smallest meaningful unit of a source program, much as words are the
smallest meaningful units of a sentence. A token is one of the following:

e An end of statement

e Adelimiter

e Anidentifier

* A constant

* An assembler keyword or reserved word

A separator that is a logical space or a delimiter must be specified between two
adjacent tokens that are identifiers, constants, keywords, and/or reserved words.
The most commonly used separator is the space character.

Chapter 1 Introduction

The end of statement token must be specified between two adjacent statements.
The most commonly used statement terminator is the carriage_return/line_feed
character combination.

See also: Constants, Chapter 4
keywords and reserved words, Appendix C
Logical Spaces

Any unbroken sequence of spaces can be used wherever a single space character is
valid. Horizontal tabs are also used as token separators. The assembler interprets
horizontal tabs as a single logical space. However, tabs are reproduced as multiple
space characters in the print (listing) file to maintain the appearance of the source
file.

See also: Print fileASM386 Macro Assembler Operating Instructions

Logical spaces may not be specified within tokens such as identifiers, constants,
keywords, or reserved words. The assembler treats any invalid character(s) in the
context of a source file as a separator.

Delimiters

Like logical spaces, delimiters mark the end of a token, but each delimiter has a
different special meaning. Some examples are commas and colons.

When a delimiter is present, a logical space between two tokens need not be
specified. However, extra space or tab characters often make programs easier to
read.

Delimiters are described in context throughout this manual.

ASM386 Assembly Language Reference Chapter 1 25

Identifiers

An identifier is a name for a programmer-defined entity such as a segment,
variable, label, or constant. Valid identifiers conform to the following rules:

* The initial character must be a letter (A...Z or a...z) or one of the following
special characters:

? A question mark (ASCII value: 3FH)
@ An at sign (ASCII value: 40H)
An underscore (ASCII value: 5FH)

* The remaining characters may be letters, digits (0..9), and the preceding
special characters. Separators may not be specified within identifiers.

« Anidentifier may be up to 255 characters in length; it is considered unique
only up to 31 characters.

« Every identifier within a program module represents one and only one entity.
A named entity is accessible from anywhere in the module when it is
referenced by name. The assembler does not have identifier scope rules that
allow you to specify the same name for two distinct entities in different
contexts.

Continued Statements and Comments

An assembler statement usually occupies a single source file line. A source file
line is a sequence of characters ended by a valid line delimiter:

e Either a line_feed character
e Or, a carriage_return/line_feed combination

However, the end of line in a source file is not necessarily the logical end of a
statement. Assembler statements do terminate with a line_feed or
carriage_return/line_feed combination, but logical statements can extend over
several lines by using the continuation chara&gr (

The end of line in a source file always terminates a comment. The semicpisn (
the initial character of a comment.

26 Chapter 1 Introduction

Valid comments and statements conform to the following rules:

« A comment begins with a semicolan) @nd ends when the line that contains it
is terminated. The assembler ignores comments.

« A statement or comment may be continued on subsequent continuation lines.
The first character following the line terminator that is not a logical space must
be an ampersand

e Statements and comments may extend over many source file lines if they
conform to the following:

— Symbols (such as identifiers, keywords, and reserved words) cannot be
broken across continuation lines.

— Character strings must be closed with an apostrophe on one line and
reopened with an apostrophe on a subsequent continuation line, with an
intervening comma, () after the ampersand. Space and tab characters
within a character string are significant; they are not treated as logical
spaces.

— If a comment is continued, the first character following the ampersand that
is not a logical space must be a semicolon (;).

Examples

The following examples illustrate the difference between the end of a source file
line and the logical end of an assembler statement. The notation <cr_If> represents
a carriage_return/line_feed. Both examples are equivalent.

1. This example has a single statement on a single source file line. The end of
the source file line and the logical end of the statement are the same.

; 1 2 3 4<cr_If>

; 234567890123456789012345678901234567890<cr_If>
<cr_If> ; interpreted as logical space

MOV EAX, FOO<cr_lIf>

ASM386 Assembly Language Reference Chapter 1 27

2. This example has many ends of lines in the source file, but it has only one
logical end of statement.

; 1 2 3 4<cr_If>
; 234567890123456789012345678901234567890<cr_|f>

<cr_If> ; interpreted as logical space
MOV ; this ASM386<cr_|If>

& EAX, ; statement extends<cr_If>

& ; <cr_If>

& ; <cr_If>

& ; over<cr_|f>

& ; several lines<cr_If>

& FOO ; statement ends here<cr_If>
<cr_If>

28 Chapter 1 Introduction

Assembler Statements

Assembler programs are constructed from statements. They may also contain
definitions of and calls to programmer-defined macros. There are two kinds of
statements: directives and instructions.

See also:

Programmer-defined macros, Chapter 8

Assembler Directives

Directive statements tell the assembler to perform certain operations. Assembler
directives determine the organization of a program's data, stack, and code

segments, and they affect almost every opcode that the assembler generates.

Table 1-1 lists the assembler directives by functional categories.

Table 1-1. Assembler Directives

SEGMENT..ENDS

STACKSEG

ASSUME

Segmentation Directives

Defines a program'’s logical segments and specifies a code or
data segment's attributes (access protection, whether to combine
with other logical segments, and whether to use 32- or 16-bit
addressing)

Defines stack segments and allocates a specified number of
bytes per module to the run-time stack

Informs the assembler of the expected run-time contents of the
processor segment registers

NAME

END

PUBLIC

EXTRN

COMM

Program Linkage Directives

Specifies a source module's unique name

Required last statement in module that terminates assembly; in
main module only, initializes CS and may also initialize DS and
SS segment registers

Specifies that a named symbol is accessible from another
program module

Specifies that a named PUBLIC symbol in another program
module can be accessed in this module

Specifies that a named symbol is to be allocated common and
accessible data storage with COMM or EXTRN symbols in other
program modules or specifies that a named PUBLIC symbol can
be accessed in this module

continued

ASM386 Assembly Language Reference Chapter 1

29

Table 1-1. Assembler Directives (continued)

Data Allocation and Type Definition Directives

DBIT Allocates storage for and may initialize values of BIT-type variables

DB Allocates storage for and may initialize values of BYTE-type variables

DwW Allocates (2 bytes) storage for and may initialize values of WORD-type
variables

DD Allocates (4 bytes) storage for and may initialize values of DWORD- type
variables

DP Allocates (6 bytes) storage for and may initialize values of PWORD- type
variables

DQ Allocates (8 bytes) storage for and may initialize values of QWORD- type
variables

DT Allocates (10 bytes) storage for and may initialize values of TBYTE- type
variables

Data Allocation and Type Definition Directives

RECORD Names a programmer-defined type that is a bit-encoded data structure
(1 to 4 bytes long)

STRUC Names a programmer-defined type with named fields; each field may be
any of the predefined types

DUP Allocates contiguous storage for a specified number of variables of a

single type and may initialize their values

Procedure and Label Definition Directives

labelname: Defines label within current code segment; assembler generates an
intrasegment return of type NEAR

PROC..ENDP Defines labeled sequence of instructions (assembler generates an
intrasegment return) of type NEAR or (assembler generates an
intersegment return) of type FAR

LABEL Defines label of a specified type (NEAR, FAR, or a declared variable's
type)

Location Counter Symbol and Management Directives

$ Represents location counter (location of the statement currently being
assembled)

ORG Sets $ to specified value

EVEN Sets $ for the following code or data to the next dword or word

ALIGN Sets $ to the next location for code or data that is evenly divisible by the

specified number.

Symbol Equating and Purging Directives

EQU Defines name (alias) for keyword reserved word, or program symbol
PURGE Instructs assembler to delete specified symbol(s)

See also: Chapters 1 through 4 for more information about each directive in
Table 1-1
codemacro directives, Chapter 9

30 Chapter 1 Introduction

Assembler Instructions

The assembler translates assembler instruction statements into opcodes, operands,
and addresses. The machine code causes the processor and/or floating-point
coprocessor to perform particular operations on (and with) the program's data.
There are two kinds of assembler instructions: processor instructions and floating-
point instructions. The floating-point instructions may be emulated on the
processor or they may execute on a floating-point coprocessor.

Tables 1-2 and 1-3 list the assembler instructions by functional category. See
Table 1-2 for the processor instruction set and Table 1-3 for the floating-point
instruction set.

Table 1-2. Processor Instructions

Data Transfer Instructions

MOV Move data

MOVZX Move with zero extend

MOVSX Move with sign extend

IN Input from port

ouT Output to port

XCHG Exchange register/memory with register

CMPXCHG Compare and exchange (not available on Intel386 or 376 processors)

XLAT/XLATB Table look-up translation

Address Transfer Instructions

LEA Load effective address offset

LDS Load full pointer into DS:register
LES Load full pointer into ES:register
LFS Load full pointer into FS:register
LGS Load full pointer into GS:register
LSS Load full pointer into SS:register

continued

ASM386 Assembly Language Reference Chapter 1 31

Table 1-2. Processor Instructions (continued)

Logic Instructions

NOT One's complement negation

AND Logical AND

OR Logical (inclusive) OR

XOR Logical (exclusive) OR

TEST Logical compare (non-destructive AND)

CMP Compare operands

SHL Shift logical left

SHR Shift logical right

SAL Shift arithmetic left

SAR Shift arithmetic right

SHLD Shift double precision left

SHRD Shift double precision right

ROL Rotate left

ROR Rotate right

RCL Rotate through carry flag (CF) left

RCR Rotate through carry flag (CF) right

BSWAP Byte swap (not available on Intel386 or 376 processors)
Stack Instructions

ENTER Make stack frame for procedure's local variables
LEAVE High-level procedure exit

PUSH Push operand onto the stack

POP Pop operand from the stack

PUSHFD/PUSHF Push EFLAGS or FLAGS register onto stack
POPFD/POPF Pop top of stack into EFLAGS or FLAGS register
PUSHAD/PUSHA Push all (32- or 16-bit) general registers onto the stack
POPAD/POPA Pop stack into all (32- or 16-bit) general registers
Flag Instructions

STC Set carry flag (CF)

CLC Clear carry flag

CMC Complement carry flag

STD Set direction flag (DF)

CLD Clear direction flag

STI Set interrupt flag (IF)

CLI Clear interrupt flag

LAHF Load status flags into AH

SAHF Store AH into status flags

SETcc Set byte on (status flag) condition

32 Chapter 1

continued

Introduction

Table 1-2. Processor Instructions (continued)

Mathematical Instructions

ADC
ADD
DEC
DIV

IDIV

IMUL
INC
MUL
NEG
SuUB

XADD

Add with carry

Add

Decrement by 1

Unsigned divide

Signed divide

Signed multiply

Increment by 1

Unsigned multiply

Two's complement negation
Integer subtraction

Exchange and add (not available on Intel386 or 376 processors)

Data Adjustment Instructions

AAD
CBW
CWD
CWDE
CDQ

ASCII adjust AL after addition
ASCII adjust AL after subtraction
Decimal adjust AL after addition
Decimal adjust AL after subtraction
ASCII adjust AX before division
ASCII adjust AX after multiply
ASCII adjust AX before division
Convert byte to word

Convert word to dword

Convert word to dword extended
Convert dword to quadword

String Instructions

MOVS
CMPS
SCAS
LODS
STOS
INS
OUTS

Move string to string
Compare string operands
Compare (scan) string data
Load string data

Store string data

Input from port to string
Output string to port

Bit Test and Scan Instructions

BT

BTS
BTR
BTC
BSF
BSR

Bit test

Bit test and set

Bit test and reset (to 0)
Bit test and complement
Bit scan forward

Bit scan reverse

ASM386 Assembly Language Reference Chapter 1

continued

33

Table 1-2. Processor Instructions (continued)

Control Transfer Instructions

Jcc Jump if status flag condition is met
JMP Jump unconditionally

CALL Call procedure

RET Return from procedure

LOOP Loop with (E)CX counter

LOOPcond Loop with (E)CX counter AND condition
Interrupt Instructions

INT Call to interrupt procedure

INTO Call to interrupt procedure if overflow
IRET Interrupt return (16-bits)

IRETD Interrupt return (32-bits)

Processor Control

HLT Halt

WAIT Wait until BUSY# is inactive

Protected Mode Control Instructions
LGDT/LGDTW/LGDTD Load global descriptor table register (GDTR) using 16- or 32-bit

operand

LIDT/LIDTW/LIDTD Load interrupt descriptor table register (IDTR) using 16- or 32-bit
operand

LLDT Load local descriptor table (LDT) register (LDTR)

LTR Load task register (TR)

LMSW Load machine status word (MSW)

SGDT/SGDTW/SGDTD Store GDTR using 16- or 32-bit operand
SIDT/SIDTW/SIDTD Store IDTR using 16- or 32-bit operand

SLDT Store local descriptor table register

STR Store task register

SMSW Store machine status word

ARPL Adjust requesting privilege level (RPL) field of selector
CLTS Clear task switch (TS) flag in CRO register
Parameter Verification Instructions

BOUND Check array index against bounds

LAR Load access rights

LSL Load segment limit

VERR Verify a segment for reading

VERW Verify a segment for writing

continued

34 Chapter 1 Introduction

Table 1-2. Processor Instructions (continued)

Cache Control Instructions

INVLPG Invalidate paging cache entry (not available on Intel386 or 376
processors)

INVD Invalidate data cache (not available on Intel386 or 376 processors)

WBINVD Write back and invalidate data cache (not available on Intel386 or 376
processors)

No Operation Instruction

NOP No operation (fills 1 byte and increments instruction pointer)

Instruction Prefixes

LOCK Assert BUS LOCK# signal prefix

REP Repeat following string operation

See also: Chapter 6 for an overview of the processor instruction set and for
detailed information about each processor instruction

ASM386 Assembly Language Reference Chapter 1 35

Table 1-3. Floating-point Instructions

Data Transfer Instructions

FLD Load real

FST Store real

FSTP Store real and pop floating-point stack
FXCH Exchange stack elements

FILD Load integer

FIST Store integer

FISTP Store integer and pop floating-point stack
FBLD Load packed decimal real

FBSTP Store packed decimal real

Load Internal Constant Instructions

FLDZ Load +0.0

FLD1 Load 1.0

FLDPI Load 1t

FLDL2T Load log,10

FLDL2E Load log.,e

FLDLG2 Load log, 2

FLDLN2 Load log 2

Comparison Instructions

FCOM Compare real
FCOMP Compare real and pop floating-point stack
FCOMPP Compare real and pop twice
FUCOM Unordered compare real (not available on Intel287 floating-point
coprocessor)
FUCOMP Unordered compare real and pop floating-point stack (not available on
Intel287 floating-point coprocessor)
FUCOMPP Unordered compare real and pop twice (not available on Intel287 floating-
point coprocessor)
FICOM Compare integer
FICOMP Compare integer and pop floating-point stack
FTST Test (compare to zero)
FXAM Examine
continued
36 Chapter 1 Introduction

Table 1-3. Floating-point Instructions (continued)

Transcendental Instructions

FSIN
FCOS
FSINCOS
FPTAN
FPATAN
F2XM1
FYL2X
FYL2XP1

Sine (not available on Intel287 floating-point coprocessor)

Cosine (not available on Intel287 floating-point coprocessor)

Sine and cosine (not available on Intel287 floating-point coprocessor)
Partial tangent

Partial arctangent

2x-1

Y *log? X

Y *log? (X + 1)

Algebraic Instructions

FADD
FADDP
FIADD
FSUB
FSUBP
FSUBR
FSUBRP
FISUB
FISUBR
FMUL
FMULP
FIMUL
FDIV

Add real

Add real and pop floating-point stack
Add integer

Subtract real

Subtract real and pop floating-point stack
Subtract real reversed

Subtract real reversed and pop floating-point stack
Subtract integer

Subtract integer reversed

Multiply real

Multiply real and pop

Multiply integer

Divide real

Algebraic Instructions

FDIVP
FDIVR
FDIVRP
FIDIV
FIDIVR
FSQRT
FSCALE
FPREM
FPREM1

FRNDINT
FXTRACT
FABS
FCHS

Divide real and pop floating-point stack

Divide real reversed

Divide real reversed and pop floating-point stack
Divide integer

Divide integer reversed

Square root

Scale

Partial remainder

IEEE std.754 partial remainder (not available on Intel287 floating-point
coprocessor)

Round real to integer

Extract exponent and significand

Absolute value

Change sign

continued

ASM386 Assembly Language Reference Chapter 1

37

Table 1-3. Floating-point Instructions (continued)

Processor Control Instructions

FINIT/ENINIT Initialize floating-point coprocessor
FSTCW/FNSTCW Store control word

FLDCW Load control word

FSTSW/FNSTSW Store status word

FCLEX/FNCLEX Clear exceptions

FSTENV/FNSTENV Store environment

FLDENV Load environment

FSAVE/FNSAVE Store machine state

FRSTOR Restore machine state

FINCSTP Increment floating-point stack pointer
FDECSTP Decrement floating-point stack pointer

FFREE Free (empty) stack top element

FNOP No operation

FSETPM Set (Intel287) protected mode (Otherwise FNOP)
FWAIT Wait (alternate specification of processor WAIT)

See also: Chapter 7 for detailed information about each assembler floating-
point instruction
Specifying Assembler Statements
The general syntax for assembler directive statements is similar to that for
instructions.
Specifying Directive Statements
Assembler directive statements have the following general syntax:
[namdq directive [argument [,...]]
Where:
name is a valid identifier.
directive is one of the directives listed in Table 1-1.
argument is a modifier or value to be associated witmne.

Each assembler directive has its own set and/or forms of argument(s). Some
directives have no valid arguments in the context of a program. Some have a
restricted set of arguments that are reserved words. Others accept constant values
and constant expressions.

See also: Chapters 2 through 4 for more detailed information about each
directive in Table 1-1

38 Chapter 1 Introduction

Specifying Instruction Statements
Assembler instruction statements have the following general syntax:

[label :][prefix] mnemonic[argument [,...]]

Where:
label is a unique-to-the-module identifier that defines a label.
prefix is a processor instruction prefix@CKor REP.

mnemonic s a processor or floating-point instruction (listed in Table 1-2 or 1-3)
or it is a programmer-defined codemacro.

argument is an operand.

Some instructions have no operands; others require one, two, or three operands.
Some operands may be expressions. The general form of an instruction with
operands is one of the following:

mnemonic src
where the execution result may be stored either in the source itself
(src) or in an implicit location (usually a register or the floating-point
stack top element ST).

mnemonic dest, src
where the execution result is stored either in the destinatesn J or
in an implicit location; the instruction's operation does not change the
source operand.

Only a few processor instructions have three operands. For floating-point
instructions, one operand is usually the stack top ST(0).

See also: Programmer-defined codemacros, Chapter 9
expressions, Chapter 5
instruction operands, Chapter 6 (Table 1-2) and Chapter 7 (Table 1-3)

ASM386 Assembly Language Reference Chapter 1 39

Assembler Program Structure

Figure 1-1 illustrates the essential parts of an assembler program that is contained
in a single source module and intended to run in processor protected mode.
Figurel-2 illustrates such an example program.

The following subsections explain what each assembler statement in Figure 1-1
does.

: This is a comment. Tokens in bold face can seldom

; be omitted from any non-trivial assembler program.

; Those in type like THIS are strongly recommended for

; every assembler

; program and some are required by all but the simplest.
NAME MAIN_ MODULE

; MAIN_MODULE is programmer defined for this module.
PROG_STACK STACKSEG 500

; PROG_STACK is programmer defined for program's stack

; segment and 500 is number of bytes in segment.
PROG_DATA SEGMENT RW

; PROG_DATA is programmer defined for program's data

; segment and RW (read/write) is this segment's

; access attribute (ReadOnly or ExecuteRead also possible).

; Program data must be defined and may be initialized here
PROG_DATA ENDS
PROG_CODE SEGMENT ER

; PROG_CODE is programmer defined for program's code

; segment and ER (execute/read) is this segment's

; access attribute (ExecuteOnly also possible).
ASSUME DS:PROG_DATA

; Tells assembler which processor segment register

; points to program's data segment for the following
MAIN:

; code. MAIN is programmer defined label specifying

; program entry point (execution begins here). Assembler

; instruction statements begin at label (MAIN) and must

; be coded between SEGMENT..ENDS. DS, SS, ES, FS and GS

; segment register initializations may be coded here too.
PROG_CODE ENDS ; Code segment ends.
ENDCS: MAIN, DS:PROG_DATA, SS:PROG_STACK

Figure 1-1. Template for an Assembler Program

40 Chapter 1 Introduction

NAME Directive

Assembler programs with more than one source module must specify a unique
name for each module. The assembler will assign the module identifier
ANONYMOUSthe NAMEstatement is omitted. A multi-module program cannot be
combined and located by the system utilities if two modules have the same name.

See also: NAMHlirective, Chapter 3

NAME TOY_MAIN_MODULE
PROG_STACK STACKSEG 200
EXTRN EXIT: FAR
PROG_DATA SEGMENT RW

VAR1 DB 0
VAR2DD 0
VAR3 DD 1000

PROG_DATA ENDS
PROG_CODE SEGMENT ER USE32
ASSUME DS: PROG_DATA

MAIN: INC VAR1 ; increment counter
PUSH EAX ; store EAX on stack
MOV EAX, VAR2 ; move VAR2 value to EAX
ADD EAX, 500
MOV VAR2, EAX ; store sum in VAR2
POP EAX ; restore original EAX value
; from stack
MOV ECX, VAR3 ; move VAR3 to ECX
SUB ECX, VAR2 ; subtract 500
; from 1000 in ECX
JNZ MAIN ; jump to MAIN if subtraction

; result in ECX not zero and
; end loop when result = 0
CALL EXIT
PROG_CODE ENDS

END MAIN, DS:PROG_DATA, SS:PROG_STACK
Figure 1-2. An ASM386 Example Program

ASM386 Assembly Language Reference Chapter 1 41

STACKSEG Directive

Any assembler program that allocates data dynamically on a stack should define a
named stack segment wittBaACKSEGstatement.

In assembler programs, source modules share a single stack se§meDKSEG

must be specified with the same name in each source module that references data
on the stack. In such a source module SheCKSEGtatement specifies the

number of bytes that the module will allocate on the to-be-combined stack segment
for the whole program.

For stack segments, the assembler determines the use attribute. A stack segment'
use attribute determines the upper limit for offsets within the segment; it also
determines whether the ESP or SP register is used for implicit stack references.

See also: STACKSEGIirective, Chapter 2
processor stack architecture, Appendix A

SEGMENT Directive for Data Segments

Assembler data must be defined withiBBGMENT..ENDS This directive
specifies at least a name for one program (or module) data segment; it may also
specify access, use, and combine attributes for the named data segment.

Assembler source modules may define any number of named data segments with
SEGMENT..ENDS The processor DS (default), ES, FS, and GS segment registers
provide access to data segments. At most four named data segments are accessit
at any given point in a module.

Each data segment within a module must have a distinct name. The assembler
assigns the RW (read/write access) attribute unless RO or ER is specified for the
segment.

The assembler assigns 1h8E32 (use 32-bit addressing) attribute for the whole
module by default unlessSE16is specified as an assembler control. Segments
within the module may have individually specifiedEattributes. When @SE

attribute is defined on a segment, it remains in effect throughout that segment. For
all segments, thgSEattribute determines the maximum segment size: 4 gigabytes
(232 - 1) foruse32and 64K bytes (2 - 1) forUSE16.

42 Chapter 1 Introduction

Named data segments may be shared across program source modules only if a
PUBLIC or COMMOBbmbine attribute is specified in tSEGMENBtatement. Each
data segment that is shared among modules must have the same name with the
same use and combine attributes and compatible access attributes.

See also: Processor registers, memory organization, and access protection
features, Appendix A
SEGMENTirective, Chapter 2
defining shared data entities inside 88GMENT..ENDSof multiple
source modules, Chapter 3
defining data (variables, labels, and constants) and specifying
assembler data values witt8BEGMENT..ENDS Chapter 4

SEGMENT Directive for the Code Segment

All assembler instruction statements must be specified WBBEMENT..ENDS
This directive specifies at least a name for the module's code segment. It may also
specify access, use, and combine attributes for the code segment.

The assembler assigns ER (execute/read) access unless EO (execute only) is
specified for the segment. The assembler assigEsS2 (use 32-bit addressing) for
the whole module by default unledSE16is specified as an assembler control.
When auSEattribute is defined on a segment, it remains in effect throughout that
segment.

TheUSEattribute of a segment instructs the assembler to generate 32- or 16-bit
(offset) addresses and default lengths for instruction operands. It also determines
the segment's maximum size: 4 gigabyte® 21) forUSE32and 64K bytes

(216 - 1) forUSE16.

Code segments defined with the same name and specified wiRbyBheC

combine attribute are concatenated into a single code segme&uBUIC is not
specified for a module's code segment, it is non-combinable and must be wholly
contained in a single source module.

ASM386 Assembly Language Reference Chapter 1 43

The code segment of a program's main module must have aNebsl (in
Figures 1-1 and 1-2) at the first executable instruction of the program. The main
module'sENDstatement must specify this label.

See also: ENDstatement, END Directive, in this chapter
Assembler Statements for a summary of the assembler instructions
and directives
SEGMENT..ENDSdirective, including th®UBLIC combine attribute,
Chapter 2
accessing data with address expressions, Chapter 5
Chapters 6 and 7 for detailed information about each assembler
instruction

ASSUME Directive

If no ASSUMBstatement is specified in an ASM386 code segment, the assembler
assumes that CS contains the selector of the code segment but that no other
segment register has been loaded. The assembler cannot generate a correct logic:
address for a symbolic reference unless it knows which segment register contains
the selector for the symbol's defining segment. The assembler must know the
correct segment register whenever an instruction statement references memory
data. Such references include:

« Symbolic references using the name of a variable, label, or constant as an
operand to an instruction (e.¢DDEAX VAR2

* Non-symbolic references using segment overrides aneTReperator (e.g.,
ADDEAX GS:DWORPTR24)

Initialize a segment register for each memory segment that is referenced in your
code and specifgSSUMEt each point in the source code where the run-time
contents of a segment register will change for subsequent instructions.

See also: Initializing Segment Registers with Instructions, in this chapter
ASSUMHlirective, Chapter 2
processor segment registers, Appendix A

44 Chapter 1 Introduction

END Directive

The ENDstatement terminates assembly; it must be the last statement in an
ASM386 source module.

The main module'ENDstatement must specify at least the code segment's entry

point label in order to initialize the CS and (E)IP registers. When the program is
loaded, CS:(E)IP points to the entry point label of the code segment. EIP (32-bit
addressing) or IP (16-bit addressing) also points to the (labeled) instruction.

The SS and DS segment registers may also be initialized with the main module's
ENDstatement. If they are, when the program is loaded:

eSS contains the selector for the stack segment. ESP (32-bits) or SP (16-bits)
contains the offset of the first dword (32-bits) or word (16-bits) above the
upper segment limit if the stack segment was defined SWIkCKSEG(E)SP
has a value equal to the size of the stack plus 4 (for ESP) or plus 2 (for SP).
(E)SP is 0 if the stack segment was not defined STRCKSEG

« DS contains the selector for the data segment.

Note that an expliciOweference to the data segment name is not required to
initialize DS to the data segment (see Figure 1-2) when DS is initialized ENihe
statement.

The ES, FS, and GS data segment registers cannot be initialized with the main
module'sENDstatement. In non-main modules, segment registers may not be
initialized with theENDstatement.

See also: ENDstatement, Chapter 3

Initializing Segment Registers with Instructions

Memory data must be accessible if assembler instructions are to operate on it. If all
program modules have a single, shared data segment, spesi§suyE

DS: datasegname and initializing DS with the main modulé&siDstatement

provides the necessary access. Even one-module programs that define more than
one named data segment must initialize the ES, FS, or GS register(s) explicitly in
the code segment.

ASM386 Assembly Language Reference Chapter 1 45

Since each assembler module may define several data segments, individual
modules of a program may have local, as well as shared data segments. But, as tt
program executes, only four data segment registers are available to access memor
data. Thus, the DS, ES, FS, and GS register contents may change within a module
and from module to module. In these cases, speciAssuMBtatement and

initialize the data segment register(s) before an instruction accesses memory data.

A module's stack segment may also be initialized explicitly in the code segment,
rather than with the (main) modul&siDstatement.

Initializing DS, ES, FS, and GS

The DS, ES, FS, and GS registers may be initialized in four ways in a source
module's code segment:

46

1. By specifying sequenti?dOMVinstructions using the data segment name:

The firstMOVhas a destination operand that is a general register (AX, BX,
CX, DX, SI, DI, SP, BP) and a source operand that is the name of a data
segment in the module. Avoid specifying SP or BP if the module accesses
the stack segment.

The nextMOVhas a destination operand that is a data segment register
(DS, ES, FS, or GS) and a source operand that is the destination register
specified in the precedingov

2. By specifying sequenti?dOMinstructions and using tt&EGoperator:

The firstMOVhas a destination operand that is a general register (AX, BX,
CX, DX, Sl, DI, SP, BP) and a source operand that is a symbol (named
variable, label, or constant) preceded3®G TheSEGexpression

represents the segment base address of the symbol's defining data segmer
Avoid specifying SP or BP if the module accesses the stack segment.

See also: SEG Chapter 5

The nextMOVhas a destination operand that is a data segment register
(DS, ES, FS, or GS) and a source operand that is the destination register
specified in the precedingov

3. By specifying amOMinstruction with DS, ES, FS, or GS as the destination
operand and an initialized memory location as the source operand.

By specifying an.DS, LES, LFS, or LGSinstruction with a memory operand

that is a pointer. Do not attempt to load a segment register directly by using a
segment name as a source operand; a segment name is an immediate operanc
not a memory operand.

Chapter 1 Introduction

Examples
1.

This example initializes ES. ES will contain the selector obD#iEA2
segment after botklOVstatements execute.

DATA1 SEGMENT RW
T ; its data accessed
DATA1 ENDS ; by DS:EAX later
DATA2 SEGMENT RW
VAR32 DD 0
DATA2 ENDS
T ; more segment definitions
MOV BX, DATA2
ASSUME ES:DATA2
MOV ES, BX

This example initializes FS. FS will contain the selectorAi32s defining
data segment after bottOVstatements execute. TEETRNdirective
indicates thavAR32is defined in another source module.

See also: EXTRN Chapter 3

EXTRN VAR32 DWORD

MOV CX, SEG VAR32
ASSUME FS:SEG VAR32
MOV FS, CX

Initializing SS

The SS (stack segment) register and (E)SP may also be initialized in the code
segment:

1.

By specifying sequential instructions, just as for a data segment with SS as the
destination segment register.

By specifying (E)SP asMOWestination operand and the stack segment name
as the source operand preceded bystheCKSTARToperator.

By specifying the.SS instruction with a memory operand that is a pointer. Do
not attempt to load a segment register directly by using a segment name as a
source operand; a segment name is an immediate operand, not a memory
operand.

ASM386 Assembly Language Reference Chapter 1 47

(E)SP points to the top of the processor push-down stack. This register is
referenced implicitly by the processBXTER LEAVE PUSH POP, PUSHAPOPA
PUSHE POPFE, CALL and interrupt operations. (E)BP should be used as the stack-
frame base pointer to avoid having to specify SS explicitly for each data access
within a stack frame.

Example

48

This example useSTACKSTARTO initialize (E)SP. AvMOMnto SS disables
interrupts for one instruction so that (E)SP can be initialized. After these
instructions execute, (E)SP points to the (d)word above the upper stack segment
limit.

MOV AX, PROG_STACK

MOV SS, AX
MOV ESP, STACKSTART PROG_STACK

See also: STACKSTARTChapter 5

Chapter 1 Introduction

Segmentation

This chapter contains three major sections:
« Overview of Segmentation

This section briefly describes processor segmentation, together with the
assembler directives that define and set up access to logical program segments.

» Defining Logical Segments

This section explains tH@EEGMENT..ENDSandSTACKSEGHirectives. These
directives define code, data, and stack segments in assembler programs.

e Assuming Segment Access

This section explains theSSUMHlirective. This directive specifies which
segments in an assembler program are accessed by the processor segment
registers at any given point in the program'’s code.

Overview of Segmentation

The processor addresses 4 gigabytes of physical memory. Processor memory is
segmented. For programmers, processor memory appears to consist of up to six
accessible segments at a time:

« One code segment containing the executable instructions
e One stack segment containing the run-time stack
e Up to four data segments, each containing part of the data

Assembler program segments are called logical segments, because they represent
logical addresses that must be mapped to processor physical addresses before
program execution.

The maximum size of a program segment depends on wisighttribute is
specified in the source. WheisE32is specified, the maximum size for a segment
is 4 gigabytes. WhedSE16is specified, it is 64K bytes.

See also: Processor memory organization, Appendix A
operand addressing and tbgEattribute, Chapters 5 and 6

ASM386 Assembly Language Reference Chapter 2 49

50

At run time, the physical base address of a program segment will be accessed by a
immediate value loaded into a segment register. This value is called a selector. A
selector points (indirectly in processor protected mode and directly in processor
real address mode) to the physical location of a segment. The processor segment
registers are CS, DS, and SS, which access code, data, and stack segments,
respectively, and ES, FS, and GS, which access additional data segments.

Logical segments are created in an assembler module wiSEtBRRENTcode and

data) andSTACKSE(stack or stack-and-data) directives. These directives specify
a segment name; this name defines a logical address for the segment. A segment
name can appear in several contexts throughout a program:

« In data initializations, because it stands for the value of the selector

« In segment register initializations

* In anASSUMEBstatement, which tells the assembler which segment registers
contain which selectors

See also: ASSUMEBtatement, in this chapter
selectors, Chapter 4
data and segment register initializations, Chapter 1

After program code is assembled, the system utilities map assembler program
segments to processor physical addresses. A named segment becomes a sequent
of contiguous physical addresses. A logical segment becomes physically accessibl
when the segment name is loaded into a processor segment register during progral
execution.

Chapter 2 Segmentation

Defining Code, Data, and Stack Segments

The SEGMENT..ENDdirective defines an assembler program'’s code and data
segments. Th8TACKSEGIirective defines the stack (or mixed stack and data)
segment. Both directives specify a name for each logical segment defined in a
program.

Because program segments are named, assembler logical segments need not be
contiguous lines of source code. Within a source module, a named segment can be
closed withENDSand reopened with anoth®EGMENT.. that specifies the same

name. Logical segments can also be coded in more than one source module.

See also: Logical segments in source modules, Chapter 3

SEGMENT..ENDS Directive

Syntax

name SEGMENT[access][use][combine]
[instructions, directives, and/or data initializations]

name ENDS
Where:

name is an identifier for the segmentame must be unique within the
module. namerepresents the logical address of the beginning of the
program segment. The segment's contents (specified between
SEGMENT..END$ represent logical addresses that are offsets from the
segmenthame.

access is an optional RO (read only), EO (execute only), ER (execute and
read), RW (read and write).

use is USE320r USE16 If use is not specified explicitly in thBEGMENT
statement, the segmenySEattribute defaults to that of its nearest
enclosing segment or to that of the module. The overall default for
program modules i8SE32

combine is unspecified (defaultRUBLIC, or COMMQNIf neitherPUBLIC nor
COMMOIS specified fomame, the segment is non-combinable: the
entire segment is in this module and it will not be combined with
segments of the sammame from any other module. However,
separate pieces of a non-combinable segment within a module will be
combined.

If a SEGMENPUBLIC or SEGMENTOMMOUirective has been
specified for the segmename, thecombine specification for
segments with the same name in other modules must be the same.

ASM386 Assembly Language Reference Chapter 2 51

Discussion

The SEGMENT..ENDSdirective defines all or part of a logical program segment
whose name isame. The contents of the segment consist of the assembled
instructions, directives, label declarations, and/or data initializations that occur
betweerSEGMENBNJENDS These contents will be mapped to a contiguous
sequence of processor physical addresses by the system utilities. When a segmen
name is used as an instruction operand, it is an immediate value.

Within a single source module, each occurrenceEBMENT..ENDShat has the
same name is considered part of a single program segment. All ASM386 source
code must be specified withifSEGMENT..ENDS Every named variable and label
in an assembler program must also be defined witBBGMENT..ENDS

Access , use, andcombine are optional; they may be specified in any order.

Specifying EO, ER, RO, or RW Access

access is an assembler (and processor) protection feature; it specifies the
kind(s) of access permitted to the segment.

The assembler issues a warning for the initial definition of a segmentadttbes
specification is omitted. The assembler also assigasass value according to

the contents of the segment. For a segment that contains data only, the value is
RW; for a segment that contains code only, it is EO. For mixed code and data, the
value is ER.

After a named segment has been defined wBE@VENTBtatement, access can be
omitted when the segment is reopened. However, its value may not be changed
when the segment is reopened.

Specifying USE32 or USE16

52

use specifies the segmentksEattribute, which determines the addressing
mode, maximum segment size, and operand size for code within the
segment.

If use is not specified in tleEGMENBtatement, the segmenySEattribute

defaults to that of its nearest containing segment or to that of the modul&ISEhe
attribute of a module may be specified as an assembler operating control when the
assembler is invoked. The overall default for assembler program modules is
USE32

USE32 causes 32-bit offsets to be generated for identifiers (variables, labels,
structures, records, and procedure names) defined within the segns&a2
segments can be up to 4 gigabytes long.

Chapter 2 Segmentation

USE16 causes 16-bit address offsets to be generated for identifiers defined within
the segmentUSE16 segments can be up to 64K bytes long.

The USEattribute of the segment also determines operand sizes for certain
processor instructions. For example, if the segmeunsiz32, theENTER
instruction will assume that the required immediate operand is 32-bits; if the
segment i$JSE16, the operand will be zero-extended to 32-bits.

See also: USEattribute ASM386 Macro Assembler Operating Instructions
USE32, Chapter 4
address and operand sizes, Chapter 6

Specifying PUBLIC or COMMON

combine specifies how the segment will be combined with segments of the
same name from other modules to form a single physical segment in
memory. The actual combination of modules occurs at bind time.

If a SEGMENTirective specifyindPUBLIC or COMMOAIready exists for a named
segmentcombine specifications in other modules must match it. The named
segment'sombine attribute should be specified (at least) for the initial segment
definition in subsequent modules. The following explains how a logical segment in
more than one module is combined:

» All segments of the same name that are definetL&s.IC will be
concatenated to form one physical segment. Control the order of combination
with the binder.

The length of the combingelUBLIC segment will equal approximately the

sum of the lengths of tteEGMENT..ENDSpieces. For a segment declared
PUBLIC, there is no guarantee that the beginning of a particular segment part
within the module will have an offset of zero within the final combined
segment.

« All segments of the same name that are definetbasmMOwill be overlapped
to form one physical segment. Each module's version of the segment begins at
offset zero within the segment, so each version has the same physical address.

The length of the combinedoMMOsegment will be equal to the longest
individual length within any of its defining modules. c®MMOskegment may
not specify EO or ER access.

If neitherPUBLIC nor COMMOIS specified, the segment is non-combinable.
The entire logical segment must be contained in a single source module. It
cannot be combined with segments from other program modules.

ASM386 Assembly Language Reference Chapter 2 53

Multiple Definitions for a Segment

Assembler segments can be opened and closed (WISEBRIENT..ENDS

directive) within a source module as many times as you wish. All separately
defined parts of the segment are concatenated by the assembler and treated as if
they were defined within a sSingBEGMENT..ENDS

Assembler procedure, codemacro, and structure definitions may not overlap
segment boundaries.

When a segment is reopened, it is unnecessary to respeaifgdts , use, and
combine attributes, if any. Do not change tt@nbine or use attribute when a
segment is reopened.

If a segment's access is respecified, both access specifications must form a
compatible set. The following are compatible sets:

« RO and RW are a compatible set with a resulting access attribute of RW.

* Any combination of RO, EO, and ER form a compatible set with a resulting
access attribute of ER.

There are no other compatible setsdotess specifications.

Examples

1. This example reopens the segment nabretA

DATA SEGMENT
ABYTE DB 0
AWORD DW 0
DATA ENDS

; any number of other segments not named DATA

DATA SEGMENT
ANOTHERBYTE DB 0
ANOTHERWORD DW 0
DATA ENDS

54 Chapter 2 Segmentation

2. This example is an equivalent to the preceding example as a segment
definition forDATA

DATA SEGMENT
ABYTE DB 0

AWORD DW 0
ANOTHERBYTE DB 0
ANOTHERWORD DW 0
DATA ENDS

3. This example definesRUBLIC segment with ER access.

CODE SEGMENT RO PUBLIC USE32
CODE ENDS
CODE SEGMENT EO
: ; implied PUBLIC
; and USE32 from above
CODE ENDS

4. This example has aror because RW and ER are not compatible access
specifications.

FOO SEGMENT RW
FOO ENDS
FOO SEGMENT ER ; error:
: ; RW and ER are not compatible
FOO ENDS

5. This example hasrrors because it changes combine and use attributes when a
segment is reopened.

DATA SEGMENT RW COMMON USE16
DATA ENDS
DATA SEGMENT RW PUBLIC USE32
T ; errors:
; cannot change combine

: or USE attribute

DATA ENDS

ASM386 Assembly Language Reference Chapter 2 55

Lexically Nested or Embedded Segment Definitions

Assembler segments are never nested or embedded physically in processor
memory. For convenience, segment definitions may be nested in a program. This
is a lexical nesting; it does not represent a physical nesting. However, care must b
taken to close lexically nested segments inside their containing segment(s).

Examples

1. This example illustrates a nested segment definition that is a legal assembler
construct. The assembler considers the code segment to be separate from the
data segment. The contents of the data segment are not contained within the
code segment (their physical addresses on the processor might be far apart in
memory after binding).

PROG_CODE SEGMENT
; begin PROG_CODE

PROG DATA SEGMENT
; begin PROG_DATA
; stop assembling PROG_CODE

PROG DATA ENDS
; stop PROG_DATA
; start PROG_CODE again

PROG_CODE ENDS ; end PROG_CODE

2. This code will cause arror. For lexically nested segment definitions,
SEGMENT..ENDSpairs must be matched as shown in the preceding example.

PROG_CODE SEGMENT ; begin PROG_CODE
PROG_DATA SEGMENT ; begin PROG_DATA
PROG _CODE ENDS ; error:

; cannot close PROG_CODE
; before closing
: PROG_DATA

PROG_DATA ENDS

56 Chapter 2 Segmentation

STACKSEG Directive

Syntax
name STACKSEG exp
Where:
name is an identifier for the stack segmen&yme must be unique within the
program.
exp is this declaration's contribution to the size (humber of bytes) of the
segment.exp must evaluate to a constant between 0 and 4 gigabytes
(232- 1) foruSE32segments, and between 0 and 64K bytes (65,535)
for USE16 segments.
Discussion

The STACKSEGIirective is used to allocatxp bytes for a stack segment named
name. TheSTACKSEGIirective both opens and closes the segment. Do not close
STACKSEGvith ENDS

Assembler stack segments always have RW accessuBidC combine attributes.
Multiple definitions of a stack segment with the same name will result in one
segment whose size is the sum of all specified sizes.

A stack segment is not explicitly assigned a use attributsSBB2 or USE16. A
stack segment's use attribute is either the same as:

* The nearest enclosing segment's use attribute, if any
e Or, the module's use attribute

Most single-task applications have only one stack segment. Code, labels, variables,
or data initializations cannot be defined within a stack segmentSTAKSTART
operator or th&NDdirective may be used to initialize the stack pointer (contents of
SS:(E)SP).

See also: Code, labels, variables, and data initializations, Chapter 4
STACKSTARToperator, Chapter 5
ENDdirective, Chapter 3

ASM386 Assembly Language Reference Chapter 2 57

Combining Stack and Data Segments

If a data and a stack segment are given the same name, they are combined into a
single data/stack combined (dsc) segment if they have compatible attributes.

Such a segment has both a stack part and a data part. Its data segment must be
declaredPUBLIC with RO or RW access. If the declared access is RO, the
combined access is RW.

Itis an error if the data segment is RQtBLIC (or if it has EO or ER access). The
stack and data segments will not be combined in this case. Instead, the assembler
will append STACKto the name of the stack segment to keep each segment
distinct.

Assuming Segment Access

The ASSUMHIirective may not be omitted from assembler programs that reference
symbols (named variables and labels) unless segment overrides are specified for
every symbolic reference. TR&SUMHBIirective may not be omitted from

programs with non-symbolic memory references su@&sag’ORD PTR 2.

The ASSUMHlirective tells the assembler which processor segment register points
to a particular logical segment in the program so that it generates code for
instruction operands that are named variables and labels in memory. However,
ASSUMHloes not load a segment register.

If no ASSUMEstatement is specified in a code segment, the assembler assumes tha
CS contains the selector of the code segment but that no other segment register he
been loaded. The assembler cannot generate a correct logical address for a
symbolic reference unless it knows which segment register contains the selector for
the symbol's defining segment.

The processor cannot access symbolic memory data unless the segment registers
have been correctly loaded. Whenever you load a new selector into a segment
register, specify anSSUMEf subsequently coded instructions will reference
memory data via that segment register.

See also: Segment overrides, Chapter 5
segment registers, Chapter 1

58 Chapter 2 Segmentation

ASSUME Directive

Syntax

ASSUMESreg : segpart |[,...]
ASSUMESreg :NOTHING [,...]

or
ASSUME NOTHING
Where:

Sreg is one of the registers DS, ES, FS, GS, or$&& may be CS only if
NOTHINGIs specified.

segpart is the reserved wondOTHING the name of a segment, or one of the
following forms:

SEGvarname

SEGlabelname

SEGexternalname

The name of a segment indicates thatg contains the segment
selector for variables and labels defined in the segment.

SEGvarname , labelname , or externalname indicates thaSreg
contains the selector for the symbol's defining segment.

Discussion

ASSUMBspecifies the contents of the DS, SS, ES, FS, or GS register for the source
code that follows until the nexXtSSUMEBtatement for the register occurs. When an
instruction references a variable, label, or external symbol, the assembler checks
for the following:

» Either an explicit segment override specifies that the symbol is accessible via
Sreg

« Or, anASSUMBspecifies whiclsreg holds the selector of the symbol's
defining segment

See also: Segment overrides, Chapter 5

If neither has been specified, the assembler generates an error when an instruction
references the symbol.

An ASSUMEstatement is in effect until it is changed by anof&8UME For
example, if yolASSUMEBome contents in DS, that assumption holds until you
ASSUMHEew contents dlOTHINGIn DS.

ASM386 Assembly Language Reference Chapter 2 59

When anASSUMBpecifies an appropriate selector in DS, ES, FS, GS, or SS, the
assembler generates any necessary segment override prefix byte when the symbol
is referenced. Otherwise, a segment override must be specified every time the
symbol is referenced.

ASSUME CS:may not be specified with the name of a segment or wsthG
expression.

Specifying Segment Selectors with ASSUME

60

Specify anPASSUMB~Vherever a new segment selector is loaded into a data or stack
segment register.

When anASSUMES specified as:
ASSUMESreg : segpart |[,...]
segpart defines a selector as:
* A segment name, as in
ASSUME DS:DATA, ES:EDATA, FS:FDATA
e Or, as a&SEGexpression with one of the following forms:

SEGvarname
SEGI/abelname
SEGexternalname

Assembler symbolic data (named variables, labels, or constants) represent logical
addresses that consist of a segment selector plus an offset. The selector part locat
the logical base address of the defining segment for the specified variable, label, or
external symbol. Within the segment, the variable, label, or external symbol name
represents an offset from this base address.

WhenASSUMESreg : segment name is in effect (see Example 1), the assembler
generates relocatable addresses for symbolic and non-symbolic (anonymous)
references visreg .

For SEGexpressions, thereg is assumed to hold the selector of the segment in
which the named variable, label, or external symbol is defined. BE&a
expression to access variables, labels, and symbols when you do not know their
defining segment's name (the segment is part of another module).

See also: SEGoperator, Chapter 5

Chapter 2 Segmentation

Both for segment names and &EGexpressions, the designated segment must
have attributes that are consistent with the assumed segment register:

For SS, the segment can be a stack segment, a data segment, or a data/stack
combined segment. Its specified access must be RW.

For DS, ES, FS, and GS, the segment may be a non-stack segment or a
data/stack combined segment. Its access must be RO, ER, or RW.

Note that CS is illegal in ahSSUMEtatement that specifies a segment name or
SEGexpression; the assembler generates a warning.

Examples
1.

This example tells the assembler that the ES register holds the selector of the
segment in whichBYTEIs defined. The assembler generates an ES override
byte and a relocatable address for the symbolic referenk@YtoEin CSEG |t

also generates a relocatable address for the non-symbolic reference to
ES:BYTE PTRO .

ESEG SEGMENT RW USE32
ABYTE DB ?
ESEG ENDS

CSEG SEGMENT ER USE 32

ASSUME ES:ESEG
MOV AL, ABYTE ; assembler generates ES
; override byte and
: relocatable address
T ; for ABYTE
MOV AL, ES:BYTE PTR O
; ES:BYTE PTR O is also
; relocatable

This example tells the assembler that the DS register holds the selector of the
segment in whicBYTEis defined.

ASSUME DS:SEG ABYTE

ASM386 Assembly Language Reference Chapter 2 61

62

The following example illustrates how the assembler hardies&ME
statements and checks memory accesses:

DATA SEGMENT RW PUBLIC
ABYTE DB 0

AWORD DW 0

DATA ENDS

EDATA SEGMENT RW PUBLIC
WHERE DB 0
EDATA ENDS

CODE SEGMENT ER PUBLIC
CBYTEDBO ; constant in CODE segment
ASSUME DS:DATA

; DATA segment

; is addressable through DS

MOV AX,DATA ; AX := selector for DATA

MOV DS,AX ; initialize DS
MOV AL,ABYTE ; ABYTE is in DATA segment

; and addressable via DS;
; instruction is OK

MOV BL,CBYTE ; CBYTE is in CODE segment,
; currently being assembled;
; instruction is OK and
; assembler will generate
; CS override byte

MOV CL,WHERE ; this is a program error:
; WHERE is in EDATA segment
; hot covered by any ASSUME so
; assembler issues warning

MOV AX,EDATA

MOV ES,AX ; now ES can address
: WHERE but assembler
MOV CL,WHERE ; hasn't been told,

; SO warning issued again
ASSUME ES:EDATA
MOV CL,WHERE ; is legal, because WHERE's
; segment, EDATA, is
; assumed to be in ES and
; assembler generates ES override

CODE ENDS

Chapter 2 Segmentation

Specifying ASSUME NOTHING and ASSUME CS:NOTHING
The general form:
ASSUME NOTHING
is equivalent to the following statement:

ASSUME CS: NOTHING, DS:NOTHING, ES:NOTHING,
& FS:NOTHING, GS:NOTHING, SS:NOTHING

When anASSUMES specified as:
ASSUMESreg :NOTHING [,...]

NOTHINGIndicates that no known value is in that segment register during the
execution of the following code. If there is no segment register assumption in

effect for a symbol's defining segment, references to that symbol must have an
explicit DS, ES, FS, GS, or SS override (see Example 1). Note that this does not
apply to symbols defined in code segments; the assembler always assumes that the
code segment will be accessed via the CS register.

The assembler generates a non-relocatable address for a non-symbolic reference via
Sreg when amPASSUME..NOTHINGIs in effect for a particular segment register (see
Examples 2 and 3).

WhenASSUME CS:NOTHINGSs specified (see Example 3), the assembler generates
a relocatable address relative to the current code segment for a symbolic reference
in that segment. It generates a non-relocatable address for a non-symbolic
reference.

WhenASSUME CS:NOTHINGs omitted (see Example 4), the assembler generates
relocatable addresses both for symbolic and for non-symbolic references within the
current code segment.

ASSUME..NOTHINGalso affects the assembler's generation of pointer relocatable
addresses within a data segment (see Example 5).

ASM386 Assembly Language Reference Chapter 2 63

Examples

1. This example shows haw8SUME DS:DSEGNJASSUME DS:NOTHINGaffect
symbolic references #BYTEin CSEG

ASSUME DS:DSEG

DSEG SEGMENT RW USE32
ABYTE DB ?

DSEG ENDS

CSEG SEGMENT ER USE32
T : ASSUME DS:DSEG still in effect
MOV AL, ABYTE : ABYTE is accessible,
- ; assembler always generates
: relocatable address
; for valid symbolic reference
ASSUME DS:NOTHING

MOV AL, ABYTE ; error generated
MOV AL, DS:ABYTE ; segment override so
; o error

2. This example shows howSSUME DS:DSEGNdASSUME DS:NOTHINGaffect
identical non-symbolic references@sEG

: DSEG and CSEG defined as
; in Example 1
ASSUME DS:DSEG ; assembler generates
MOV AL, DS:BYTE PTR O
: relocatable address
; for DS:BYTE PTR 0O

ASSUME DS:NOTHING ; assembler generates
MOV AL, DS:BYTE PTR O

: non-relocatable address

; for DS:BYTE PTR 0

64 Chapter 2 Segmentation

3. This example shows hawSSUME CS:NOTHINGaffects symbolic and non-
symbolic address generation. It causes the assembler to generate a relocatable

address foCVALbut not forCS:BYTE PTR O .

CSEG SEGMENT ER PUBLIC

CVAL DB 90H

ENTRY:

ASSUME CS:NOTHING

MOV AL, CVAL ; assembler generates

: relocatable address for
; symbolic reference
MOV AL, CS:BYTE PTR O
: non-relocatable address for
; non-symbolic reference

4. The same code (see Example 3) withBBSUME CS:NOTHINGauses the
assembler to generate relocatable addresses batlvAarand forCS:BYTE

PTRO.

CSEG SEGMENT ER PUBLIC
CVAL DB 90H
ENTRY: ; assembler generates
MOV AL, CVAL
: relocatable address for
; symbolic reference
MOV AL, CS:BYTE PTR O
: relocatable address for
; non-symbolic reference

ASM386 Assembly Language Reference Chapter 2 65

This example illustrates hoWSSUME ES:segname and
ASSUME ES:NOTHINGaffect the assembler's address generation within a data
segment.

ASSUME DS:DSEG, ES:ESEG
; ESEG defined here
DSEG SEGMENT RW USE32
VAR1 DP ES:WORD PTR 0
; assembler generates
; pointer relocatable address
: for VAR1

ASSUME ES:NOTHING
VAR2 DP ES:WORD PTR 0

; but not for VAR2
DSEG ENDS

Chapter 2 Segmentation

Program Linkage Directives

This chapter contains two major sections describing the five assembler directives
that support modular programs:

* NAMEandENDdirectives

These directives delimit program modul@$AMEspecifies a unique name for

each program module that the system utilities (binder and/or system builder)
will combine and locateENDterminates each program module's assembly.
ENDalso specifies a program's main module: it defines the program's entry
point (a label) and specifies the initial segment selector value for the CS (code)
segment register; it may specify the initial segment selector values for the DS
(data) and SS (stack) segment registers.

« PUBLIC directive

This directive defines variables and labels that can be accessed from another
module. TheEXTRNdirective defines variables and labels that are accessed in
one module and declar@BLIC in another. Th€OMMlirective defines
variables as uninitialized symbols that will share storage with symbols of the
same name in other modules.

The system utilities allocate storage @dMariables. They also resolve
PUBLIC, EXTRN andCOMNleferences.

Modular Programming with NAME and END

An assembler program may omit tReMEstatement only if the entire program is
contained in a single object module. Otherwise, each module of the program
should include &lAMEstatement.

Every assembler program must specify ENdDstatement as the last line of source.

ASM386 Assembly Language Reference Chapter 3 67

NAME Directive

Syntax
NAME modname
Where:
modname is a name for the modulevodnamemust be a unique identifier that
occurs at most once within the program.
Discussion

TheNAMHlirective defines a name for an object module. Each module of an
assembler program must have a unique name.

A NAMHlirective is usually placed at the beginning of a module. INgi¢E

directive does not appear anywhere in an object module, the assembler assigns the
default nameANONYMOUS® the module and issues a warning. System utilities
report an error if two or more program modules have the same name, including
ANONYMOUS

Example

It is legal to specify the same name for a module as for the source file that contains
it. The source file for this non-main module is cal&thN.386.

NAME SCAN : names the module

END

68 Chapter 3 Program Linkage Directives

END Directive

Syntax
END [[CS:] labelname [,SS: segname][,DS: segname]]
Where:

labelname is a name for the program entry point label; it must be a unique
identifier. CS is initialized with the segment selector and EIP (or IP,
for USE16 segments) is set to the offset of the specified label.
Labelname 's defining segment must have an EO or ER access
specification. Labelname may be specified only in the main module
of a program.

segname IS a segment name:

SS: A segname preceded by SS: causes the SS segment
register to be initialized to the named segment's selector.
The segment can be a stack segment defined with
STACKSEG or a data segment defined with the
SEGMENTdirective. The access specified for the
segment must be RW. For a segment defined with
STACKSEG (E)SP is set to the offset of the first dword
or word (depending on the stack segment use attribute)
immediately above the stack segment limit in memory.
(E)SP is 0 if the stack segment was not defined with
STACKSEG For a data segment, (E)SP is initialized to
the segment's size in bytes plus 4 for a 32-bit stack or
plus 2 for a 16-bit stack.

DS: A segname preceded by DS: causes the DS segment
register to be initialized to the specified segment's
selector. The segment can be a nonstack segment or a
data/stack combined segment. Access specified for the
segment must be RO, RW, or ER.

See also: SEGMENT..ENDSdirective, Chapter 2
STACKSEGChapter 2

ASM386 Assembly Language Reference Chapter 3 69

Discussion

The ENDdirective is required as the last statement in assembler modules. Its
appearance terminates the assembly process. If the assembler encounters any tex
beyond theENDdirective, it issues a warning.

In the program'’s main module, tBRDstatement must include a segment register
initialization for CS. Non-main modules must sped&fyDwithout segment
register initializations.

The optionabDS: segname andSS: segname specify the values to be loaded into
the data and stack segment registers when the program is loaded. The assembler
issues a warning if these are omitted in a module with an entry point label.

The module that contains tE&IDstatement initialization afS:EIP specifies the

code that is initially executed when the program is loaded into memory. Execution
begins at the specified label. An entry point label must be specified in main
modules, unless it is specified with the system builder. ENizdirective should

also define the initial contents of DS and SS.

Example
NAME MAIN

STACK STACKSEG 10

DATA SEGMENT RW
ABYTE DB 0
DATA ENDS

CODE SEGMENT ER
ASSUME DS:DATA
START:MOV ESP, STACKSTART STACK
; superfluous because SS
; initialized with END
MOV AL, ABYTE

CODE ENDS

END CS:START, DS:DATA, SS:STACK

70 Chapter 3 Program Linkage Directives

Defining Shared Data with PUBLIC, EXTRN,
and COMM

Variables and labels defined in a program module RIBLIC can be accessed
from other modules where they are declared WXARN

The COMMIirective defines variables with undefined values whose storage is not
allocated until the program modules are combined.

PUBLIC Directive

Syntax
PUBLIC namel,...]
Where:
name is the identifier of a variable or label defined in the current module.
Discussion

ThePUBLIC directive specifies which symbols in a module are accessible from
other modules after all modules are combined. These symbols can be variables,
labels, or constants that have been defined usingQhuirective; it is an error to
specify any other kind of symbol.

Named constants that are referenced in other modules must be deciatad in
their defining module. An external constant must be an integer; it may be up to
32-bits long.

|:| Note

Do not confuse this use of the reserved wewdLIC with the
PUBLIC segment attribute used in tASEGMENT..ENDS
statement.

See also: SEGMENT..ENDSstatement, Chapter 2

Example

PUBLIC VAR 1, VAR 2

VAR 1 DBIT 0100B : VAR 1 and VAR 2 are made

VAR 2 DD 'ABCD' : accessible to other modules
; when program is combined

ASM386 Assembly Language Reference Chapter 3 71

EXTRN Directive

Syntax
EXTRN name[type][,...][use]
EXTRN [use] name][type],-...]
or
[use] EXTRN name][type][,-..]
Where:
name is the name of the external symbol, which must be deckived IC
or COMNN another module.
type is BIT , BYTE WORDPDWORIPWORDQWORDBYTE ABS a defined
record template name, a defined structure template néEAR or
FAR Except forABS the type specification must match that of the
external symbol, or the external symbol's type must be overridden
with PTR
use isUSE320r USEl6 TheUSEattribute specifies 32-bit or 16-bit
addressing, respectively, for the named symbol or list of symbols. If
no attribute is specified, théSEattribute of the nearest enclosing
segment or module is assumed.
Discussion

72

The EXTRNdirective specifies symbols that are declerPe@LIC or COMNN
another module. Such symbols can then be referenced in the current module.

All external variables have one of the following typ®&s$T , BYTE WORPDWORD
PWORDQWORDBYTE a structure template name, or a record template name. The
type for a structure or record is its length in bytes. Structure and record template
names cannot be forward references.

External constants can be signed integers up to 32-bits USEBL segment) or up
to 16-bits long YSE16segment). External constants must be decletuglIC in
another module and be declared vEXTRN:ABSin modules that reference them.
Such symbols are assigned typ& ORQUSE32EXTRN or WORBUSE16 EXTRN.

All external labels and procedure labels have tygaRor typeFAR The label or
procedure iNEARIf it is defined in the same named segment as its callers;
otherwise, it iFAR If type is omittedFARIis assumed for aBXTRNlabel.

See also: PTR Chapter 5
segmentSEattributes, Chapter 2
variable and label types, Chapter 4

Chapter 3 Program Linkage Directives

Placement of EXTRN

Within program segments, the following rules apply to the placement &xiheN
directive:

1.

If the external variable's or label's defining segment (in another module) is
known, place th&€XTRNstatement betweenSEGMENT..ENDSpair that has
the same segment name asSEGSMENT..ENDSn which the symbol was
defined.

Such a symbol can then be referenced in the same manner as any other
variable or label. For example, if the mod8I@AN.386 contained the
following segment and variable definition:

DATA SEGMENT RW PUBLIC
COUNT DB 0

PUBLIC COUNT

DATA ENDS

then theEXTRNdirective should be specified in another module as follows:

DATA SEGMENT RW PUBLIC
EXTRN COUNT:BYTE
DATA ENDS

If the external symbol's defining segment is unknown, if its defining segment is
non-combinable, or if the symbol is BXTRN:ABSconstant, place theXTRN
statement outside of EGMENT..ENDSpairs in the module. To address such
an external symbol, load the segment selector of the symbol into a segment
register using th6EGoperator. For example:

MOV AX, SEG COUNT
MOV ES, AX

To validate its addressability, use ABSUMHElirective such as the following:

ASSUME ES:SEG COUNT
MOV DX, COUNT

or use a segment override for each reference to the symbol as in the following:

MOV DX, ES:COUNT

See also: SEGand segment overrides, Chapter 5

ASSUMHlirective, Chapter 2

ASM386 Assembly Language Reference Chapter 3 73

COMM Directive

Syntax
COMMnamd,...]
Where:
name is a variable name; it must be a unique identifigamemay not be a
variable of typeBIT .
Discussion

74

The COMMIirective specifies that a variable defined in the current module is a
CoMMymbol. COMMymbols are classified as global variables.

The COMMIirective allows the binder to allocate space for a symbol at bind time.
Variables specified wit@OMNh more than one module share storage space. They
are similar tcFORTRANlank common variables or C extern variables.

Variables declared wittOMMannot be initialized. Use?awhen definingCOMM
variables to indicate uninitialized storage.

See also: Allocating uninitialized storage, Chapter 4

The COMMIirective may appear inside or outside the segment in which the variable
is defined. COMNmIay be placed before the definition of the variable it describes
(see the Example).

Variables cannot be declareE®TRNin the same module where they are declared
with COMM They may be declared witUBLIC or with EXTRNin other modules,
as well as witlCOMM

A CcoOMMymbol does not actually occupy space in a segment until bind time. The
binder determines whether a variable reference will be resolved by a matching
PUBLIC definition from another module or whether space will be allocated for it in
a segment where tt@OMNMymbol is defined. If a variable is not declaragBLIC

in another module, the binder will allocate spaceCiomMMlata in the first-bound
module (and segment) in which it encountersdbaingymbol.

A COMMymbol may have a different type thanRt$BLIC counterpart (with the
same name) in another module. However, sucbrNMymbol is treated as an
EXTRNsymbol; the binder stores tki®MMymbol in the correspondiRiJBLIC
symbol's defining segment.

A COMMymbol that has nBUBLIC counterpart in another module is treated as a
PUBLIC symbol. The binder allocates storage for@iaanymbol in the first-

bound segment where it is defined. The binder then resolves subsequent reference
(CoMMor EXTRN to that symbol.

Chapter 3 Program Linkage Directives

A COMMymbol's containing storage segment is determined by the binder. For this
reason, loading a segment register in assembler modules with the nac@enfia
symbol's defining segment is difficult. Use hieGoperator to referenc@OMM
symbols in modules. For subsequent symbolic references, uUSEGlo@erator

again to reload the correct segment selector into the segment register.

Example

NAME MOD 1

COMM X, Z : COMM statement before data definition
; outside of defining segment

DATA SEGMENT RW PUBLIC

COMMA, B : COMM statement before data definition

ADW 13 DUP (?) ;inside defining segment

B DB ?

X DW ?

ZDD?

LOCAL DD ?

DATA ENDS
END

ASM386 Assembly Language Reference Chapter 3 75

Defining And Initializing Data

This chapter has four major sections:

* An overview of assembler labels, variables, and data
This section explains:
— Assembler label and variable types

— The relationship between assembler variable types and the values
associated with variables: the processor or floating-point coprocessor data

types
— How to specify data values in assembler programs
* Assembler variables
This section explains:
— Storage allocations for variables
— Variable attributes

— Defining and initializing simple-type variables with the DBIT, DB, DW,
DD, DP, DQ, and DT directives

— Defining compound types with tiRECORRNASTRUCdirectives; defining
and initializing variables of these types (records and structures)

— Defining and initializing variables witbUPclause(s)
e Assembler labels

This section explains:

— Label attributes

— The location counter and ti@RGandEVENdirectives

— TheLABEL directive

— Defining implicit NEARIabels

— ThePROOirective

* Using symbolic data, including named variables and labels, withQhand
PURGHlirectives

ASM386 Assembly Language Reference Chapter 4 77

Overview of Assembler Labels and Variables
The labels and variables in an assembler program define logical addresses:

* Alabel defines an address that is either an offset within the segment currently
being assembled or a location outside the current segment whose address is
both a segment selector and an offset within that segment.

* A named variable also defines an address whose contents (a value) can be
accessed by a reference to the variable name.

Labels and named variables are sometimes called symbolic addresses because the
names represent logical addresses. However, assembler variables are not requirec
to have names, as long as their values can be accessed.

See also: Accessing assembler addresses and values, Chapter 5

Assembler Label and Variable Types

The assembly language is strongly typed. The assembler enforces type rules wher
it encounters a label or allocates storage for a variable (named or unnamed).

Each assembler label has one of the following types:

NEAR indicates that the logical address represented by the label is an offset.
NEARIs the default label type.

FAR indicates that the logical address represented by the label is both a
selector and an offset.

Each assembler variable has a type that must be specified when the variable is
defined with a storage allocation statement. A variable's type indicates the
processor or floating-point coprocessor storage size for the variable's value(s). A
variable's type is either a simple type or a compound type. A compound type is
constructed from one or more simple types.

The assembler (reserved word) names for simple typesar&YTE WORD
DWORIPWORDQWORMANATBYTE ForBIT -type variables, the assembler

allocates a byte of storage because processor addresses fall on byte boundaries. F
variables of the other simple types, the assembler allocates storage of 8-, 16-, 32-,
48-, 64-, or 80-bits, respectively.

78 Chapter 4 Defining and Initializing Data

A compound-type variable is either a record or a structure. Records and structures
are programmer-defined (and named) types. A record or structure template defines
a type that specifies the storage size(s) to be allocated for any variable of the type.
Record and structure storage allocation statements define assembler variables of
these types.

A DUPclause can be added to any assembler storage allocation statement to
allocate a sequence of storage units that are all of the sameDtypallocates
storage for array-like variables whose elements are contiguous storage units,
possibly with different values.

Assembler Data Values

The processor or floating-point coprocessor stores all data as a sequence of 1s and
0s. The value that such a sequence represents is subject to interpretation. The
assembler interprets values in the context of a program. For example, the logical
address represented by a label is 32-bitsUs&32 code segment; it is 16-bits in a
USE16 segment.

The value of an assembler variable also has meaning only in context. If a variable
is used as the operand of a shift instruction, its corresponding value represents a
simple sequence of bits. If the same variable is used as the operand of a subtract
instruction, its corresponding value represents a number.

The contextually determined meaning of a variable value is called its processor or
floating-point coprocessor data type.

ASM386 Assembly Language Reference Chapter 4 79

Data Types

80

The values of assembler variables can be interpreted as the following processor an
floating-point coprocessor data types:

* Processor or floating-point coprocessor signed integers
* Processor ordinals

* Processor unpacked or packadDdigit(s)

* Floating-point coprocessor packe@Dintegers

» Processor strings

e Processor bit strings or bit fields

e Processor near or far pointers

* Floating-point coprocessor reals

For example, the value ofCAWORIype variable can represent any of the following
in the context of a program:

* A processor integer or a floating-point coprocessor short integer
e A processor ordinal
e A processor string that is 4 bytes long

* A processor bit string that is 32-bits long (it may contain a bit field up to
32-bits long)

* A floating-point coprocessor single precision real

To access string8YTEtype assembler variables must be defined. Processor
strings are composed of contiguous bytes. The nam&WvT&type variable (or

the unnamed but initially allocated storage unit) defines the logical address of such
a string's first byte.

Assembler pointer variables are 32bWORDr 48-bitPWORDypes that represent

a logical addressDWORInear) pointer variables represent an offset within a
segment.PWORI¥far) pointers have two components: a 16-bit segment selector and
a 32-bit offset.

The assembler typ&8ORPDWORDWORANDTBYTE can represent 16-, 32-, 64-,
and 80-bit floating-point coprocessor data types. 16-bit data is a word integer,
32-bit data is either a short integer or a single precision real, 64-bit data is either a
long integer or a double precision real, and 80-bit data is either a packed decimal
integer or an extended precision real.

See also: Floating-point numbers, Chapter 7

Chapter 4 Defining and Initializing Data

Numeric Data Value Ranges

The type specified for a variable determines the range of values it can represent.
The assembler checks variable definitions for initial values that are too large for the
declared type. Table 4-1 summarizes the (decimal) range of values for each
variable type that can represent a processor or floating-point coprocessor number.

Table 4-1. Assembler Variable Types and Numerical Value Ranges

Variable Data Type Length in Value Range in Decimal
Type bits
BIT bit 1 0 or 1 binary
BYTE byte 8 -28..127 for integers
0..255 for ordinals
WORD word 16 -32,768..32,767 for integers
0..65,535 for ordinals
FP word integer 32,768..32,767
DWORD dword 32 -231 (231 . 1) for integers
0..(232 - 1) for ordinals
FP short integer =231 (281.1)
FP single -3.4E38..-1.2E-38, 0.0,
precision real 1.2E-38..3.4E38
QWORD FP long integer 64 -263 (263 .1)
FP double -1.7E308..-2.3E-308, 0.0,
precision real 2.3E-308..1.7E308
TBYTE FP packed 80 -(1018 - 1)..(1018 - 1)
decimal integer
FP extended -1.1E4932..-3.4E-4932,
precision real 0.0, 3.4E-4932..1.1E4932

FP in Table 4-1 indicates a floating-point coprocessor data type.

ASM386 Assembly Language Reference Chapter 4 81

Specifying Assembler Data Values

Assembler data can be expressed in binary, hexadecimal, octal, decimal, or ASCII
form. Decimal values that represent integers or reals can be specified with a minus
sign; a plus sign is redundant but accepted. Real numbers can also be expressed |
floating-point decimal or in hexadecimal notations. Table 4-2 summarizes the

valid ways of specifying data values in assembler programs.

Table 4-2. Assembler Data Value Specification Rules

Value in Examples Rules of Formation

Binary 1100011B 110B A sequence of O's and 1's followed by the
letter B.

Octal 77770 4567Q A sequence of digits in the range 0..7
followed by the letter O or the letter Q.

Decimal 3309 3309D A sequence of digits in the range 0..9
followed by an optional letter D.

Hexadecimal 55H 4BEACH A sequence of digits in the range 0..9

and/or letters A..F followed by the letter
H. A digit must begin the sequence.

ASCII '‘AB' 'UPDATE.EXT' Any ASCII string enclosed in single
quotes.
Decimal -1. 1E-32 3.14159 A rational number that may be preceded

by a sign and followed by an optional
exponent. A decimal point is required if
no exponent is present but is optional
otherwise. The exponent begins with the
letter E followed by an optional sign and a
sequence of digits in the range 0..9.

Hexadecimal 40490FR 0CO000R A sequence of digits in the range 0..9
and/or letters A..F followed by the letter
R. The sequence must begin with a digit,
and the total number of digits and letters
must be (8/16/20) or (9/17/21 with the
first digit 0).

82 Chapter 4 Defining and Initializing Data

A real hexadecimal specification must be the exact sequence of hex digits to fill the
internal floating-point coprocessor representation of the floating-point number. For
this reason, such values must have exactly 8, 16, or 20 hexadecimal digits,
corresponding to the single, double, and extended precision reals that the floating-
point coprocessor and the floating-point instructions handle. Such values can have
9, 17, or 21 hexadecimal digits only if the initial digit must be a zero because the
value begins with a letter.

Data values can be specified in an assembler program in a variety of formats, as
shown in Table 4-2. The way the processor or floating-point coprocessor
represents such data internally is called its storage format.

See also: Processor storage formats, Appendix A
floating-point coprocessor storage formats, Chapter 7
Initializing Variables
Assembler variables can be initialized by:
e Variable or segment names that represent logical addresses
e Constants (see Table 4-2)
+ Constant expressions

A series of operands and operators is called an expression. An expression that
yields a constant value is called a constant expression.

See also: Assembler expressions, Chapter 5

The assembler evaluates constant expressions in programs.

How the Assembler Evaluates Constant Expressions

The assembler can perform arithmetic operations on 8-, 16-, and 32-bit numbers.
The assembler interprets these numbers as integer or ordinal data types.

An integer value specified with a sign is a constant expression. The assembler
evaluates integer or ordinal operands and expressions using 64-bit two's
complement integer arithmetic.

By using this arithmetic, the assembler can evaluate expressions whose operands'
sizes might extend beyond the storage type of the result. As long as the
expression's value fits in the storage type of the destination, the assembler does not
generate an error when intermediate results are too large. The assembler does
generate an error if the final result is too large to fit in the destination.

ASM386 Assembly Language Reference Chapter 4 83

Variables

A variable defines a logical address for the storage of value(s). An assembler
variable is not required to have a name as long as its associated value(s) are
accessible. But, every variable has a type; records and structures have a compour
type.

Assembler variables must be defined with a storage allocation statement. A storag
allocation specifies a type (storage size in bytes) and defines a logical address for ¢
variable that gives access to the variable's value(s). A storage allocation statemen
may also specify initial value(s) for a variable.

Use the DBIT, DB, DW, DD, DP, DQ, or DT directive to allocate storage for
simple-type variables of the following sizes:

DBIT 1-bit (zero padded to a byte boundary)

DB 8-bits (byte)

DW 16-bits (word)
DD 32-bits (dword)
DP 48-bits (pword)
DQ 64-bits (qword)
DT 80-bits (10 bytes)

Use theRECORRNASTRUCdIirectives to define type names that can be specified as
(compound) types for record or structure variables:

The RECORMDiIrective
defines a storage template for variables of its type. The template
defines 1 to 4 bytes of storage for fields of bits. Use a record
allocation statement to define a variable of the record type. Variables
of a record type consist of contiguous fields of bit-encoded data.
Records are used for accessing specific bits in the flags, in the storage
fields of a real number, in the fields of a pointer, etc. The assembler
MASK SIZE , andWIDTHoperators can be used to access record fields.

See also: MASKSIZE, andWIDTHoperators, Chapter 5

84 Chapter 4 Defining and Initializing Data

The STRUCDirective
defines a storage template with named fields, each of a specified type.
Variables of a structure type consist of contiguous variables with the
types (and names) of the constituent template fields. Structure
template fields are simple variables, usually initialized with undefined
values. Use a structure allocation statement to define a variable of
this type.

A structure template's field names define offsets from a logical
address. Any memory location pointed to by a base or index register
becomes an undeclared variable of the structure type if it is used to
reference a field name with the dot operator (e.g.,

[EBP]. fieldname).

Use aDUPclause within any assembler data allocation statement to allocate and
optionally initialize a sequence of storage units of a single variable Bpe.

defines an array-like variable whose element values are accessed by an offset from
the variable name or from the initially specified storage unit.

Simple Data Allocations

Both simple-type variables and the components of compound types are defined by
simple data allocation statements. The general syntax of a simple data allocation
statement is:

Syntax
[namg dtyp init [,..]
Where:
name is the name of the variable. Within the module, it must be a unique
identifier.
dtyp is DBIT, DB, DW, DD, DP, DQ, or DT.
init is the initial value to be stored in the allocated spa@e. can be a

numeric constant (expressed in binary, hexadecimal, decimal, or
octal), an ASCII string, or (except f8IT -type variables) the
guestion mark characte?)(which specifies storage with undefined
value(s). dtyp restricts the values that may be specifiedifar .

Record and structure allocation statements define compound-type variables.

ASM386 Assembly Language Reference Chapter 4 85

Variable Attributes

A defined variable has four attributes:

86

Segment

USE

Offset

Type

The segment in which the variable is defined. The value of a
variable's segment attribute is the selector for its segment.

TheUSE32or USE16 of the segment in which the variable is defined.
See also: SegmenbiSEattributes, Chapter 2

The variable's logical address within its defining segment. This value
represents the distance in bytes from the base (or start) of the defining
segment to the start of the variable in memory. UBE32 segments,
the offset is a 32-bit value; f&dSE16 segments, it is a 16-bit value.

The size in bytes of the variable. For simple-type variables, the data
initialization directive (DBIT, DB, DW, DD, DP, DQ, or DT)

specifies the type. For compound variables, the type is a programmer-
defined record or structure template name. A variable's type
determines how it can be used in an instruction and, in some cases,
how data will be stored within the variable.

When a variable is defined in a program, the assembler will store its definition,
which includes its attributes.

See also:

Chapter 5 for more information about expression operators that
override these attributes and access their values

Chapter 4 Defining and Initializing Data

Defining and Initializing Variables of a Simple Type

All assembler variable definitions use the DBIT, DB, DW, DD, DQ, DP, or DT
directives. The template components of compound variable types are simple types
defined with these directives.

DBIT Directive

Syntax
[namg DBIT init [,...]
Where:
name is the name of the variable. Within the module, it must be a unique
identifier.
init is a binary digit (1 or 0) followed by the letter B or b, or a string of up
to 32 binary digits followed by the letter B or b.
Discussion

DBIT reserves storage for and initializes a single-bit variable or a bit string of type
BIT. If init is not specified explicitly, the assembler assigns a 0 and issues a
warning.

DBIT actually reserves an entire byte of storage for a 1-bit variable (unless it is
defined within a structure) because processor addresses fall on byte boundaries.
DBIT fills one or more bytes for ainit list with the specified values and zero-
pads such a variable out to the nearest byte boun@@tf. variables defined one

at a time occupy consecutive bytes in memory.

Within an assembler structure consecutively defined bit variables will be
concatenated; they are stored as contiguous bits in memory and they can cross byte
boundaries.

ASM386 Assembly Language Reference Chapter 4 87

Examples
1.

88

The DBIT directive initializes a full byte for sSimplT variables, even when
fewer than 8 digits are specified for an initial value.

ONEBIT DBIT 1B ; initializes a byte to 00000001
TWOBITS DBIT 10B ; initializes a byte to 00000010

For eaclBIT -type variable defined outside a structure,DiBeT directive
concatenates an init list and pads the value with zeros out to the nearest byte
boundary. However, each variable defined iBiT is allocated storage
separately.

BIT1 DBIT 1B, 0B, 1B, 0B, 1B ; 00010101 is initial value
BIT2 DBIT 1B ; 00000001 is initial value
BIT3 DBIT 10B : 00000010 is initial value

ForBIT -type fields of a structure, the assembler concatenates contiguous bit
fields and pads the value out to the nearest byte boundary. Structure fields of
typeBIT can cross byte boundaries.

BITSTRUK STRUC

BIT1 DBIT 1B, 0B, 1B, 0B, 1B
BIT2 DBIT 1B

BITSTRUK ENDS

BITS BITSTRUK <> : 00110101 is initial value stored

Chapter 4 Defining and Initializing Data

DB Directive

Syntax
[namg DB init [,...]
Where:
name is the name of the variable. Within the module, it must be a unique
identifier.
init is a question mark?}, a constant expression, or a string of up to 255
ASCII characters enclosed in single quotés (
Discussion

DB reserves storage for and optionally initializes a variable ofByg& ?
reserves storage with an undefined value.

Numeric initial values can be specified in binary, octal, decimal, or hexadecimal
(see Table 4-2). The specified constant or constant expression must evaluate to a
number in the range 0..255 (processor ordinal) or -128..127 (processor integer).

The components of character string values must be ASCII characters and the whole
string must be enclosed in single quotes. To include a single quote character within
such a string, specify two single quotes)(

Each ASCII character requires a byte of storageBYITE strings, successive
characters occupy successive bytes. The name of the variable represents the logical
address of the first character in such a string.

Examples

1. This example initializes the variabM8YTEto the constant value 100
(decimal). It reserves storage for another byte with an undefined value.

ABYTE DB 100
DB ?

2. This example initializes three successive bytes to the values 4, 10, and 200,
respectively.

BYTES3 DB 4,10,200

3. This example initializes seven bytes containing the ASCII values of the
characters A, B, C, ', D, E, and F, respectively.

STRGWQUOT DB 'ABC"DEF'

ASM386 Assembly Language Reference Chapter 4 89

DW Directive

Syntax
[namg DW init [,...]
Where:
name is the name of the variable. Within the module, it must be a unique
identifier.
init is a question mark?}, a constant expression, the name of a variable
or label defined in &SE16 segment, the name of a segmergg16
or USE32), or a string of up to 2 characters enclosed in single
quotes ().
Discussion

DW defines storage for and optionally initializes a 16-bit variable of Wp&D ?
reserves storage with an undefined value.

Numeric initial values can be specified in binary, octal, decimal, or hexadecimal
(see Table 4-2). The specified constant or constant expression must evaluate to a
number in the range 0..65535 (processor ordinal) or -32768..32767 (processor
integer).

A USE1l6variable or label name yields an initial value that is the offset of the
variable or label. It is an error to initializextORIariable with the name of a
variable or label that has been defined inSE32 segment; its offset is too large
(32-bits). A segment name yields an initial value that is the segment selector.

A 1- or 2-character string yields an initial value that is interpreted and stored as a
number. The assembler stores a 2-byte value even if the specified string has only
one character:

« It stores the specified initial value in the least significant byte.

e It zeros the remaining byte.

90 Chapter 4 Defining and Initializing Data

Examples
1. This example tells the assembler to reserve storage for two uninitialized words.
UNINIT DW ?,?
2. This example initialize®/ORMariables with numeric values.

CONST DW 5000 : decimal constant
HEXEXP DW OFFFH -10 ; expression

3. This example initialize§AR10FFt0 the offset o/AR1 (both variables are
within aUSE16 segment) an@ODESELo the selector of a segment named
CODE

VAR1OFF DW VAR1
CODESEL DW CODE

4. This example initializeSUMBRo the ASCII value (interpreted as a number) of
the letters AB.

NUMB DW 'AB' ; equivalent to NUMB DW 4142H

ASM386 Assembly Language Reference Chapter 4 91

DD Directive

Syntax
[namg DD init [,...]
Where:
name is the name of the variable. Within the module, it must be a unique
identifier.
init is a question mark?}, a constant expression, the name of a variable
or label, or a string of up to 4 characters enclosed in single qudtes (
Discussion

92

DD defines storage for and optionally initializes a 32-bit variable of DyweORD?
reserves storage with an undefined value.

Integer initial values can be specified in binary, octal, decimal, or hexadecimal (see
Table 4-2). The specified constant or constant expression must evaluate to a
number in the range:

-281 2 3811 (processor integer or floating-point coprocessor short integer)
Or,0..2 3.1 (processor ordinal)

Real initial values can be specified in floating-point decimal or in hexadecimal (see
Table 4-2). A decimal constant must evaluate to a real in the ranges:

-3.4E38..-1.2E-38, 0.0, 1.2E-38..3.4E38
(floating-point coprocessor single precision real)

A constant expressed as a hexadecimal real must be the exact sequence of hex
digits to fill the internal floating-point coprocessor representation of a single
precision real (8 hexadecimal digits or 9 hexadecimal digits, including an initial 0).

A USE1l6variable or label name yields an initial value that fills the dword. Its
high-order word contains the segment selector and its low-order word contains the
offset of theUSE16 variable or label.

A USE32variable or label name yields an initial value that is the offset (from the
segment base) of the variable or label.

A string (up to four characters) yields an initial value that is interpreted and stored
as a number. The assembler stores a 4-byte value even if the specified string has
fewer than four characters:

» It stores the specified initial values in the least significant bytes.

e It zeros the remaining bytes.

Chapter 4 Defining and Initializing Data

Examples

1. This example defines two variables, a floating-point coprocessor short integer
and a single precision real.

INTVAR DD 1234567
REALVAR DD 1.6E25

2. In this example,AB1 was defined in &SE16 segment andAB2 was defined
in aUSE32segment.

LAB1_ADD DD LAB1 ;LAB1_ADD contains offset and
; segment selector of LAB1
LAB2_ADD DD LAB2 ; LAB2_ADD contains offset of LAB2

3. This example initializes three unnamed dwords. The first contains an
undefined value. The second contains the ASCII numeric value of the letter A.
The third contains the integer 450 (decimal).

DD ?, 'A’", 450

ASM386 Assembly Language Reference Chapter 4 93

DP Directive

Syntax
[namg DP init [,...]
Where:
name is the name of the variable. Within the module, it must be a unique
identifier.
init is a question mark?}, an integer constant expression, the name of a
variable or label, the name of a segment, or a string of up to 6
characters enclosed in single quotes (
Discussion

DP defines storage for and optionally initializes a 48-bit variable ofRyYy@RD?
reserves storage with an undefined value.

Numeric initial values can be specified in binary, octal, decimal, or hexadecimal.
The specified constant expression must evaluate to an integer in the range:

-2 47“2 47_1_
Constants used to initialize pwords cannot be expressed as real numbers.

A variable or label name (whatever thsEattribute of its defining segment) yields
an initial value that fills the pword. The pword will contain both the variable's or
label's offset and the segment selector (16-bits). The low-order dword stores the
offset.

A segment name yields an initial value that is a logical address consisting of the
segment selector (16-bits) and an offset of zero (32-bits) to the start of the named
segment.

A string (up to six characters) yields an initial value that is interpreted and stored as
a number. The assembler stores a 6-byte value even if the specified string has
fewer than six characters:

» It stores the specified initial values in the least significant bytes.

e It zeros the remaining bytes.

94 Chapter 4 Defining and Initializing Data

Examples

1. This example initializes the low-order byte to the ASCII value (interpreted as a
number) of the digit 1, and the five high-order bytes to zero.

DP '1' ; first byte contains 31H
; remaining bytes contain 00000000

2. This example initialize§ARPTRtO the segment selector and offseVaR32

VARPTR DP VAR32

ASM386 Assembly Language Reference Chapter 4 95

DQ Directive

Syntax
[namg DQ init [,...]
Where:
name is the name of the variable. Within the module, it must be a unique
identifier.
init is a question mark?}, a constant expression, or a string of up to eight
characters enclosed in single quotes (
Discussion

DQ defines storage for and optionally initializes a 64-bit variable of@QW@WeRD
The? reserves storage with an undefined value.

Integer initial values can be specified in binary, octal, decimal, or hexadecimal (see
Table 4-2). The specified constant expression must evaluate to an integer in the
range-2 63..2 3.1 (floating-point coprocessor long integer).

Real initial values can be specified in floating-point decimal or hexadecimal (see
Table 4-2). A decimal constant or expression must evaluate to a real in the ranges

-1.7E308..-2.3E-308, 0.0,
2.3E-308..1.7E308
(floating-point coprocessor double precision real).

A real hexadecimal constant must be the exact sequence of hex digits to fill the
internal floating-point coprocessor representation of a double precision real (16
hexadecimal digits or 17 hexadecimal digits, including an initial 0).

A string (up to 8 characters) yields an initial value that is interpreted and stored as «
number. The assembler stores an 8-byte value even if the specified string has
fewer than 8 characters:

» It stores the specified initial values in the least significant bytes.

e It zeros the remaining bytes.

96 Chapter 4 Defining and Initializing Data

Examples
1.

This example initialize§AR6t0 a floating-point coprocessor double precision
real andvAR7to the same value in real hexadecimal notation.

VARG6 DQ -3.6E-200 : decimal notation
VAR7 DQ 96860B837993DEES8R ; real hexadecimal notation

This example allocates 64-bits of storage for UNDEFNUM with an undefined
value.

UNDEFNUM DQ ?

This example initializeSHAR's low-order byte to the ASCII value
(interpreted as a number) of the comma, and its seven high-order bytes to zero.

CHARDQ', ; first byte contains 2CH
; remaining bytes contain 00000000

ASM386 Assembly Language Reference Chapter 4 97

DT Directive

Syntax
[namg DT init |[,...]
Where:
name is the name of the variable. Within the module, it must be a unique
identifier.
init is a question mark?] or a constant expression.
Discussion

DT defines storage for and optionally initializes an 80-bit variable of TRY&E
? reserves storage with an undefined value.

A constant expression must evaluate to an integer or real in the range(s):
-10 18-1..10 18-1 (floating-point coprocessor packed decimal integer)
Or,

-1.1E4932..-3.4E-4932, 0.0, 3.4E-4932..1.1E4932
(floating-point coprocessor extended precision real).

Real initial values can be specified in floating-point decimal or in hexadecimal (see
Table 4-2).

A hexadecimal real constant must be the exact sequence of hex digits to fill the
internal floating-point coprocessor representation of an extended precision real (20
hexadecimal digits or 21 hexadecimal digits, including an initial 0).

Examples

98

1. This example allocates 80-bits of storageAfoBYTEwith an undefined value.
ATBYTE DT ?

2. This example initializeEVARZ1to a floating-point coprocessor extended
precision real angVAR2to the same value in real hexadecimal notation.

EVAR1 DT 9E-15
EVAR2 DT 3FD0OA2212C962206C274R

Chapter 4 Defining and Initializing Data

Defining Compound Types and Their Variables

The RECORMRNASTRUCdIirectives define the names of compound types, together
with a storage allocation template.

TheRECORMirective defines a template that specifies the size and fields for
variables of the record type. Use the record template name in a record allocation
statement to allocate storage for and initialize variables of a record type.

An assembler record consists of contiguous fields of bit-coded data. Records can
be defined to format bytes, words, or dwords for bit-packing. A record template
can be from 1 to 4 bytes in size. Each record of the template type has a specific
number of fields, and each field contains a specific number of bits. Information
can be stored in and accessed from these fields.

The STRUCdirective defines a template with named and typed fields, optionally
with default data values. Each field is of a simple type (defined with DBIT, DB,
DW, DD, DP, DQ, or DT), but every field in a template may be of a different type.

Use structure templates to group associated data, such as the storage format fields
of floating-point coprocessor real numbers or the fields of a pointer. Use structure
templates to impose structure on memory data that will be accessed by a base or
index register.

Use the structure template name as the type in a structure allocation statement to
allocate storage for and initialize variables of the structure type. ASM386
structures are allocated memory in the same way bytes, words, and dwords are
allocated. Their fields can be accessed readily using the notation:

Structure-name.field-name
The (optional) default values of structure template fields can be:
e Overridden when a structure variable is allocated and initialized
* Accessed or overwritten during program execution

See also: Accessing structure template fields, Chapter 5
overwriting structure template fields, Chapters 6 and 7

ASM386 Assembly Language Reference Chapter 4 99

RECORD Directive

Syntax
nameRECORD field : exp [= init-val]][,...]
Where:
name is an identifier that creates a record template type naamee must
be unique within the module.
field is an identifier that defines a bit field within the record tyfedg
must be unique within the module.
exp is a constant expression that evaluates to the number of bits in the
field . exp must evaluate to an ordinal in the range 1..32. The
maximum number of bits in a record is 32, so it is an error if the sum
of a record templatesxps is greater than 32.
init-val iS a constant expression or a character string enclosed in single
quotes ().
Discussion

100

RECORI@reates 8YTE, WORH 3-BYTE- or DWORMized record template
definition. Record variables can then be allocated and initialized through the use
of the record name in a record allocation statement (see the next section).

Numeric initial values can be specified in binary, octal, decimal, or hexadecimal
(see Table 4-2). The specified constant expression must evaluate to a non-negativ
integer value that fits in its field.

A character string has a maximum length of four characters because the maximum
size of a record is 4 bytes and each ASCII character requires a byte of storage.

The first field specified in the record template occupies the most significant bits
when data is allocated for a record of the (template) type. Record template fields
(and their default values) are not required to fill to a byte boundary. A record
template whose fields do not occupy a BMTE, WORPor DWORIS called a partial
record.

The assembler right-justifies fields within a partial record and pads the record (with
zeros) out to the next byte boundary. A record whose fields total 17..23 bits is
padded to 24-bits (3 bytes). Figure 4-1 illustrates an example of a partial record.

Chapter 4 Defining and Initializing Data

Record Template:
Partial Record A:16, B:9

31 25 24 9 8 0
(Zero
Filled) A B
7 bits 16 bits 9 bits

W-3420

Figure 4-1. Partial Record Definition Template

Examples

1. This example definesmWORBized record template, even though it specifies
30-bits total for its fields (processor addresses must fall on byte boundaries).

ERRFLAGS RECORD 10:3=0,SYS:3=0,MEM:24="ABC'

2. This example defines a record template for floating-point coprocessor single
precision reals (the template matches the floating-point coprocessor storage
format).

SIGNEDNUM RECORD SIGN:1,EXP:8,FRAC:23

ASM386 Assembly Language Reference Chapter 4 101

Record Allocation Statement

Syntax
[name| recnm <[exp][....]>
Where:
name is an identifier;name must be unique within the module.
recnm is the name of the record template that defines how bit-fields are to be
allocated for the variable of the typeecnm may be followed by a
DUPclause.
exp is a value that overrides the default field value allocated for the
record. exp must evaluate to a number that will fit in the field
specified in the record template definition) that is to be overridden; it
may be & (undefined value).
Discussion

102

This statement allocates data in the form specified by the previously defined record
template. Default field values specified by BECORDIirective can be
overridden. The following rules must be observed:far:

* To allocate a record without overriding the default values, spesifyio exp
values).

e Assuming a record with fieldsf1 , 2, f3,..., fn >, specify a comma for
each field with an acceptable default value and specify an overegnépr
eachfn to be overridden.

For example, use the following to overrid@ (andf4) or fn , respectively:

<,2,5>
<, ppenn, 2>

11

After the last field to be overridden, commas need not be specified for remaining
fields. In the first preceding example, commas must be specified onfy fand
f2 (thefs..fn default values are acceptable).

« Use a? to override a default field value (zero used).

« Afield defined with a single string of two or more characters can be
overridden only with another string. The overriding string need not be the
same length as the record template's. If the overriding string is shorter than the
original string, the remaining characters of the default string are used. If the
overriding string is longer but still fits in the field, the overriding string is used.
Otherwise, the assembler generates an error.

Chapter 4 Defining and Initializing Data

Examples

1. This example allocates two record variables of fRRFLAGSthis record
template is defined in Example 1 of the preceding sectiBbAGS1uses the
ERRFLAGSlefault values without overrideSLAGSoverrides the defaults
defined withERRFLAGS

FLAGS1 ERRFLAGS<>
FLAGS ERRFLAGS<0,3,0>

2. This example allocates and initializes two record variables of3y@eEDNUM
(this record template is defined in Example 2 of the preceding section). For
floating-point numbers, the sign bit is O for positive values and 1 for negative
values.

PLUSONE SIGNEDNUM <0,7FH,0>
MINUS16 SIGNEDNUM <1,83H,0>

ASM386 Assembly Language Reference Chapter 4 103

STRUC Directive

Syntax

name STRUC
[field] storalloc
name ENDS

Where:

name is an identifier for the structure templatayme must be unique within

the module.
field is an identifier;field must be unique within the module.

storalloc is a DBIT, DB, DW, DD, DP, DQ, or DT storage allocation statement.
The storage allocation statement may conbrirclauses.
Storalloc specifies the variable type of the corresponding field; it
may also specify the default initial value of this field for all
subsequently defined variables of typene.

Discussion

104

The STRUC..ENDS block defines a template namegime. The templat@ame

defines a symbol table entry whose size equals the total number of bytes specified
betweerSTRUCaANdENDS Eachfield name is also defined in the symbol table,
together with its attributes.

A structure field name represents the logical address (an offset) of this field within
all structures of typeame. A field has two attributes: offset and type. The offset
of a field is the number of bytes from the start of the structure to the field. The
field's type depends on the storage allocation (storalloc) statement used in the
template.

Structure fields defined as contiguous variables of Bipeare concatenated into
one or more bytes and zero-filled to the nearest byte boundary.

A question mark?) can be used to allocate storage for Bon-type fields with
undefined initial values. If a value is specified in the storage allocation statement,
it becomes the default value for the field. This default can be overridden by the
structure allocation statement described in the next section.

Fields defined with more than ostralloc specification (a list) and fields
defined withDUP(?) have non-overridable default values.

The assembler supports up to 150 structure fields that are defined with uninitialized
values and without nest@UFs.

Chapter 4 Defining and Initializing Data

Examples

1. This example defines a structure for procedure parameters that would be
allocated on the stack. TE®Pregister would point to the procedure's stack
frame; its parameters could be accessed by name using the notation
[EBP]. field . The Examples in the next section include the dot operator.

See also: Dot operator, Chapter 5

THIS_PROC_PARAMS STRUC
OLD_EBP DD ?

RETURN DD ?

PARAM1 DD ?

PARAM2 DW ?,?

PARAM3 DW ?,?
THIS_PROC_PARAMS ENDS

The symbolTHIS_PROC_PARAMS8nters the symbol table as a structure 20
bytes in length. The fiveymbols OLD_EBP, RETURN, PARAM1, PARAM2
andPARAM3re defined as structure fieldSLD_EBPhas typeDWORRNd an
offset of 0 within the structur®ETURNas typeDWORRNd an offset of 4.
PARAM1has typeDWORRNd an offset of FARAMZhas typaVORRNd an
offset of 12, antPARAMzhas typeNORRNd an offset of 16 within the
structure.

2. This example defines a 6-byte structure template forRgPNTER

POINTER STRUC
OFFST DD ?
SEGSEL DW ?
POINTER ENDS

3. This example defines a 16-byte structure template that represents a point on a
plane expressed in polar coordinates.

POLARPOINT STRUC
RADIUS DQ 0
ANGLE DQ 0
POLARPOINT ENDS

ASM386 Assembly Language Reference Chapter 4 105

Structure Allocation Statement

Syntax

[namg strucnm <[exp][,...]>

Where:

name is an identifier that defines the logical address for a variable. The

segment part of its logical address is the current segment and its offset
is the current location counter; the binder can relocate the offset.
name must be unique within the module.

strucnm is the name of a previously defined structure templ&teucnm is

exp

the variable's type; it specifies the variable's fields, their types, and a
variable storage size equal to the number of bytes allocated by the
template. Strucnm may be followed by @uUPclause.

is a value that overrides the default field value given in the template
definition. Exp is a question marke} (except for fields of typ8IT),

a constant expression, or a string enclosed in single quoteH {t is

not a?, its value must fit in the type specified for the corresponding
structure template field.

Discussion

106

This statement allocates storage based on a structure template (see the preceding
section). The amount of storage allocated will be the number of bytes defined in
the template (multiplied by armyuPclauses).

Field values defined in the structure template are defaults. They may be overridde!
in the storage allocation statement with certain restrictions. The following rules
must be observed faxp:

To allocate a structure without overriding the default values, spegifyo
exp values).

The default value specified in the structure template definition mus?be a
(nonBIT fields only), a constant expression, or a character string used as a
default value for a byte (DB) field. The overriding value must fit within the
field.

Template fields defined with more than asteralloc specification (a list)
and template fields defined withuP(?) may not be overridden.

Chapter 4 Defining and Initializing Data

e Assuming a structure with fields? , 2, f3,..., fn >, specify a comma for
each field with an acceptable default value and specify an overggdngépr
eachfm to be overridden.

For example, use the following to overrid@ (andf4) or fn , respectively:

<,2,5>
<, ppenn, 2>

IRRRN]

After the last field to be overridden, commas need not be specified for
remaining fields. In the first preceding example, commas must be specified
only forf1 andf2 (thefs..fn default values are acceptable).

« A DB field initialized with a single string of two or more characters can be
overridden only with another string. The overriding string need not be the
same length as the template's. If the overriding string is shorter than the
original string, the remaining characters of the original string are used. If the
overriding string is longer but still fits in the field, the overriding string is used.
Otherwise, the assembler generates an error.

Examples

1. This example allocates storage for a structure of T#p®_PROC_PARAMS
(this structure template is defined in Example 1 of the preceding section).

APROC THIS_PROC_PARAMS <>
To access a field ZPROCuse the dot operator (e.gRPROC.PARAML

However, a structure field is not irrevocably tied to the structure in which it is
defined. [EBP].PARAM2 could be used in any context where you wanted a
BYTEvariable that was offset by 4 bytes from E&Pbase. It is not necessary
(and the assembler does not check) that the surrounding data pointeeBt® by
follows the template format defined foHIS_PROC_PARAMSAssuming that
EBPhas already been set to point to the beginning of this strugeR®C
parameters can be accesse{E88].PARAM1 , [EBP].PARAM2 , and
[EBP].PARAM3 .

2. This example allocates storage for and initializes a structure of type
POLARPOINT(this structure template is defined in Example 3 of the preceding
section). This structure is initialized with radius 2.0 and angle 3.1416,
overriding the template's specification (uninitialized storage for the field
values).

VALUE1 POLARPOINT<2.0,3.1416>

To perform any calculations usivg\LUEY, refer to the fields of this structure
asVALUEL.RADIUS andVALUE1.ANGLEin the instruction.

ASM386 Assembly Language Reference Chapter 4 107

108

This example allocates storage for an array of 20 structures of type
POLARPOINT each initialized with the same two data values.

POLPT_ARR1 POLARPOINT 20 DUP (<2.0,3.1416>)

This example defines a structure template with overridable fields, and allocates
storage for a variable that overrides the defaiRuCvalues.

OVERRIDABLE STRUC

ASTRING DB 'ABCDEFG'
DONTCARE DW ?

AREAL DD 3.14159
OVERRIDABLE ENDS

VARO OVERRIDABLE <'HIJ',1,1E-23>

This example defines a structure template with fields thatnoglge
overridden (see the Discussion section).

NONOVERRIDE STRUC
ALIST DB 1,2,3 : cannot override list
: of default values
ADUP DW 10 DUP (?) ; cannot override defaults
; specified with DUP
NONOVERRIDE ENDS

These equations illustrate results when multiple dot operators are used in an
expression. Given the following structure template definitions and address
expression using the dot operator:

FOO STRUC

FEDBO : offset from FOO =0
FI DW 0 ;offset =1

FOO ENDS

BAA STRUC

FODBO ; offset from BAA =0
FUM DD 0 ; offset=1

BAA ENDS

[EBP].FE.FI.FO.FUM =
[EBP]+0+1+0+1=[EBP]+2

The result's type is the same as the rightmost field specific@goORD
(=FUM's in this example). However, the result's type can be overridden with
the PTR operator as follows:

WORD PTR [EBP].FE.FI.FO.FUM

ThePTRexpression has the same valugea®].FE.FI.FO.FUM , but type
WORD

See also: PTR operator, Chapter 5

Chapter 4 Defining and Initializing Data

DUP Clause

A DUPclause reserves storage for a sequence of variables of a single typalUPUse
with any DBIT, DB, DW, DD, DP, DQ, or DT storage allocation statement to

define an array-like variable. Such a variable's elements can be accessed as
multiples of a constant offset from the initial element; the constant value equals the
size of the element type. UB&Pwith any record or structure allocation statement

to allocate contiguous storage for an array-like variable whose elements are records
or structures.

Syntax
rep-val DUP (val [,...])
Where:
rep-val specifies the number of storage units to be allocated. A storage unit is
one of the following:BIT , BYTE WORPDWORIPWORDQWORD
TBYTE or previously specified (named) record or structure template.
val is any initialization expressionn{t or exp) that is valid for the
specified storage unit, or it is anothmyPclause.
Discussion

DUPallocates storage for and optionally initializes an array-like variable with
elements of a single typ@UPis an optional part of any storage allocation
statement, including a record or structure allocation statement. For a variable
allocated with DBIT, DB, DW, DD, DP, DQ, or DT, speciffpaPclause as
follows:

[namg dtyp rep-val DUP (init [,...])

For a variable allocated with a record or structure template name, spBtify a
clause as follows:

[namg recnm rep-val DUP (<[expll.---]>)
or
[namg strucnm rep-val DUP (<[expll.---]>)

For nonBIT -type variablesDUPcan be used to reserve storage space without
producing a data initialization record in the object module. The syntax

rep-val DUP (?)

reserves storage space with undefined values. The amount of reserved space
depends on theep-val specified and the storage allocation size specified by the
directive or template that preced2dr

ASM386 Assembly Language Reference Chapter 4 109

The assembler allowBUPclauses to be nested up to the limit of the symbol table
memory space for simple types. For structure types, this limit is less than 150. The
assembler fill ODUP(?) specifications within a structure with zeros.

The assembler fills any othBiUP(?) storage allocations with zeros when an
initialization value is specified in the storage allocation statement. Speffy
every initialization value when you want totally undefined storage in the object
file. However, variables defined with DBIT may not be initialized with the
guestion mark.

Examples
1.

These examples uB&Pto initialize bit patterns.

THE_BITS DBIT 2 DUP (10b) ; initializes 2 bytes
;at THE_BITS to
; 00000010
; 00000010
BIG_BITS DBIT 4 DUP (11011B) ; initializes 4 bytes
; at BIG_BITS to
; 00011011
; 00011011
; 00011011
; 00011011

This example initializes 50 bytes; each group of five bytes contains the value
48454CACAFH.

BYTES1 DB 10 DUP ("HELLO")
This example initializes 400 bytes.
ADDEXPS DW 100 DUP (1,0FFFFH,15,10101010B)

These examples initialize 420 bytes and reserve 40 bytes of uninitialized
storage.

MANYDUPED DB 3 DUP(4 DUP(5 DUP(1, 6 DUP (0))))
NOINIT DD 10 DUP (?)

This example allocates contiguous storage for an array of 20 structures of type
POLARPOINT Each structure is initialized with the same two data values.

POLPT_ARR1 POLARPOINT 20 DUP (<2.0,3.1416>)

See also: POLARPOINT Example 3 of the STRUC directive, in this chapter

110

Chapter 4 Defining and Initializing Data

Labels

A label is a name that defines a logical address within an assembler program:

« The location counter is a predefined label that keeps track of the current offset
within a segment being assembled. T®GEVEN andALIGN directives
control the location counter.

« TheLABEL directive creates a name for the current location of assembly in
code or data segments.

* Alabeled instruction in the code segment might be the targeinP ar
conditional jump instruction. If both the jump and labeled instructions are in
the same segment, theHAR label can be a name followed by a colopthat
immediately precedes the target. TWSEL directive must be used to define
aFARIlabel (the labeled target instruction is not known to be in the same
segment as the jump instruction). TBEL directive may also be used to
define aNEARIabel.

* Alabeled sequence of instruction(s) in the code segment might be the target of
aCALL instruction. TheeROOirective defines &IEARor FARlabel for such
an instruction sequence. The target sequence is usually interpreted as a
subroutine or procedure.

Labels in code segments can be operands afAhe, JIMP, and conditional jump
instructions.

See also: CALL, JMP, and conditional jump instructions, Chapter 6

ASM386 Assembly Language Reference Chapter 4 111

Label Attributes
A label has four attributes:
Segment The in which it was defined

USE The USE attribute USE32 or USE16) of the segment in which it was
defined: this determines the size of the label's logical address.

The label's offset
This is the label's distance from the base of its defining segment.
Offset is a 32-bit value for labels UBE32 segments and a 16-bit
value for labels iUSE16 segments.

The label's type
For labels in a data segment, this is the type of the target location (a
variable or defined storage location). For labels that target code, the
type indicates the kind of jump @ALL that will be made to the
location it represents. These two types are as follows:

* TypeNEARrepresents a label that can be accessed by a jump or
call that lies within the same physical segment. This kind of
access is called an intrasegment jump or call. The logical
address defined byNEARIabel is a simple offset within the
same segment.

» TypeFARrepresents a label that can be accessed from another
segment. This kind of access is called an intersegment jump or
call. Because control is transferred from one segment to
another, the contents of the CS register must be changed when
the jump or call occurs. The logical address defined fgrRa
label is a 16-bit segment selector with 32-bit offset. JWie
conditional jump, oCALL instruction will load this address
into CS:EIP when it executes.

112 Chapter 4 Defining and Initializing Data

The Location Counter

The location counter is a predefined label represented by the sgmbdle value
of the location counter is the current offset within the segment being assembled.
The location counter has the following attribute values:

e Segment -- current segment
« Offset -- current offset

e USE-- current segment's

e Type --NEAR

The$ may be used as an operand of instructions or expressions. The assembler
will maintain the correct offset within a segment even if the segment is repeatedly
opened and closed in the module WBBBEGMENT..ENDSpairs.

See also: SEGMENT..ENDSpairs, Chapter 2

Three directives control the location counter

ORG Sets the counter to a specified value.
EVEN Sets the location counter to the next dword or word.
ALIGN Sets the location counter to the next value that is evenly divisible by

the specified number.

ASM386 Assembly Language Reference Chapter 4 113

ORG Directive

Syntax
ORG exp
Where:
exp is a constant expression or a label that is evaluated to a number in the
range of 0 to % - 1 (4 gigabytes) iSE32 segments or in the range
of 0 to 65536 iINJSE16 segments.
Discussion

Use theORGdirective to control the location counter value. @RGexpression
locates code or data at a specified offset within the current segment.
Examples

These examples use the value of the current location counter as an operand. The
first example sets the location counter to a value 1000 bytes beyond the current
location. The second example overwrites the just assembled 1000 bytes.

ORG OFFSET($ + 1000)

ORG OFFSET($ - 1000)

EVEN Directive

Syntax
EVEN

Discussion

The EVENdirective ensures that the location counter is a dword or word boundary
for subsequent code or data.

The assembler inserts (if necessary) up to tR@a (90H) followingEVENLto align
subsequent code to the nearest dword&E32 segments) or word (faySE16
segments). In the data segment,Bii€Ndirective pads with zeroes to align
subsequent data to the nearest dword segments) or word (faySE16
segments).

114 Chapter 4 Defining and Initializing Data

ALIGN Directive

Syntax
ALIGN[exp]
Where:
exp is any nonrelocatable constant expression that evaluates in the range 1
to 256. TheALIGN directive aligns subsequent code or data on an
offset that is evenly divisible by the specified number of bytes.
Discussion

TheALIGN directive sets the location counter to the specified boundary for the
subsequent alignment of code or data.

The assembler insemgOPinstructions (90H) if necessary to align subsequent code
to the specified boundary. When used in a data segment, the assembler pads to the
specified boundary with zeroes.

If exp is omitted, the default is 4-byte, DWwORDalignment.

For example, the following directive causes paragraph (16-byte) alignment:
ALIGN 16

As another example, the following directive causes page (256-byte) alignment:
ALIGN 256

ASM386 Assembly Language Reference Chapter 4 115

LABEL Directive

Syntax
nameLABEL type
Where:
name is an identifier; name must be unique within the module.
type is NEARor FAR a variable typeRIT , BYTE WORPDWORIPWORD
QWORDIrTBYTH), a label name, a record template name, or structure
template name. Label, record, and structure names cannot be forward
references.
Discussion

LABEL creates a name for the current location of assembly, whether data or code.
UseLABEL to define a variable or a label that has the following attributes:

e The segment that is currently being assembled
e The current offset within that segment

* TheUSEattribute of the current segment

* The specified type

Labels of typeFARmust be defined with theABEL directive. NEARlabels need
not be defined with ABEL but they can beNEAR andFAR-type labels may not be
overridden.

See also: Attribute override operators, Chapter 5

It is possible useABEL to alias &cARlabel to aNEARIabel. However, aliased
labels of opposite types can be used onlgnor conditional jump operands. It
is an error taCALL the same procedure twice with alias&EARandFAR labels if a
return from the procedure is expected. RET instruction coded within a
procedure is either near or far; it cannot be both.

116 Chapter 4 Defining and Initializing Data

Examples

1. This example allows two consecutive bytes to be accessed botGiznd
as two differenBYTES

AWORD LABEL WORD
LOWBYTE DB 0
HIGHBYTE DB 0

2. This example sets up three ways of accessing the same data location.
BIT_ARRAY, TBYTE_ARRAYandWORD_ARRAAI refer to the same data
locations aBYTE_ARRAYthey provide alternate forms of addressing it.

BYTE_RECORD RECORD B7:1,B6:1,B5:1,B4:1,
& B3:1,B2:1,B1:1,B0:1

BIT_ARRAY LABEL BYTE_RECORD
TBYTE_ARRAY LABEL TBYTE
WORD_ARRAY LABEL WORD

BYTE_ARRAY DB 100 DUP (0)

3. This example shows boHEARandFARlabels at the same code location.
Even though there is@ALL at this location, this example will not cause an
error. TheABORT_MESSAG®BuUtine does not return to the location that
jumped toABORT_FARor ABORT_NEAR

ABORT_FAR LABEL FAR

ABORT_NEAR:
CALL ABORT_MESSAGE
JMP EXIT : do not RET to caller

ASM386 Assembly Language Reference Chapter 4 117

Defining Implicit NEAR Labels

Syntax
Iblname [instruct]
Where:
Iblname is an identifierjblname must be unique within the module.
instruct is an instruction.
Discussion

A label within the same segment is merely a name followed by a cdlo8ych a
label has the following attributes:

e The current segment being assembled

e The label's offset (the current value of the location counter)
e The current segment$SEattribute

e The default label typeyEAR

If no target instruction is specified, a jump to the label causes the instruction
following the label to be executed. This form of label is equivalent to the
following:

Iblname LABEL NEAR

Example
ALAB: MOV EAX, COUNT

118 Chapter 4 Defining and Initializing Data

PROC Directive

Syntax
name PROC] type J[WC(exp)]
naméIéNDP
Where:
name is an identifier;name must be unique within the module.
type is NEARor FAR NEARIs the default.
exp is the number of dword®JGE32 segment) or wordJSE16 segment)
of parameters to be transferred to the more privileged stack during an
interlevel call. Exp must evaluate to an integer in the range 0..31.
Discussion

PROOefines a label for a sequence of instructions that are interpreted as a
subroutine or procedure of typiEAR(called from within the same segment) or
FAR (called from another segment).

The type specified witRROCells the assembler whether to generate a near or far
RETIinstruction for the procedure operand.RET (return) instruction coded
betweerPROC..ENDPhas the same type (near or far) as its enclosing routine. lItis
an error if pairedCALL-RET instructions have mismatched near/far attributes.

If PROCLENSs specified betweePROC..ENDR, it returnsOFFH if the procedure is
of typeFAR PROCLENeturns O for all other cases.

See also: PROCLENChapter 9

The assembler allows procedures to be nested. However, nested procedures do not
behave like nested procedures in some high-level languages:

* The assembler does not have scope rules for programmer-defined names.
Every variable and label in a module must have a unique identifier.

e The assembler is not a block-structured language. A nested procedure is coded
within the instruction sequence of another routine. Unless the containing
routine jumps around the nested procedure, the nested procedure will execute
when its containing routine executes. Furthermore, a nested procedure may
cause some of the containing routine's code to be skipped bed@ES&E@M
the nested procedure also causes a return from its containing routine (see
Example 3).

ASM386 Assembly Language Reference Chapter 4 119

Examples

1. The assembler has both near andCfsrL andRET instructions. Whether a
CALL is near or far depends on the type of its procedure operand. The
following is an example of BEARprocedure with its appropriate call.

LOCALCODE SEGMENT ER PUBLIC
ANEARPROC PROC NEAR

T : some code

RET ; near return
ANEARPROC ENDP

CALL ANEARPROC : near call
D ; (intrasegment)
LOCALCODE ENDS

2. This example shows a FAR procedure and its call.

GLOBALCODE SEGMENT ER
AFARPROC PROC FAR

T : some code
RET ; far return
AFARPROC ENDP
GLOBALCODE ENDS

SPECSEG SEGMENT ER

CALL AFARPROC ; far CALL
- ; (intersegment)

SPECSEG ENDS

120 Chapter 4 Defining and Initializing Data

3. When one procedure is defined within another, execution can fall into the

nested procedure.

P1 PROC NEAR

MOV AX,15 ; execution begun here will

continue

ADD DX,AX ; through to the second MOV

AX,0

P2 PROC NEAR
MOV AX,0
CMP AX,COUNT
JE LAB
DEC COUNT
LAB:
MOV AX,0

RET ; exit P1 and P2 here
P2 ENDP ; remaining statements
CMP DX,10 ; will never be executed

JE LAB
RET
P1 ENDP

ASM386 Assembly Language Reference

Chapter 4

121

Using Symbolic Data

122

Assembler label and variable names are symbolic data. All programmer-defined
identifiers referenced in assembler programs are symbolic data. Assembler
keywords and reserved words are symbols, as well.

See also: Assembler keywords and reserved words, Appendix C

Both labels and variables define logical addresses that represent values. A label
identifier's value is the logical address it defines. A variable identifier's value is the
contents of the logical address it defines.

The EQUdirective assigns new names to symbols. AbBGHlirective directs the
assembler to omit object file information about partic&l@tated symbols and
programmer-defined symbols.

Chapter 4 Defining and Initializing Data

EQU Directive

Syntax
nameEQU value
Where:
name is an identifier;name must be unique within the module.
value is a variable or label name, a constant or register expression, a

processor register, a floating-point stack element, a mnemonic, or
instruction prefix, a codemacro call or prefix, or the operat@$
AND OR XOR SHL, or SHR value can be any address expression.

See also: Floating-point stack elements, Chapter 7
mnemonics, Chapters 6 and 7
instruction prefixes, Chapter 6
codemacro calls or prefixes, Chapter 9
address expressions, Chapter 5

Discussion
EQUassigns a value to an identifier. In eff&pUcreates either:
e An alias for a symbol's value
* Anidentifier for an assembly-time constant or run-time expression value.

If the assigned value is a variable or label name, it can be forward referenced.
The EQUdirective defines another pointer to such a variable or label. However, the
assigned value may not be an expression that contains a forward reference.

A global integer constant can be created by specifyingthated name in a
PUBLIC statement. The value of such a global constant must be in the range:

e 281 (2 8-1) inUSE32segments
e -32,768..32,767 in USE16 segments

The precision of aEQLated real expressed in decimal notation is determined in
context. The name equated to these values can initialize data of more than one
type. Floating-point numbers expressed in hexadecimal real notation also may be
used a€QUvalues. However, the names equated to these values can only be used
to initialize data of a single type.

Register expression values can include a segment override.

See also: PUBLIC statement, Chapter 3
DD, DQ, and DT directives, in this chapter

ASM386 Assembly Language Reference Chapter 4 123

Examples

1. This example makes a forward reference to a value represented by the label
ALAB.

ALABEL EQU ALAB
ALAB:MOV EAX,0

2. This example defines aliases for processor registers.

COUNT EQU ECX

PNTR EQU EBX

MOV COUNT,10 ; ECX =10

MOV PNTR,OFFSET ARRAY ; EBX = offset of array

3. This example defines aliases for thevandINC instructions.

DATAMOVE EQU MOV
INCREMENT EQU INC
DATAMOVE EAX,EBX

INCREMENT EAX

4. These examples illustrate integer and floating-point constant value
specifications. A floating-point constant specified in decimal can initialize
data of more than one type; the precision of such values is determined in
context. A floating-point constant specified in hexadecimal real can initialize
a single type of datd{vORDQWORDr, as hereTBYTE).

TOTAL EQU 6

Pl EQU 3.141592653589793

DD PI ; single precision
DQ PI ; double precision

DEG_TO_RAD EQU 3FF98EFA351294E9C8AER ; P1/180
DT DEG_TO_RAD ; extended precision

5. This example illustrates assembly-time initializations.

ELEQU2+3
E2 EQU E1 AND 4
E3 EQU (E1-E2)/ 12

6. This example usexQuto define variables to be accessed on the stack.

STKWRD EQU WORD PTR [EBP+2]
ONEVAR EQU SS:[EBX+3]
TWOVAR EQU SS:[EBX]

124 Chapter 4 Defining and Initializing Data

PURGE Directive

Syntax
PURGEBamd,...]
Where:
name is a symbolic data identifier.
Discussion

PURGHleletes the definition of one or more specified symbols. Labels, variables,
and keyword or register aliases defined vl@ucan be purged.

The following kinds of symbols cannot be purged:
* Names declareHUBLIC

* Register names

* Assembler reserved words

See also: PUBLIC names, Chapter 3
Assembler reserved words, Appendix C

A purged symbol remains undefined unless it is redefined. A reference to a symbol
after it has been purged but before it is redefined constitutes a forward reference to
the redefinition. If no redefinition occurs, such a reference is an error.

A PURGEcoded just before the progranDstatement causes the assembler to
delete object file symbol information about purged symbols.

Examples

1. This example deletes aliases (defined \&ifh) for an assembler instruction
and a processor register.

DATAMOVE EQU MOV
COUNT EQU ECX
PURGE DATAMOVE, COUNT

2. For the variable and label specified in this example, the assembler will omit
symbol information from the object file for the module.

PURGE ALABEL, VAR1
END : module

[

ASM386 Assembly Language Reference Chapter 4 125

Accessing Data

This chapter contains four major sections:

Overview of assembler expressions
This section introduces constant and address expressions.
Operators

This section explains the assembler isolation, multiplication and division, shift,
addition and subtraction, relational, logical, attribute value, attribute override,
and record specific operators.

Instruction Operands
This section summarizes the operands to assembler instructions.
Memory Addressing Methods

This section explains the forms of assembler address expressions in detail.

Overview of Assembler Expressions

Expressions contain operands and operators. An assembler expression specifies
either:

A value that initializes data. Such a value must be a constant expression, an
external constant, or a relocatable address expression.

Or, an address in memory that may be an instruction operand. This is
sometimes called an address expression.

Constant expressions specify values that are known at assembly time. Address
expressions specify values that might not be known at assembly time; they
represent an address that will be accessed during program execution on the
processor. The contents at such an address might be modified during program
execution.

ASM386 Assembly Language Reference Chapter 5 127

For an assembler instruction to operate on data, the data must be accessible as an
instruction operand. Some instructions have implicit operands such as registers.
However, most instructions require explicit operand(s). An instruction operand can
be expressed as a register, a constant, a location in memory, or as a combination c
these components.

Some operands can be specified as expressions consisting of a series of variable
names, base and index registers, and constants combined by operators. For
example, the contents of a register and a constant could be added with the addition
operator.

There are many assembler operators that can be used to create expressions.

Constant Expressions

Constants (see Table 4-2) can be used as expression operands with most assembl
operators (see Table 5-1). The storage allocation directives (described in

Chapter 4) initialize data values using constant expressions. Constant expressions
yield a value that is known at assembly time.

However, a symbolic constant defined in another module has an unknown value at
assembly time. When modules are combined, such a constant's value replaces ea
external reference to the constant. For example:

EXTRN ANUMBER:ABS

DATA SEGMENT

AWORD DW ANUMBER ; AWORD gets value of ANUMBER
: when modules combined

DATA ENDS

External symbolic constants do not form constant expressions.

See also: PUBLIC directive, Chapter 3

Address Expressions

128

An address expression defines a location in memory. This location can be
interpreted as either a variable or label, depending on the expression used. Every
address expression has a simple tye (BYTE WORPDWORIPWORDQWORD

TBYTE NEAR or FAR). The rules for address expression formation preclude

mixing variable or label types unless #ieR operator coerces uniformity of type.

See also: PTR operator, in this chapter

Chapter 5 Accessing Data

Variable and Label Names as Address Expressions

The simplest address expression is the name of a variable or label. In this case, the
name implies addressing using the variable's or label's offset from its defining
segment's base address. This address is relocatable.

For example:
ADD DX,COUNT ; COUNT is a simple address expression
ADD DX,COUNT + 2 ; In this case, address expression has
; the same segment and type as COUNT
; but has an offset that is 2 greater
Register Expressions

A register expression is an address expression that uses a base and/or an index
register. Possible forms are:

[base-reg]Jor[index-reg * scale]

[base-reg + index-reg * scale |

[base-reg + disp Jor[index-reg * scale + disp]
[base-reg + index-reg * scale + disp]

Where:

base-reg is any 32-bit general register (EAX, ECX, EDX, EBX, ESP, EBP,
ESI, EDI) for 32-bit addressing, and is BX or BP for 16-bit
addressing.

index-reg is any 32-bit general register except ESP for 32-bit addressing, and is
Sl or DI for 16-bit addressing.

scale is (an optional) constant or constant expression that evaluates to 1, 2,
4, or 8 for 32-bit addressing. It is invalid for 16-bit addressing.

disp is an 8- or 32-bit displacement for 32-bit addressing, and is an 8- or
16-bit displacement for 16-bit addressing.

At assembly time, a simple register expression operand is called an anonymous
reference. The data addressed by a named register has no expliaiTy@Y(TE
WORPDWORIPWORDQWORDBYTE or record/structure template name).

ASM386 Assembly Language Reference Chapter 5 129

For a two-operand instruction with one register operand, the assembler determines
the type of an anonymous reference from the size of the register. For example:

MOV CX,[BX] ; move WORD data pointed to by BX into CX

For all other kinds of anonymous references TR operator must be used to
specify a type. For example:

MOV WORD PTR [DI],5 ; assign 2 bytes
INC BYTE PTR [BX]+2 ; increments 1 byte

Combining Simple Address and Register Expressions

Register expressions can be combined with simple address expressions to form a
more complex address. The form is:

varname [reg-exp |
Where:
varname is the name of a variable.

reg-exp is a register expression (see the preceding section) enclosed in
brackets.

The register expression implies that the address of the operand will be computed
from the run-time contents of the register. For example:

COUNTIEBX] ; simple base
COUNTIEBX] + 2 ; base plus displacement
COUNTIEBX] + [ESI] ; base plus index

For the preceding examples, the offset of the vari@bleNTwill be added to the
contents of the register(s) in the register expression.

See also: Implicit bracket addition, Addition and Subtraction Operators, in this
chapter
Processor registers and memory addresses, Appendix A

130 Chapter 5 Accessing Data

Structure Fields in Address Expressions

Another form of address expression uses a structure field name as a displacement
added to a structure's offset within its segment.

For a variable of a structure type, a field name represents an offset within the
structure. The field name can be combined with a named variable of the same type
as the field or with a register expression to form an address expression. Such an
address expression has the following attributes:

Its segment This is the same as the variable's, or it is the processor default for the
register.

Its offset This is the offset of the variable or register expression plus the offset
of the field within the structure.

Its type This is the type defined in the structure template for the field. If more
than one structure field is specified, the rightmost field determines the
address expression's type.

For example, consider the following structure definition and instruction results:
ASTRUC STRUCTURE

ABYTE DB O ;offset=0
AWORD DW 0 ;offset =1
BYTE2 DB O : offset =3

ASTRUC ENDS

ANARRAY DB 1,2,3,4 ; ANARRAY.AWORD has type WORD
MOV AL,ANARRAY.BYTE2 ; AL :=4

MOV CX,ANARRAY.AWORD ; CX := 0302H

MOV BX,0FFSET ANARRAY ; BX holds offset
MOV AL,[BX].ABYTE ;AL := 1 [BX].ABYTE has type BYTE

ASM386 Assembly Language Reference Chapter 5 131

Relocatable Expressions

132

Address expressions involving named variables, labels, and segments can have
results that might not be known until all program modules have been assembled,
combined, and located. Such expressions are called relocatable. The system
utilities assign values to such address expressions.

The assembler automatically generates relocatable addresses for valid symbolic
references in code segments.

See also: Relocatable and non-relocatable address genesst8uyME
directive, Chapter 2

The assembler also generates various kinds of relocatable addresses for symbolic
references in data segments:

1. A segment name in an address expression represents the logical address of its
selector. A segment name that is referenced in another data segment forms a
base relocatable address. For exanpg,Alis base relocatable in the
following:

DATA1 SEGMENT

DATA1 ENDS

DATA2 SEGMENT

SEGBASE DW DATA1 ; SEGBASE contains base
: relocatable address of DATA1

DATA2 ENDS

2. Avariable or label name in a data segment address expression forms an offset
relocatable address under either of the following conditions:

* The variable or label is defined inJSE32segment and its name is used
to initialize a variable of typpWORD

* The variable or label is defined inJ&E16 segment and its name is used
to initialize a variable of typ@/ORD

For exampleABYTE + 2 forms an offset relocatable address in the following:

DATA SEGMENT USE32

ABYTE DB O

AN_OFFSET DD ABYTE + 2 ; AN_OFFSET contains offset
: relocatable address of

DATA ENDS ;ABYTE + 2

Chapter 5 Accessing Data

3. A variable or label name in a data segment address expression forms a pointer
relocatable address under either of the following conditions:

* The variable or label is defined inksE32 or USE16 segment and its
name is used to initialize a variable of typ&ORD

* The variable or label is defined inJ&E16 segment and its name is used
to initialize a variable of typpWORD

For exampleABYTEforms a pointer relocatable address in the following:

DATA SEGMENT USE32

ABYTE DB 0

A_POINTER DP ABYTE ; A_POINTER contains pointer
: relocatable address of ABYTE

DATA ENDS

Expressions with external constant operands also have results that are unknown at
assembly time; the value of &XTRN:ABSconstant is supplied when modules are
combined. Any address expression with symbolic operands might have results that
cannot be determined until the program is located. The system utilities must
supply these values.

For these reasons, there are restrictions on the use of relocatable expressions with
some operators. These restrictions are noted in the operator descriptions in the
following sections.

ASM386 Assembly Language Reference Chapter 5 133

Operators

Table 5-1 summarizes the assembler operators. These operators are explained in

detail later in this section.

Table 5-1. Assembler Operators

Operator Description
Isolation Operators (1 Operand)
HIGHW Returns high-order word of dword operand Returns low-order
LOW word of dword operand
HIGH Returns high-order byte of word operand
LOW Returns low-order byte of word operand
Multiplication and Division (2 Operands)
* Multiplies one operand by another
/ Divides one operand by another
MOD Takes the modulus
Shift Operators (1 Operand)
SHR Shift operand bits right
SHL Shift operand bits left
Addition and Subtraction (2 Operands)
+ Adds operands
- Subtracts one operand from another
Relational Operators (2 Operands)
EQ If operands equal, returns -1; otherwise, 0
NE If operands not equal, returns -1; otherwise, O
LT If 1st operand < 2nd, returns -1; otherwise, 0
LE If 1st operand <= 2nd, returns -1; otherwise, 0
GT If 1st operand > 2nd, returns -1; otherwise, 0
GE If 1st operand >= 2nd, returns -1; otherwise, 0
Logical Operators (2 Operands, except NOT)
OR If either operand's bit = 1, result bit = 1; otherwise, 0
XOR If operands' bits different, result bit = 1; otherwise, 0
AND If both operands' bits = 1, result bit = 1; otherwise, 0
NOT If operand bit = 1, result bit = 0, and vice versa
continued
134 Chapter 5 Accessing Data

Table 5-1. Assembler Operators (continued)

Operator Description
Attribute Value Operators (1 Operand)
THIS Defines variable or label at current assembly location
SEG Returns segment selector of specified variable or label
OFFSET Returns offset of variable or label
BITOFFSET Returns bit offset of bit variable
LENGTH Returns number of storage units allocated for variable
TYPE Returns encoded value for variable or label type
SIZE Returns number of bytes allocated for variable
STACKSTART Returns offset of first (d)word above stack segment
Attribute Override Operators (1 Operand)
Sreg: Overrides default segment attribute of a variable or label
PTR Overrides variable's or label's type
SHORT Specifies that forward-referenced label is within 127 bytes of the
end of a jump instruction
Record Specific Operators (1 Operand)
MASK Masks specified field with 1's
ShiftCount Shifts bits in record by size of specified field
WIDTH Returns number of bits in record or field

ASM386 Assembly Language Reference

Chapter 5

135

Operator Precedence

Table 5-2 lists classes of assembler operators in decreasing order of precedence.

Table 5-2. Assembler Operator Precedence

Highest Precedence

1. Parenthesized expressions, angle-bracket (record) expressions,
square- bracket expressions, the structure "dot" operator, and the
operators LENGTH, SIZE, WIDTH, MASK, and STACKSTART

2. PTR, OFFSET, BITOFFSET, SEG, TYPE, THIS, and the segment
override (CS:, DS;, ES:, FS:, GS:, or SS:)

3. HIGHW, LOWW, HIGH, and LOW

4. Multiplication, division, and shifts: *, / , MOD, SHR, SHL

o

Addition and subtraction: +, -

a. unary

b. binary

Relational: EQ, NE, LT, LE, GT, GE
Logical NOT

Logical AND

Logical OR and XOR

0. SHORT

Lowest Precedence

Boo~NOo

Assembler expressions are evaluated from left to right following these precedence
rules. If two operators with equal precedence are adjacent, the leftmost operator
has precedence. Override this order of evaluation and/or operator precedence by
using parentheses.

136 Chapter 5 Accessing Data

Isolation Operators

Syntax
HIGHW number32
LOWWhumber32
HIGH numberl6
LOW numberl6
Where:

number32 is a constant expression that evaluates to a 32-bit number.

numberl6é is a constant expression that evaluates to a 16-bit number.

Discussion

The HIGHWandLOWWeperators return the high and I0MORS®, respectively, of the
32-bit operand.

TheHIGH andLOWoperators return the high and I®¥TEs, respectively, of the
16-bit operand.

When applied to &ORMalue,HIGHWreturns 0. When applied taB¥ TEvalue,
HIGH returns 0.

Examples
1.

These examples contraGH with LOWandHIGHWwith LOWVES operators on
the same values.

MOV AH, HIGH 1234H ; AH = 12H
TENHEX EQU LOW 1234H ; TENHEX := 34H
MOV AX, HIGHW 12345678H ; AX 1= 1234H
MOV CX, LOWW 12345678H ; CX :=5678H

These equations illustrate the results wHEEH/LOWandHIGHW/LOWW
operator pairs are applied to each other.

HIGH LOW number =0

HIGHW LOWW number =0

LOW HIGH number = HIGH number
LOWW HIGHW number = HIGHW number

HIGHW HIGHW number = 0 ; HIGHW applied to WORD
LOW LOW number = LOW number
HIGHW HIGH number = 0 ; HIGHW applied to BYTE

ASM386 Assembly Language Reference Chapter 5 137

3. These examples use more than one isolation operator in the same expression,
with one expression in parentheses. Compare results for the first and second
examples. The second example reverses the first example's operators.

MOV AL, LOW (HIGHW 12345678H) ; AL := 34H

MOV AL, HIGHW (LOW 1234H) : AL := 0 because
; HIGHW applied to BYTE

MOV AL, HIGH (LOWW 12345678H) ; AL := 56H

Multiplication and Division Operators

Syntax
Multiplication: operand * operand
Division: operand | operand
Modulo: operand MODoperand
Where:

operand is a constant expression.

Discussion
Use these operators only with constant expressions.

The result of a multiplication, division, or modulo operation is always an absolute
number. The result of a multiplication must be no greater than 32-bits, or an
overflow error will occur.

Examples

CMP AL,2*4 ; compare AL to 8
MOV CX, 123H/16 ;CX:=12H
ADD AX, 102 MOD 4 ; AX:=AX+2

138 Chapter 5 Accessing Data

Shift Operators

Syntax
Shift right: operand SHR count
Shift left: operand SHL count
Where:
operand is a constant expression.
count is a constant expression that evaluates to an ordimal represents
the number of bits the operand is to be shifted.
Discussion

The shift operators cause a bit-wise shift of the operand; it is shifted bits to
the right or left. Bits shifted into the operand are Os.

In effect:
« Shifts to the left multiply the operand by 2 to the power specifiecbbyt .
« Shifts to the right divide the operand by 2 to the power specifieddy .

Examples

MOV BX, OFACBH SHR 4 ; BX := OFACH
ADD AL, 111000B SHL 2 ; 11100000 added to contents of AL

MOV BL, (OFACBH AND 0111000B) SHR 3 ;BL :=001B
; (bits 3,4,5)

ASM386 Assembly Language Reference Chapter 5 139

Addition and Subtraction Operators

Syntax

Addition: operand + operand

Bracket Addition: primary [exp]

Subtraction: operand - operand
Where:

operand is a constant expression, or a variable or label defined in the current

module in the same segment.

primary is a constant expression, an ordinal, the name of a record variable

exp

followed by a record initialization, a string, a simple type name,
NEAR FAR or PROCLENenclosed in brackets or parentheses.
PROCLENwvithin aPROC..ENDPreturns the value OFFH forFaR
procedure; otherwis®ROCLENeturns O.

is a constant expression.

Discussion

Examples

140

Only constant expressions can be added or subtracted. The construct enclosed in
brackets[|) alters operator precedence and implies that an addition operator
precedes the bracketed expression (see Example 2).

Variables, labels, or identifiers that have b&e€nated to labels or variables cannot

be added or subtracted unless they have been defined in the current module and a

in the same segment.

1.

This example illustrates assembly-time expressions.

E1EQU 12 + 3
E2 EQU E1
E3EQUEL-E2

These equations illustrate the brackets as an addition operator. The last
expression is an error. The brackets operator implies addition before its
enclosed expression; it does not imply addition after its enclosed expression.

ALABL [3 * 5] = ALABL + (3 * 5)

ALABL + (3 *5) [3*5] = ALABL + (3 *5) + (3 *5)
ALABL [3* 5] [3*5] = ALABL + (3*5) + (3 * 5)
ALABL [3*5] (3*5) ; = error

Chapter 5 Accessing Data

Relational Operators

Syntax

Equal: operand EQ operand
Not equal: operand NE operand
Less than: operand LT operand

Less thanor equal:
operand LE operand

Greater than:
operand GT operand

Greater than or equal:
operand GEoperand

Where:

operands are either both constant expressions, or they are both variable or label
names that are defined in the current module and in the same segment.

Discussion

A relational operation always returns a result of -1 for true and O for false.

Either the result is 32-bits or it is truncated to 8 or 16-bits, depending on the
context.

Example
MOV AL, 3EQO ; AL := 00000000B (false)
MOV BX, 2 LE 15 ; BX := OFFFFH (true)

ASM386 Assembly Language Reference Chapter 5 141

Logical Operators

Syntax
operand OR operand
operand XOR operand
operand AND operand
NOT operand
Where:

operand is a constant expression.

Discussion

Logical operators operate on individual bits of their operand(s) and return an
absolute number. Each bit of the result depends on the corresponding bit(s) in the
operand(s).

The functions performed by these operators are as follows:

OR A result bit is 1 if corresponding operand bits are 1. A result bit is
also 1 if either corresponding bit is 1. A result bit is 0 only if both
operand bits are 0ORis the logical inclusive or.

XOR A result bit is 1 if the corresponding operand bits are different. A
result bit is O if the operand bits are the sax@Ris the logical
exclusive or.

AND A result bit is 1 only if both corresponding operand bits are 1.

Otherwise, a result bit is 0.

NOT A result bit is the opposite of the operand bit. It is 1 if the operand bit
is 0; O if the operand bit is 1.

142 Chapter 5 Accessing Data

Examples
1.

This exampl&XORs two absolute numbers indX. & is the assembler

continuation character.

MOV AX, 1111000011110000B

& XOR 0011001100110011B ; AX = 1100001111000011B

These equations illustrate the effects of@RandXORoperators.

11110000B
OR 00110011B
=11110011B

11110000B
XOR 00110011B
=11000011B

This equation illustrates the effects of A&Doperator.

11110000B
AND 00110011B
=00110000B

This equation illustrates the effects of H@Toperator.

NOT 00110011B
=11001100B

ASM386 Assembly Language Reference

Chapter 5

143

Attribute Value Operators

THIS, SEG OFFSET BITOFFSET, LENGTHTYPE, SIZE, andSTACKSTARTeturn
numerical values for the attributes of a variable, label or segment. These operators
do not change the attributes of their operands.

THIS Operator

Syntax
THIS type
Where:
type can beBIT , BYTE WORPDWORPWORPQWORDIBYTE NEAR or
FAR
Discussion

TheTHIS operator defines a variable or label at the current location of assembly.

The variable's or label's segment attribute will be the current segment being
assembled. Its offset will be the value of the current location counter. Specifying
the location counter symbab)is equivalent to specifyingHIS NEAR

See also: Location counter, Chapter 4

A variable or label type is specified by the operand of this operator. Its usage is
similar to that of the&. ABEL directive. THIS is used either in conjunction with the
EQudirective (see the following Example) or as part of an operand to an

instruction.
Examples

1. THIS can be used to define another name with an alternate type for the same
data item.
AWORD EQU THIS WORD : defines label AWORD

; at current location

BYTE1 DB O
BYTE2 DB O

2. This code is equivalent to the preceding example.

AWORD LABEL WORD
BYTE1 DB 0
BYTE2 DB 0

3. THIS may be part of an instruction operand.
MOV EAX, THIS DWORD

144 Chapter 5 Accessing Data

SEG Operator

Syntax
SEG varlab
Where:
varlab is the name of a variable or label.
Discussion

The SEGoperator returns the segment selector of the variable or label. The
segment selector is a base relocatable quantity.

SEGIs used:

1. To specify (with thé&SSUMHlirective) the segment in which a variable or
label is defined (see Example 1).

2. To store a selector in a variable or to initialize a segment register (see Example
2). The initialized segment register cannot be CS.

Examples

1. This example tells the assembler that DS will hold the selector of the segment
in which COUNTwas defined. In this case, the expressBEGCOUNTIS a
symbolic representation of the nameC@UNE defining segment wheZOUNT
has been defined in a segment of another module.

ASSUME DS:SEG COUNT

2. This example stores the segment selectoC@yNTinto SETSTARTand
initializes DS withCOUNE segment selector.

SETSTART DW SEG COUNT
; store the selector for the segment
INIT:MOV AX, SEG COUNT
MOV DS, AX ; initialize DS with COUNT's segment

3. This example is equivalent to Example 2.

SETSTART DW SEG COUNT
INIT:MOV DS, SETSTART

ASM386 Assembly Language Reference Chapter 5 145

OFFSET Operator

Syntax
OFFSET varlab
Where:
varlab is the name of a variable or label defined in the current module.
Discussion

The OFFSEToperator returns its operand's offset in bytes from the base of the
segment in which the operand is defined. The value return©gBE$ETis a 32- or
16-bit number, depending on whether the segment/&532 or USE16 segment.

If the operand t@FFSETIs a bit variable that is not within a structure, then it must
be byte-aligned; theFFSETvalue is the number of bytes from the beginning of the
segment to the byte with which the bit is aligned. For bits within a structure, the
OFFSETvalue is the number of bytes from the beginning of the segment to the
nearest low byte boundary.

In most cases, the returned value is not set until bind time; it is a relocatable
number. The®FFSEToperator is used primarily to initialize variables or registers
to be used for indirect addressing (see the Example).

Example

Some assembler instructions explicitly use indirect addressing when accessing datz
When coding these instructions, you must initialize a register to the offset value of
the data you wish to access.

TRANSLATE:

MOV EBX, OFFSET ASCIITABLE

MOV AL, VALUE

XLATB ; EBX points to translation table

146 Chapter 5 Accessing Data

BITOFFSET Operator

Syntax
BITOFFSET name. field
Where:
name is the name of a structure.
field is a field of typeBIT within the structure.
Discussion

TheBITOFFSET operator returns the bit offset from the nearest lower byte address
of a structure field of typBIT . Use the following expression to obtain a value
equal to the number of bits from the beginning of the structure to a specific bit:

((OFFSET name.field)-(OFFSET name))*8)
+ BITOFFSET name.field

For aBIT -type variable defined outside of a struct®H,0FFSET always returns a
0, because such a bit will always be byte-align@iOFFSET also returns a 0 for
structure fields that are not of typer .

ASM386 Assembly Language Reference Chapter 5 147

Example

Although theOFFSEToperator is not a required part oBETOFFSET expression,
BITOFFSET is intended for use witdFFSET

TESTBIT STRUC

TSTBITO DBIT 0B ; structure templates
TSTBIT1 DBIT 0B ; can be defined
TSTBIT2 DBIT 0B ; outside a segment

TSTBIT3 DBIT 0B
TSTBIT4 DBIT 0B
TSTBIT5 DBIT 0B
TSTBIT6 DBIT 0B
TSTBIT7 DBIT 0B
TSTBIT8 DBIT 0B
TSTBIT9 DBIT 0B
TESTBIT ENDS

These instruction statements contt@SESETandBITOFFSET assignments tax.

DATA SEGMENT USE32

BITTSTVARS TESTBIT <> ; assume offset 1001H
; from data segment
DATA ENDS

CODE SEGMENT EO ; default USE32
MOV AX, BITOFFSET BITTSTVARS.TSTBIT9 ;AX:=1
MOV AX, OFFSET BITTSTVARS.TSTBIT9 ; AX := 1002H

MOV AX,(((OFFSET BITTSTVARS.TSTBIT9)

& - (OFFSET BITTSTVARS)) * 8)

& + BITOFFSET BITTSTVARS.TSTBIT9 s AX =9
; expression yields number of bits
; from beginning of structure for TSTBIT9

148 Chapter 5 Accessing Data

LENGTH Operator

Syntax
LENGTH varname
Where:

varname is the name of a variable or structure field (without the dot operator).

Discussion

LENGTHreturns the number of storage unBsT(s, BYTEs, WOR®, DWORE)
QWORD orTBYTEs) that have been allocated for its operand. MRl atype
operandLENGTHreturns a value equal to the number of bits in the storage
allocation. Us@ ENGTHto set a counter for a loop that accesses the elements
of an array .

Examples

These equations illustrate results fE&NGTH

ABYTEARRAY DB 1,2,3,4,5,6,7
LENGTH ABYTEARRAY =7

AWORDARRAY DW 150 DUP (0)
LENGTH AWORDARRAY = 150

TYPE Operator

Syntax
TYPE varlab
Where:
varlab is the name of a variable, a structure field (without the dot operator),
or a label.
Discussion

TheTYPEoperator returns a value that represents the number of bytes occupied by

the type of its operand. These values are listed in Table 5-3.
Note thatTYPEapplied to a label operand yields a negative value.

UseTYPEin instruction sequences where a pointer is to be incremented by the
number of bytes occupied by tmgPEoperand. Or, useYPEfor scaling
operations.

ASM386 Assembly Language Reference Chapter 5 149

Table 5-3. TYPE Operator Results

Operand Type Value Returned

BIT *

BYTE 1

WORD 2

DWORD 4

PWORD 6

QWORD 8

TBYTE 10

Structure number of bytes in structure
Record number of bytes (1 to 4) in record
NEAR -1

FAR -2

* For a BIT-type variable, TYPE returns a value equal to the number of bytes allocated with DBIT.
For BIT-type structure fields, TYPE returns O if the field has less than 8-bits; otherwise, TYPE
returns 1. See also: Chapter 4

Examples

1. This example incremenEs| using thelTYPEoperator and loops to the next
ARRAYelement to be accumulated.

150

MOV EBX, OFFSET ARRAY
MOV ECX, LENGTH ARRAY
: LENGTH = number of elements
MOV ESI, 0 ; index into array
ALAB:ADD AX,[EBX] + [ESI] ; add element to AX value
ADD ESI, TYPE ARRAY ; increment pointer by size
; of an array element
LOOP ALAB

This example is functionally equivalent to Example 1.

MOV EBX, OFFSET ARRAY
MOV ECX, LENGTH ARRAY
: LENGTH = number of elements
MOV ESI, 0 ;index into array
ALAB:ADD AX,[EBX] [ESI * TYPE ARRAY]
: add element to AX value
INC ESI
LOOP ALAB

Chapter 5 Accessing Data

SIZE Operator

Syntax
SIZE varname
Where:

varname is the name of a variable or structure field (without dot operator).

Discussion

TheSIZE operator returns the number of bytes allocated for a variable. For a
variable allocated witbBIT that does not end on a byte boundary, the result is
rounded up by 1 byte. F&iT -type structure fields with less than 8-b&&ZE
returns 1; otherwis&IZE returns the same value BBNGTH

For nonBIT -type variablesSIZE returns a value that is related to tfENGTHand
TYPEresults according to the following identity:

SIZE = LENGTH * TYPE

Examples
1. These equations illustrate results $&IE .

ABYTEARRAY DB 1,2,3,4,5,6,7
SIZE ABYTE ARRAY =7

AWORDARRAY DW 150 DUP (0)
SIZE AWORDARRAY = 300

ADWORDARRAY DD 1,2,3,4,5,6,7
SIZE ADWORDARRAY = 28

2. This example initializes the variabdSIZE to 7 and assigns the value 300 to
AX.

ABYTEARRAY DB 1,2,3,4,5,6,7
AWORDARRAY DW 150 DUP (0)
ASIZE DB SIZE ABYTEARRAY ; ASIZE gets 7

MOV AX, SIZE AWORDARRAY ; AX := 300

ASM386 Assembly Language Reference Chapter 5 151

STACKSTART Operator

Syntax
STACKSTARTsegname
Where:
segname is the name of the stack segment (defined $tACKSER

Discussion

UseSTACKSTARTO initialize the stack pointer (E)SP. Because the processor stack
grows downward, the initial stack pointer value equals the offset of the first dword
(or word, depending on the stack use attribute) above the stack segment in memor
Example
STACK STACKSEG 100

MOV ESP, STACKSTART STACK

Attribute Override Operators

Use the attribute override operators to respecify attributes, such as a variable's or
label's segment or type. There are three kinds of attribute override operators:

e Segment overrides, used to override a default segment register or to specify an
anonymous reference to a variable or label

 ThePTRoperator, used to override type

 TheSHORToperator, used to override the type of a forward-refereNEa®R
label

152 Chapter 5 Accessing Data

Segment Override Operator

Syntax

CS:varlab
DS: varlab
ES: varlab
FS: varlab
GS:varlab
SS: varlab

Where:

varlab is a variable name, a label that is not of tifg\Ror FAR or an
address expression.

Discussion

This operation overrides the segment attribute of a variable or label. The explicit
use of a segment override takes precedence ovesSoMElirective and over
default segment register usage.

Use the segment override to specify a segment register as the segment part of a
memory address. A segment override applies only to a single instruction. The
ASSUMHlirective tells the assembler to generate necessary segment overrides for
all subsequent instructions.

See also: ASSUMHlirective, Chapter 2

Use this operator to override the default segment register for operands that are (or
contain) only base or index registers. Such operands (and expressions) are assumed
to point to a variable. This usage is called an anonymous (or non-symbolic)
reference.

Segment overrides cannot be specified for the default registers in the following
cases:

» ES as the destination of a string operation
eSS for stack operations
* CSforinstruction fetches

See also: Appendix A for a summary of the processor default segment selection
rules

ASM386 Assembly Language Reference Chapter 5 153

Examples
1. This example compares the us&A8BUMEaNd the segment override.

DATA SEGMENT
ABYTE DB 0
DATA ENDS

CODE SEGMENT
ASSUME DS:DATA
MOV BL, ABYTE

; reference to ABYTE is covered by the ASSUME
MOV BL, ES:ABYTE ; override default (DS)

; ASSUME not required for ABYTE reference
CODE ENDS

2. These examples make anonymous references. When the¢dmsistruction
executes, the DS (default) register is used. The segOnhstruction
specifies thaEBX points to data accessible through the ES register.

MOV BL, [EBX]

MOV BL, ES:[EBX]

The opcode for the secoMDWvill be preceded by a segment override prefix
(byte) that forces the processor to use the ES register in order to calculate the
physical address of the variable.

See also: Segment override opcode prefixes, Chapter 6

154 Chapter 5 Accessing Data

PTR Operator

Syntax
type PTR exp
Where:
type can beBIT, BYTE WORPDWORIPWORDQWORDBYTE, NEARoOr
FAR
exp can be a variable name, a label name, an address or register
expression, or an integer that represents an offset.
Discussion

UsePTRto override the type assigned to a variable or label name, or to assign a
type to an anonymous effective address expression syEBXs (see the
Examples).

PTRassigns theype attribute specified on the left to the variable, label or number
specified on the rightPTRalso assigns segment and offset attributes to the
variable or label specified on the right.

Whenexp is a constant expression, type must be preceded by a segment override.
When thetype is NEARor FAR a segment override may not be specified.

Table 5-4 summarizes segment and offset attribute assignments for the possible
values ofexp.

Table 5-4. PTR Result Attributes

exp is Segment Offset

variable or label exp's exp's

number specified by segment override exp itself
anonymous reference default segment unless overridden run-time value

ASM386 Assembly Language Reference Chapter 5 155

Examples
1. These examples increment a byte, word, and dword in memory.

INC BYTE PTR [BX]
INC WORD PTR [ESI]
INC DWORD PTR [EBX]

2. These examples move an immediate value to a byte, word, or dword in
memory.

MOV BYTE PTR [EDI],99
MOV WORD PTR [EDI],99
MOV DWORD PTR [EDI],99

3. This example jumps through two levels of indirection.

JMP PWORD PTR [EBX] ; EBX points to 4-byte offset
; followed by 2-byte segment base

4. These examples pick up a word from a byte array and a byte from a word
array.

FOOW DW 100 DUP (?)
FOOB DB 200 DUP (?)

ADD AL, BYTE PTR FOOW[101]

; add low byte of 50th word to AL
ADD DX, WORD PTR FOOBJ20]

; add word at 21st byte to DX

5. This example accesses an anonymous variable at a given offset from a
segment.

MOV AL,DS:BYTE PTR 5 ; move byte 5 of DS segment to AL
6. These examples override the type attributes of a word variable and a label.

MOV CL, BYTE PTR AWORD ; get 1st byte of variable
MOV DL, BYTE PTR AWORD + 1 ; get variable's 2nd byte
MOV AL, BYTE PTR APROC + 5 ; read a byte of program code

156 Chapter 5 Accessing Data

SHORT Operator

Syntax
SHORT labelexp
Where:
labelexp is a label or label expression defined within the same segment as the
instruction being assembled.
Discussion

The SHORToperator specifies that a label referenced byiRor conditional jump
instruction is within the range of -128..127 bytes of the end of the instruction.
SHORTallows the assembler to check that the label is in this range and to generate
the most compact code for complex label expressions.

When a single label is forward-referenced, the assembler optimizes the relative
offset. However, complex forward references cannot always be optimized.

Example
This example illustrates the useSHORTO save bytes of code. It assumes a
USE32segment.
JMP $+(FWDLAB - FWDLAB?2) ; 8 bytes

JMP SHORT $+(FWDLAB - FWDLAB2) ; 3 bytes
FWDLAB:

FWDLAB2:

ASM386 Assembly Language Reference Chapter 5 157

Record Specific Operators

TheWIDTHoperator returns a result equal to the number of bits in a record or
record field.

The MASKoperator, together with a record field name used as a shift count, helps to
isolate and access the fields within a record. This provides an alternative to
defining BIT -type variables in order to isolate specific bits in a record.

WIDTH Operator

Syntax
WIDTH record
or
WIDTH rec-field
Where:
record is the name of a record variable.

rec-field is the name of a record field.

Discussion

TheWIDTHoperator returns a value equal to the number of bits in either a record or
a record field.

Example
REC1 RECORD F1:2, F2:4, F3:1
RINUMBITS DB WIDTH REC1 ; byte initialized to 7
F2NUMBITS DB WIDTH F2 ; byte initialized to 4

158 Chapter 5 Accessing Data

MASK Operator

Syntax
MASK rec-field
Where:

rec-field is the name of a record field.

Discussion

The MASKoperator defines a value that masks a selected field in a record. This
value has 1s in the bit positions specifiedrdgfield and Os for every other bit
position in the record.

Examples

1. This sequence of instructions creates a recoEd\¥of the same type @&£Cs.
The EAXFULL field is a copy of th&®EC.FULL field. All otherEAXfields
have zeros.

MOV EAX, REC
AND EAX, MASK FULL

2. This sequence of instructions creates a recod\Kof the same type &&ECs.
TheFULL field is zeroed. All otheEAXfields are copies of the corresponding
RECfields.

MOV EAX, REC
AND EAX, NOT MASK FULL

ASM386 Assembly Language Reference Chapter 5 159

Using Field Names as Shift Counts

Syntax
rec-field
Where:

rec-field is the name of a record field.

Discussion

The record field name specifies the number of bits the record will be shifted. To
evaluate a field, the record is shifted right to move the field's contents to the low-
order bits of 8YTE, WORPor DWORI[see the Example).

Example
This example defines a record. It then isolates and evaluate€ frelthe record.
PATTERN RECORD A:3, B:1, C:2,D:4, E:6
AREC PATTERN <>

MOV DX, AREC : move record into DX

AND DX, MASK C : mask out fields A,B,D,E with
: 0000110000000000B

SHR DX, C ; DX now equal to value of field C

160 Chapter 5 Accessing Data

Instruction Operands

For an assembler instruction to operate on data, the data must be expressed in a
form that allows it to be accessed. Some instructions implicitly operate on certain
registers. In most cases, data must be specified as an explicit operand. An
instruction operand can be expressed as a register, a constant expression, an
external constant, a location in memory, or as an expression that combines these
components using assembler operators.

Register Operands

The following registers can be used as explicit operands for many processor
instructions:

e 32-bit general registers: EAX, EBX, ECX, EDX, EBP, ESP, ESI, EDI
» 16-bit general registers: AX, BX, CX, DX, SP, BP, SI, DI

e 8-bit general registers: AL, AH, BL, BH, CL, CH, DL, DH

e Segment registers: CS, DS, ES, FS, GS, SS

e Control registers: CRO, CR2, and CR3

e Testregisters: TR3, TR4, TR5, TR6, and TR7

» Debug registers: DRO, DR1, DR2, DR3, DR6, and DR7

The segment registers can be used onlydry PUSH andPOPinstructions. All
general registers can be used in processor arithmetic and logical operations.

See also: Processor registers, Appendix A
processor instructions, Chapter 6

The following examples show instructions that use processor registers as operands:

MOV AX, FS ; contents of FS moved to AX
ADD ESI, EBX . ESI := ESI + EBX
MOV AX, BX : contents of BX moved to AX

The floating-point coprocessor has its own set of registers called the floating-point
stack. The floating-point stack consists of eight elements, each of which can be
referenced as follows:

ST(i)
Where:

i is a digit from O through 7.

The top-of-stack element is always ST(0), which can be abbreviated as ST.

See also: Floating-point stack and assembler floating-point instructions,
Chapter 7

ASM386 Assembly Language Reference Chapter 5 161

Immediate Operands

An immediate operand is an integer or ordinal constant value. An immediate
operand is never the destination operand of an assembler instruction. Immediates
are source operands .

See also: Destination and source operands, Chapter 6
In the following example, 5 is an immediate operand:

MOV AL, 5 ;AL:=5
CMP AX, OFFFFH ; compare contents of AX to OFFFFH

An immediate may also be a constant expression, such@R3. & the following
example:

CMP AL, 150R 5 ; 15 OR 5 is a constant expression

OFFSETVARIs an expression that yields an integer§6SETVAR+ 1000 is an
immediate operand in the following example:

MOV EAX, OFFSET VAR + 1000 ; EAX := sum of value of the
; OFFSET of VAR and 1000

A segment name represents a logical base address (an ordinal v@apSEGS
an immediate operand in the following example:

MOV AX, DATASEG
MOV DS, AX ; initializes DS to access DATASEG

Memory Operands

A memory operand refers to a particular location in memory. The general term for
a memory operand is an address expression. An address expression may be a
simple variable or label name, or it may involve registers, structure fields, and/or
constants. Each address expression uses one of the addressing methods describe
in the next section.

162 Chapter 5 Accessing Data

Memory Addressing Methods

Logical addresses specified in an assembler program must be mapped to processor
memory addresses so the program can be executed. The system utilities perform
this mapping after the program is assembled. The system utilities translate a
program's logical addresses into processor effective addresses. An effective
address is an offset from a segment base address.

See also: Processor memory organization and effective addresses, Appendix A

Assembler segment structure and memory addressing methods reflect the processor
memory addressing forms. The processor has two forms of addressing:

« Direct Addressing
The effective address (or offset from the segment base) can be:

— Arregister
— The value of a specified variable or label
— A constant or the value of a constant expression.

e Indirect Addressing
The effective address (offset) is calculated from the contents of a specified
base or index register (or a combination of both, with an optional
displacement) pointing to a memory location. There are four forms of indirect
addressing:

— Register indirect addressing

— Based addressing

— Based indexed addressing

— Indexed addressing, which may be scaled (32-bit addressing only)

Direct address offsets can B¥TEs, WOR®, DWORDorPWOR® In the special case
when individual bits in a string are accessed, the offset indicates the specific bit in
a string that is to be affected by the processor bit test instructions.

See also: Bit addressing, in this chapter.

The following sections explain ASM386 direct and indirect addressing forms in
more detail.

ASM386 Assembly Language Reference Chapter 5 163

Direct Memory Addressing

For direct memory addressing, the instruction operand is specified by a variable or
label name. The variable or label refers to a particular location in memory. The
contents of the memory location are used as the operand. For example:

MOV EAX, COUNT ; the dword value at memory location
; COUNT is moved into EAX

Indirect Memory Addressing

Figure 5-1 shows how an indirect address offset is calculated for each register
addressing form explained after the figure.

32-bit Addressing

Segment + Base + (Index * Scale) + Displacement
N N a N N
EAX EAX
CS ECX ECX
SS EDX EDX No Displacement
EBX EBX
< gg + 5 ESP +< = + < 8-bit Displacement
Fs EBP EBP 16-bit Displacement
GS ESI ESI
EDI EDI

16-bit Addressing

Segment + Base *t Index + Displacement ~
cs) N N
gz BX sI No Displacement
+ + + 8-bit Displacement
ES BP D! 16-bit Displ. t
Fs -bit Displacemen
GS

164

Chapter 5

W-3421

Figure 5-1. Effective Address Calculation

Accessing Data

The segment override operator may be used in some cases to override the processor
defaults for segment registers listed in the first column of Figure 5-1, except that
segment overrides cannot be specified for the default registers in the following

cases:

» ES as the destination of a string operation
eSS for stack operations
« CS for instruction fetches

See also: Appendix A for a summary of the processor default segment
selection rules

A register expression uses a base and/or an index register listed in the second and
third columns of Figure 5-1. The assembler register addressing forms are:

[base-reg]Jor[index-reg * scale]
[base-reg + index-reg * scale |
[base-reg + disp Jor[index-reg * scale + disp]

[base-reg + index-reg * scale + disp]
Where:

base-reg is any 32-bit general register (EAX, ECX, EDX, EBX, ESP, EBP,
ESI, EDI) for 32-bit addressing, and is BX or BP for 16-bit
addressing.

index-reg is any 32-bit general register except ESP for 32-bit addressing, and is
Sl or DI for 16-bit addressing.

scale is (an optional) constant or constant expression that evaluates to 1-, 2-,
4-, or 8- for 32-bit addressing. It is invalid for 16-bit addressing.

disp is an 8- or 32-bit displacement for 32-bit addressing, and is an 8- or
16-bit displacement for 16-bit addressing.

Indirect memory addresses can be formed from different combinations of a base
address, an index that may be scaled for 32-bit addressing, and a displacement from
the base. Each possible combination is one of the indirect memory addressing
forms shown in Figure 5-1.

For all forms, the notation of a set of bracké}s)(enclosing a register name
indicates that the register contents point to a memory location that will supply the
value to be used as an operand.

The following sections discuss the four forms of indirect addressing and bit
addressing.

ASM386 Assembly Language Reference Chapter 5 165

Register Indirect Addressing

For register indirect addressing, the offset of the memory location is contained in a
base or index register. To address the location:

1. Load the offset into the register, and
2. Use the register name in brackets as the instruction operand.

To indirectly address a variable iU8E16 segment, code something like the
following example:

MOV BX, OFFSET AVAR ; moves offset of AVAR into BX
MOV AX, [BX] : AX now contains contents of AVAR

Based Addressing

166

The based address form is similar to register indirect form except that a
displacement is added to the contents of the register. The displacement can be an
8- or 32-bit number for 32-bit addressing and an 8- or 16-bit number for 16-bit
addressing.

In the based address form, the base register contains the offset of a location in
memory, called the base. The displacement is used to access another location
relative to that base. For example,

MOV EBX, OFFSET DATASTRUC ; EBX: = base of DATASTRUC
MOV EBX, [EBX + 4] ; EBX: = dword located at fourth
; byte from DATASTRUC

For 32-bit addressing instructions, any 32-bit general register can be used as the
base register. For 16-bit addressing instructions, the BX or BP register can be use
as the base register.

Chapter 5 Accessing Data

Based Indexed Addressing

Based indexed addressing uses the contents of a base register, the contents of an
index register, and an optional displacement. In this addressing form, the base
register points to the base of a data structure and the index register is an index into
that structure. For example:

XOR EAX,EAX : clear EAX
MOV EBX, OFFSET ARRAYSTRUC

; load array's base address
MOV ECX, LENGTH ARRAYSTRUC

MOV ESI, 0 : setindex to O
ALAB:ADD EAX, [EBX + ESI] ; get element
ADD ESI, 4 : increment index

LOOP ALAB ; repeat sequence

For 32-bit addressing, any 32-bit general register can be used as a base register, and
any 32-bit general register except ESP can be used as an index register. A scaling
factor may multiply the contents of the index register, as explained in the next
section.

If no scaling factor is used, the first register specified is assumed to be the base
register, and the second register is assumed to be the index register.

For 16-bit addressing, only registers BX and BP can be used as base registers and
only Sl and DI can be used as index registers; the base and index address may be
specified in any order.

Indexed Addressing

Indexed addressing uses an index register and a displacement. In this case, the
contents of the register specify a byte displacement from the offset of the base. For

example:
MOV SI, 0 : set indices
MOV DI, 0 :SI,DlI:=0

MOV CX, LENGTH SOURCE; moves count of SOURCE
: data units into CX
ALAB:MOV AX, SOURCE [S]] ; indexed address
MOV DEST [DI], AX ;indexed address

ADD SI, 2 ; point to next word in SOURCE
ADD DI, 2 ; point to next word in DEST
LOOP ALAB ; jump back to ALAB

ASM386 Assembly Language Reference Chapter 5 167

For 32-bit addressing, any 32-bit general register except ESP can be used as an
index register. The assembler makes certain assumptions about registers for
instructions using 32-bit addressing:

« Ifthere is only one 32-bit register used in an indirect address, it is assumed to
be a base register unless it has a scale factor.

« Ifthe 32-bit register is scaled, it is assumed to be an index register even if it is
the only 32-bit register in the indirect address.

» Ifthere are two 32-bit registers in an indirect address, the first one (specified
on the left) is assumed to be the base and the second is assumed to be the ind
register, unless one register is scaled.

For 16-bit addressing instructions, only registers S| and DI can be used as index
registers.
Scaling

The scaling factor is used to multiply the value pointed to by the 32-bit index
register by 1, 2, 4, or 8. The syntax for specifying a scaled index register is:

[register * factor]
Where:
register is EAX, EBX, ECX, EDX, EBP, EDI, or ESI.
factor is a constant expression that evaluates to 1, 2, 4, or 8.
For example:
MOV EAX, [EDX*4]

uses a scaled indexed address, with the index (EDX) scaled by a factor of 4.

168 Chapter 5 Accessing Data

Default Segment Registers and Anonymous References

Anonymous references such as:

[BX]

[EBP]

WORD PTR [DI]
[EBX].FIELDNAME
and BYTE PTR [BP]

do not specify a variable name from which a segment can be determined. Note that
the structure field name [EBX].FIELDNAME has type and offset attributes, but it
has no segment attribute.

Unless you explicitly code a segment override operator before an instruction,
segment registers for anonymous references are determined by the processor
default segment register selection rules.

DS is the default segment register for all memory references except when BP, EBP,
or ESP is used as the base register. When this occurs, SS is the default segment
register.

However, you cannot override ES as the destination segment register for string
operations. The processor string instructions always use ES as a segment register
for operands pointed to by (E)DI, and DS for operands pointed to by (E)SI. Only
DS can be overridden with the segment override operator in string operations.

Take care that the correct segment is addressed when an anonymous offset is
specified. Unless you code a segment override, the processor default segment will
be addressed, and the anonymous offset applied to the default segment.

For example, if a program's variables all reside in seg8E@t, as specified by

SEG1 SEGMENT RW
VAR DW 500 DUP(0) ; 500 words filled with O's
SEG1 ENDS

and if theASSUMHlirective in the code segment is as follows:

ASSUME DS:SEG1
then all references to named variables in segi®EGtLassemble correctly.
If BP is selected as a base register to access elememg afs follows:

MOV BP, OFFSET VAR
MOV AX, [BP]

the SS segment register is accessed at run time instead of DS (ho assembly-time
error occurs).

To override this default segment register choice, a segment prefix must be used, as
follows:

MOV BP, OFFSET VAR
MOV AX, DS:[BP] ; segment override operator
; indicates DS register

ASM386 Assembly Language Reference Chapter 5 169

Bit Addressing

The BT (bit test), BTS (bit test and set), BTR (bit test and reset), and BTC (bit test
and complement) instructions operate on bit strings. These processor instructions
make it possible to manipulate individual bits.

A bit string may be stored in a general register or in memory. The following is the
general syntax for addressing a bit within a bit string:

base, offset

Where:

base can be specified using any of the previously mentioned addressing
modes described in Memory Addressing Methods.

offset must be in the range 0 to 31 for a general register; it can range from -2

to +2 gigabits for a memory address.

The offset specified for a general register addresses a bit within the register. The
number specified for offset is taken MOD the size of the base (register). (See the
following examples).

All of the bit manipulation instructions load the carry flag with the value of the
selected bit. BTS then sets the bit to 1, BTR resets the bit to 0, and BTC
complements the bit.

BT EAX, 12 ; test bit 12 in register EAX

BTC MEM, 1111B ; complement bit 15 in word-length
; memory location MEM

BTR AX, 17 ;sethbitlin AXto O

BTS BYTEL1, 6 ; set bit 6 in byte memory
: location BYTE1to 1

See also: BT, BTS, BTR, and BTC instructions, Chapter 6.

170 Chapter 5 Accessing Data

Processor Instructions

This chapter has three major sections:
* An overview of the processor instruction set

e Adiscussion of instruction statements: their syntax, attributes, and encoding
format

* An explanation of the notational conventions used in this chapter, followed by
a detailed reference for each processor instruction.

See also: Floating-point coprocessor instructions, Chapter 7

Overview of the Processor Instruction Set

This section groups the processor instructions according to their general functions.
It has three major subsections:

» Data Transfer Instructions

» Control Instructions

* Systems Programming Instructions

Some processor instructions are listed more than once in these sections.

See also: 80386 Programmer's Reference Mantal more information about
the following topics:

* Processor application programming
e Processor system programming:
— System architecture
— Memory management, protection, multitasking, and input/output
— Exceptions, interrupts, and debugging
— Processor initialization, coprocessing, and mulitprocessing

— Processor operating modes, mixing 16-bit and 32-bit code, and porting 286
or 8086 code to the processor

ASM386 Assembly Language Reference Chapter 6 171

Data Transfer Instructions
This section classifies the processor instructions according to the following criteria:
* Does the instruction assign values? See Tables 6-1 to 6-4.
* Does the instruction adjust data values? See Tables 6-5 and 6-6.
» Does the instruction make stack transfers? See Table 6-7.

« Does the instruction yield flag values that can be tested by conditional
instructions? See Table 6-8.

» Does the instruction test specific flag values to determine its execution or
results? See Table 6-9.

Instructions for application programming are listed first in these tables; those for
system-only programming, if any, are listed last. Some processor instructions
satisfy more than one criterion. These instructions are listed more than once in the
following subsections.

Instructions That Assign Data Values

Most processor instructions assign a value to a location. Tables 6-1 to 6-4
summarize the processor instructions that assign data values:

Table 6-1 lists processor instructions that make external input/output
assignments.

Table 6-2 lists processor instructions that make internal load and store
assignments.

Table 6-3 lists processor instructions that make uncalculated value assignments.

Table 6-4 lists processor instructions that make calculated value assignments.

Table 6-1. External I/O Instructions

Processor Instruction Instruction Description
IN Input from port
ouT Output to port
INS Input string from port
ouTs Output string to port

172 Chapter 6 Processor Instructions

Table 6-2. Internal Load and Store Instructions

Processor Instruction Instruction Description

LODS Load string operand

STOS Store string operand

LAHF Load flags into AH register

SAHF Store AH into flags

LEA Load effective address offset
LDS Load full pointer into DS:register
LES Load full pointer into ES:register
LFS Load full pointer into FS:register
LGS Load full pointer into GS:register
LSS Load full pointer into SS:register
LSL Load segment limit

LAR Load access rights (AR) byte
LGDT Load global descriptor table (GDT) register
LGDTW Load GDTR using 16-bit operand
LGDTD Load GDTR using 32-bit operand
SGDT Store GDT register

SGDTW Store GDTR using 16-bit operand
SGDTD Store GDTR using 32-bit operand
LIDT Load interrupt descriptor table (IDT) register
LIDTW Load IDTR using 16-bit operand
LIDTD Load IDTR using 32-bit operand

continued

ASM386 Assembly Language Reference Chapter 6 173

Table 6-2. Internal Load and Store Instructions (continued)

Processor Instruction

Instruction Description

SIDT
SIDTW
SIDTD
LLDT
SLDT
LTR
STR
LMSW
SMSW

Store IDT register

Store IDTR using 16-bit operand

Store IDTR using 32-bit operand

Load local descriptor table (LDT) register
Store LDT register

Load task register

Store task register

Load machine status word (MSW)

Store MSW

Table 6-3. Instructions That Make Uncalculated Value Assignments

Processor Instruction

Instruction Description

MOV
MOVSX
MOVzZX
STC
CLC
MOVS
STD
CLD
XCHG
MOV
STI

CLI
CLTS

Move data

Move sign-extended data

Move zero-extended data

Set carry flag (CF)

Clear carry flag

Move string to string

Set direction flag

Clear direction flag

Exchange register/memory with register
Move to/from control, debug, or test registers
Set interrupt flag

Clear interrupt flag

Clear TS (task switch) flag in CRO

Chapter 6

Processor Instructions

Table 6-4. Instructions That Make Calculated Value Assignments

Processor Instruction

Instruction Description

ADD
ADC
XADD

SuUB
SBB
MUL
IMUL
DIV
IDIV
INC
DEC
NEG
NOT
AND
OR
XOR
TEST
CMP
CMPXCHG

CMPS
SCAS
CMC
BT
BTS
BTR
BTC
BSF
BSR
NOP
SETcc
LOOPcond
Jcc
LEA
VERR
VERW

Add

Add with carry

Exchange and add (not available on Intel386 or 376
processors)

Subtract

Subtract with borrow

Unsigned multiplication

Signed multiplication

Unsigned divide

Signed divide

Increment by 1

Decrement by 1

Two's complement negation

One's complement negation (logical NOT)
Logical AND

Logical inclusive OR

Logical exclusive XOR

Logical compare

Compare two operands

Compare and exchange (not available on Intel386 or
376 processors)

Compare two strings

Compare string data

Complement carry flag (CF)

Bit test

Bit test and set

Bit test and reset

Bit test and complement

Bit scan forward (LSB to MSB)

Bit scan reverse (MSB to LSB)

No operation (advances (E)IP)

Set byte on condition

Loop control with (E)CX counter (decrements (E)CX)
Conditional jumps (add displacement to (E)IP)
Load effective address

Verify segment for reading

Verify segment for writing

ASM386 Assembly Language Reference Chapter 6

175

Instructions That Adjust Data

176

The instructions in Tables 6-5 and 6-6 adjust data values, either by converting data
from one type or format to another or by shifting or rotating data values.

Table 6-5. Data Conversion Instructions

Processor Instruction Instruction Description

MOVSX Move sign-extended data

MOVZX Move zero-extended data

CBwW Convert byte to word

CwWD Convert word to dword

CWDE Convert sign-extended word to dword
CDQ Convert sign-extended dword to qword
AAA ASCII adjust AL after addition

AAS ASCII adjust AL after subtraction
DAA Decimal adjust AL after addition

DAS Decimal adjust AL after subtraction
AAM ASCII adjust AX after multiplication
AAD ASCII adjust AX before division
ARPL Adjust RPL field of selector

Table 6-6. Shift and Rotate Instructions

Processor Instruction Instruction Description

SHL Shift logical left

SHR Shift logical right

SAL Shift arithmetic left

SAR Shift arithmetic right

SHLD Shift double precision arithmetic left
SHRD Shift double precision arithmetic right
ROL Rotate left

ROR Rotate right

RCL Rotate through carry flag left

RCR Rotate through carry flag right
BSWAP Byte swap (not available on Intel386 or 376 processors)

Chapter 6 Processor Instructions

Instructions That Make Stack Transfers

These instructions transfer data values to or from the stack. They also decrement
or increment the 32- or 16-bit stack poinEySP . Table 6-7 lists processor
instructions that make stack transfers.

See also: Floating-point stack, Chapter 7

Table 6-7. Stack Transfer Instructions

Processor Instruction Instruction Description

PUSH Push operand onto stack

POP Pop dword or word from stack

PUSHF Push FLAGS register (16-bits) onto stack
PUSHFD Push EFLAGS (32-bits) register onto stack
POPF Pop stack into FLAGS

POPFD Pop stack into EFLAGS

PUSHA Push all general word registers onto stack
PUSHAD Push all general dword registers onto stack
POPA Pop stack into word registers (discard SP value)
POPAD Pop stack into dword registers (discard ESP value)
ENTER Make stack frame for procedure parameters
LEAVE High level procedure exit

ASM386 Assembly Language Reference Chapter 6 177

Instructions That Yield Definitive Flag Values

Processor instructions that assign an either/or flag value also create a value that ce
be tested for conditional loops, jumps, or other assignments. For the processor
comparison and bit test instructions, flag value assignments are the primary
execution results. For other processor instructions, either/or flag value assignment:
are secondary execution results. Table 6-8 lists processor instructions that make
either/or assignments to the zer), Sign §), carry €), auxiliary carry 4),

overflow (O), and/or parity B) flag(s).

See also: Processor flags, Appendix A

Table 6-8. Processor Instructions That Yield Definitive Flag Values

Instruction Assigns Either/Or Instruction Description
Value to Flags

CMP z S Cc A o P Compare two operands (non-
destructive SUB)

CMPS z S C A o P Compare two strings

CMPXCHG Z S C A O P Compare and exchange (not available
on Intel386 or 376 processors)

SCAS z S C A O P Compare string data

BT C Bit test

BTS C Bit test and set

BTR C Bit test and reset

BTC C Bit test and complement

BSF z Bit scan forward (LSB to MSB)

BSR z Bit scan reverse (MSB to LSB)

ADD Z S C A (0] P Add

ADC z S C A O P Add with carry

XADD z S A O P Exchange and add (not available on
Intel386 or 376 processors)

SUB z S C A o P Subtract

SBB z S C A O P Subtract with borrow

MUL C (0] Multiply

IMUL C 0] Signed multiplication

INC z S A O P Increment by 1

DEC z S A O P Decrement by 1

NEG z S C O P Two's complement negation

continued
178 Chapter 6 Processor Instructions

Table 6-8. Processor Instructions That Yield Definitive Flag Values (continued)

Assigns Either/Or Instruction
Instruction Value to Flags Description
AND z S P Logical AND
OR z S P Logical (inclusive) OR
XOR z S P Logical (exclusive) XOR
TEST z S P Logical compare (non-destructive AND)
AAA cC A ASCII adjust AL after addition
AAS cC A ASCII adjust AL after subtraction
AAM z S P ASCII adjust AX after multiplication
AAD z S P ASCII adjust AX before division
DAA z S cC A P Decimal adjust AL after addition
DAS z S cC A P Decimal adjust AL after subtraction
ROL C Rotate left
ROR C Rotate right
RCL C Rotate through carry flag left
RCR C Rotate through carry flag right
SHL z S C P Shift logical left
SAL z S C P Shift arithmetic left
SAR z S C P Shift arithmetic right
SHR z S C P Shift logical right
SHLD z S C (0] P Shift double precision arithmetic left
SHRD z S C (0] P Shift double precision arithmetic right
ARPL z Adjust RPL field of selector
LAR z Load AR (access rights) byte
LSL z Load segment limit
VERR z Verify segment for reading
VERW z Verify segment for writing

Conditional Instructions That Test Flag Values

Three processor instructions depend on flag values for their execution results. The
conditional loops and jumps are primarily control transfer instruct®B&scc is
not.

ASM386 Assembly Language Reference Chapter 6 179

Table 6-9 lists these instructions and indicates whether each tests the) zeign(
(S), carry €), auxiliary carry), overflow ©), and/or parity ¥) flag(s).

Table 6-9. Conditional Instructions That Test Flag Values

Instruction Tests Flag Values Description

LOOPcond z Loop control with (E)CX counter
SETcc z S C (0] P Set byte on condition

Jcc z S C (0] P Jump if condition is met

Control Instructions

Control instructions either transfer control between code sections or exert control
over the processor. Tables 6-10 and 6-11 list these processor instructions.

Table 6-10. Control Transfer Instructions

Processor Instruction Instruction Description

LOOP Loop until count in (E)YCX =0

LOOPcond Loop until count in (E)CX = 0 AND zeroflag = condition
JMP Jump to location

Jcc Jump if flag value(s) = condition

CALL Call procedure

RET Return from procedure

INT Call to interrupt procedure

INTO Call to interrupt procedure on overflow

IRET/IRETD Return from interrupt procedure

Table 6-11. Processor Control Instructions

Processor Instruction Instruction Description

NOP No operation (uses clocks)

HLT Halt

WAIT Wait until BUSY# pin is inactive(high)

180 Chapter 6 Processor Instructions

System Instructions

This section lists processor system instructions. System instructions handle the
following general functions:

1. Verification of pointer parameters:

ARPL Adjust RPL (requesting privilege level) of selector
LAR Load AR (access rights) byte

LSL Load segment limit

VERR Verify segment for reading

VERW Verify segment for writing

2. Accessing/storing descriptor tables:

LGDT Load GDT (global descriptor table) register
LGDTW Load GDT register using 16-bit operand
LGDTD Load GDT register using 32-bit operand
SGDT Store GDT register

SGDTW Store GDT register using 16-bit operand
SGDTD Store GDT register using 32-bit operand
LLDT Load LDT (local descriptor table) register
SLDT Store LDT register

LIDT Load IDT (interrupt descriptor table) register
LIDTW Load IDT register using 16-bit operand
LIDTD Load IDT register using 32-bit operand
SIDT Store IDT register

SIDTW Store IDT register using 16-bit operand
SIDTD Store IDT register using 32-bit operand

3. Input and Output:

IN Input from port
ouT Output to port
INS Input string from port

OuUTS Output string to port

4. Interrupt control:

LIDT Load IDT (interrupt descriptor table) register

LIDTW Load IDT register using 16-bit operand

LIDTD Load IDT register using 32-bit operand

SIDT Store IDT register

SIDTW Store IDT register using 16-bit operand

SIDTD Store IDT register using 32-bit operand

CLI Clear IF (interrupt enable) flag in (E)FLAGS register
STI Set IF flag

ASM386 Assembly Language Reference Chapter 6 181

5. Multitasking:

LTR Load task register
STR Store task register
CLTS Clear TS (task switch) flag in CRO

6. Coprocessing and Multiprocessing:

ESC Escape instructions (floating-point coprocessor instructions)
CLTS Clear TS (task switch) flag in CRO

WAIT Wait until coprocessor is not busy

LOCK Assert bus LOCK# signal

See also: Floating-point coprocessor instructions, Chapter 7

7. Debugging and/orLB (translation lookaside buffer) testing in a paged
memory system:

MOV Transfer data to/from debug and/or test registers
8. System control:

MOV Transfer data to/from control registers
LMSW Load MSW (machine status word) into CRO
SMSW Store MSW

HLT Halt processor

9. Cache control (not available on Intel386 or 376 processors):

INVLPG Invalidate paging cache entry
INVD Invalidate data cache
WBINVD Write back and invalidate data cache

Instruction Statements

Instruction statements form the core of an assembler program. These statements
define the actual program that the processor (and optional floating-point
coprocessor) execute.

Instruction Statement Syntax
Each assembler instruction has the following syntax:
[label :][prefix] mnemonic[argument [,...]]
Where:

label is a unique identifier that defines a label. Labels are optional.

182 Chapter 6 Processor Instructions

prefix is a processor instruction prefix@CKor REP. An explicit prefix is
optional.

mnemonic is a processor or floating-point coprocessor instruction or a
programmer-defined codemacro.

argument is an operand. Some processor and floating-point coprocessor
instructions have no operand. For these instructions, operand(s) are
implicit. Other processor instructions require one, two, or three
explicit operands. Floating-point coprocessor instructions have, at
most, two explicit operands.

See also: Labels, Chapter 4
processor instructions, in this chapter
defining codemacros, Chapter 9

For both the processor and the floating-point coprocessor, the general form of an
instruction with operands is one of the following:

mnemonic src
where the execution result may be stored either in the satreck (
itself or in an implicit location.

mnemonic dest,src
where the execution result is stored either in the destinatesn §
operand or in an implicit location; the instruction's operation does not
change the source operand.

The instruction reference pages at the end of this chapter list the valid and/or
required operands for each processor instructiabl(, SHLQ andSHRDare the

only processor instructions that require three operands). The instruction reference
pages list the valid and/or required operands for each floating-point instruction.

See also: Instruction reference pages, Chapter 7

Instruction Attributes

In the context of an assembler program, every instruction has an address size
attribute; it may also have an operand size attribute and a stack size attribute. The
assembler determines these attributes.

ASM386 Assembly Language Reference Chapter 6 183

Address Size Attribute
The assembler can calculate either 32- or 16-bit addresses and offsets.
The assembler determines an instruction's address size attribute as follows:

e If the instruction has an operand, the assembler checkssthattribute of the
segment containing the operand:

— For aUSE32segment, the instruction’'s address size attribute is 32-bits.
— For aUSE16segment, it is 16-bits.

« If the instruction has no operand and no predefined address size attribute, the
assembler checks thusEattribute of the current code segment to determine
the address size attribute.

« If the instruction contains an anonymous reference the assembler checks the
size of the register used in the reference. For example,

PUSH DWORD PTR [EAX]

implies theUSE32 attribute. BecauseAXis a 32-bit register, thiBUSH
instruction's address size attribute is 32-bits.

See also: USE16andUSE32segments, Chapter 2

Operand Size Attribute

When determining the operand size attribute for most instructions, the assembler
considers the type of the instruction operand(s), or, for no-operand instructions, the
type of the operand implied by the instruction's mnemonic. An instruction that
accesses dwords (32-bits) or words (16-bits) has an operand size attribute of 32- or
16-bits, respectively. An instruction that accesses a byte has the operand size
attribute of the current code segment.

The assembler will flag an inconsistency in the use of operands as an error. For
example,

ADD EAX,WORD_VAR

will be flagged as an error becaus&X (32-bit register operand) cannot be used
with WORD_VARL6-bits).

184 Chapter 6 Processor Instructions

Stack Size Attribute

Instructions that use the stack have a stack size attribute of 32- or 16-bits. The

assembler determines an instruction's stack size attribute accordingJ®ethe
attribute of the stack segment. The stack seg@Battribute is either:

e The current default for the module containing the instruction

e Or, theUSEattribute of the stack segment definition

Instructions with a stack size attribute of 32 use the 32-bit ESP register as the stack
pointer; those with a stack size attribute of 16 use the 16-bit SP register as the stack

pointer.

Instruction Encoding Format

All instruction encodings are subsets of the general instruction opcode format

shown in Figure 6-1.

Instruction Address-size Operand-size Segment
Prefix Prefix Prefix Override
Oor1l Oorl Oorl Oorl

Number of Bytes
Opcode ModRM SIB Displacement Immediate
lor2 Oorl Oorl 0,1,2o0r4 0,1,2o0r4
Number of Bytes

W-3422

Figure 6-1. Instruction Encoding Format

Instruction encodings consist of;

e Optional instruction prefixes

e One or two primary opcode bytes

« Possibly an address specifier consisting of:

— TheModRMbyte and theSIB (Scale Index Base) byte

— A displacement, if required

— An immediate data field, if required

ASM386 Assembly Language Reference

Chapter 6

185

Encoding fields vary depending on the class of operation. Smaller encoding fields
can be defined within the primary opcode(s). These fields define the direction of
the operation, the size of the displacements, the register encoding, or the sign
extension.

Most instructions that refer to an operand in memory have an addressing form byte
following the primary opcode byte(s). (The exceptions aréRE€/IRETD ,

INT/INTO , and allPUSHandPOPiInstructions.) This byte, called tivodRMbyte,
specifies the address form to be used. Certain encodingsabtirvbyte

indicate a second addressing byte, 3l (Scale Index Base) byte; this follows the
ModRMbyte and is required to fully specify the addressing form (see Figure 6-2).

Addressing forms can include a displacement immediately following either the
ModRMor SIB byte. If a displacement is present, it can be 8-, 16-, or 32-bits.

If the instruction specifies an immediate operand, the immediate operand follows
any displacement bytes; it is always the last field of the instruction.

Instruction Prefix Codes
Instruction prefix codes occur in three cases:

1. A programmer-specifieBEPor LOCKprefix precedes the instruction. The
assembler generates one of the following prefixes:

F3H REPprefix (used only with string instructions)

F3H REPE/REPZprefix (used only with string instructions)
F2H REPNE/REPNZorefix (used only with string instructions)
FOH LOCKprefix

2. A segment override is specified for the instruction. The assembler
automatically generates one of the following prefixes:

2EH CS segment override prefix
36H SS segment override prefix
3EH DS segment override prefix
26H ES segment override prefix
64H FS segment override prefix
65H GS segment override prefix

186 Chapter 6 Processor Instructions

3. Aninstruction's address and/or operand size requires, at most, a 2-byte prefix.
The assembler automatically generates one or more of the following prefixes:

67H Address size prefix
66H Operand size prefix

See also: LOCKandREPfor more information about specifying prefixes with
instructions, in this chapter

Table 6-12 shows when the assembler generates address and operand size prefixes
for an instruction according to the relationships among$§ address size, and
operand size attributes.

Table 6-12. Generation of Address and Operand Size Prefixes

Prefixes Generated
by Assembler Attributes
Address Operand Address Operand USE of Current
67H 66H Size Size Code Segment
no no 16 16 USE16
no yes 16 32 USE16
yes no 32 16 USE16
yes yes 32 32 USE16
no no 32 32 USE32
no yes 32 16 USE32
yes no 16 32 USE32
yes yes 16 16 USE32

ASM386 Assembly Language Reference Chapter 6 187

ModRM and SIB Bytes

TheModRMandSIB bytes follow the opcode byte(s) in many of the processor
instructions. They contain the following information:

* Indexing type or register number to be used in the instruction
* Register to be used, or more information to select the instruction
* Base, index, and scale information

Figure 6-2 shows the formats of tiledRMandSIB bytes.

ModRM Byte
7 6 5 4 3 2 1 0
Mod Reg/Opcode R/M

SIB (Scale Index Base) Byte
7 6 5 4 3 2 1 0

SF Index Base

W-3423

Figure 6-2. ModRM and SIB Byte Formats

The ModRMoyte contains three fields of information:

mod occupies the 2 most significant bits. The mod field combines with the
r/m field to form 32 possible values representing 8 general registers
and 24 indexing modes.

reg occupies the next 3-bits following the mod field. The reg field
specifies either a register number or three more bits of opcode
information. The meaning of the reg field is determined by the first
(opcode) byte of the instruction.

r/m occupies the 3 least significant bits. The r/m field can specify a
register as the location of an operand, or it can be combined with the
mod field to form the addressing-mode encoding.

See also: MOV Special Registers instruction for the control, test, and debug
register reg values, in this chapter

188 Chapter 6 Processor Instructions

32-bit based-indexed and scaled-indexed addressing forms also reqg@i@ the
byte. The presence of tis8 byte is indicated by certain encodingsvafdRM
bytes. ThesIB byte then includes the following fields:

sf occupies the 2 most significant bits. It specifies the scale factor.

index occupies the next 3-bits. It specifies the register number of the index
register.

base occupies the 3 least significant bits. It specifies the register number of

the base register.

The following tables illustrate the addressing forms for 16- and 32ehiRMoytes
and for 32-bitSIB bytes:

Table 6-13 shows the 16-bit addressing forms specified hydbiBMbyte.
Table 6-14 shows the 32-bit addressing forms specified hydbiBMbyte.
Table 6-15 shows the 32-bit addressing forms specified byithéyte.

ASM386 Assembly Language Reference Chapter 6 189

Table 6-13. 16-Bit Addressing Forms with ModRM Byte in Hexadecimal

r8(/r) AL CL DL BL AH CH DH BH
ri6(/r) AX CX DX BX SP BP Sl DI
r32(/r) EAX ECX EDX EBX ESP EBP ESI EDI
/digit(Opcode) 0 1 2 3 4 5 6 7
REG = 000 001 010 011 100 101 110 111
Effective ModRM Bits

Address MOD R/M | ModRM Values in Hexadecimal

[BX + SI] 000 00 08 10 18 20 28 30 38
[BX + DI 001 01 09 11 19 21 29 31 39
[BP + SI] 010 02 0A 12 1A 22 2A 32 3A
[BP + DI 00 011 03 0B 13 1B 23 2B 33 3B
[S1] 100 04 oC 14 1C 24 2C 34 3C
[DI] 101 05 oD 15 1D 25 2D 35 3D
disp16 110 06 OE 16 1E 26 2E 36 3E
[BX] 111 07 OF 17 1F 27 2F 37 3F
[BX + Sl]+disp8 000 40 48 50 58 60 68 70 78
[BX + DI]+disp8 001 41 49 51 59 61 69 71 79
[BP + Sl]+disp8 010 42 4A 52 5A 62 6A 72 7A
[BP + DI]+disp8 01 011 43 4B 53 5B 63 6B 73 7B
[SI]+disp8 100 44 4C 54 5C 64 6C 74 7C
[DI]+disp8 101 45 4D 55 5D 65 6D 75 7D
[BP]+disp8 110 46 4E 56 5E 66 6E 76 7E
[BX]+disp8 111 a7 4F 57 5F 67 6F 77 7F
[BX + Sl]+disp16 000 80 88 90 98 AO A8 BO B8
[BX + Dl]+disp16 001 81 89 91 99 Al A9 Bl B9
[BX + Sl]+disp16 010 82 8A 92 9A A2 AA B2 BA
[BX + DI]+disp16 10 011 83 8B 93 9B A3 AB B3 BB
[SI]+disp16 100 84 8C 94 9C A4 AC B4 BC
[DI]+disp16 101 85 8D 95 9D A5 AD B5 BD
[BP]+disp16 110 86 8E 96 9E A6 AE B6 BE
[BX]+disp16 111 87 8F 97 9F A7 AF B7 BF
EAX/AX/AL 000 Co cCs8 DO D8 EO E8 FO F8
ECX/CX/CL 001 Cl C9 D1 D9 El E9 F1 F9
EDX/DX/DL 010 C2 CA D2 DA E2 EA F2 FA
EBX/BX/BL 11 011 C3 CB D3 DB E3 EB F3 FB
ESP/SP/AH 100 C4 CC D4 DC E4 EC F4 FC
EBP/BP/CH 101 C5 CD D5 DD E5 ED F5 FD
ESI/SI/DH 110 C6 CE D6 DE E6 EE F6 FE
EDI/DI/BH 111 C7 CF D7 DF E7 EF F7 FF

disp8 denotes an 8-bit displacement following the ModRM byte that is sign-extended bits and added to the
index. displ6 denotes a 16-bit displacement following the ModRM byte that is added to the index. The
default segment register is SS for effective addresses containing a BP index; it is DS for other effective
addresses.

190 Chapter 6 Processor Instructions

Table 6-14. 32-Bit Addressing Forms with ModRM Byte in Hexadecimal

r8(/r) AL CL DL BL AH CH DH BH
ri6(/r) AX CX DX BX SP BP Sl DI
r32(/r) EAX ECX EDX EBX ESP EBP ESI EDI
/digit(Opcode) 0 1 2 3 4 5 6 7
REG = 000 001 010 011 100 101 110 111
Effective ModRM Bits

Address MOD R/M | ModRM Values in Hexadecimal

[EAX] 000 00 08 10 18 20 28 30 38
[ECX] 001 01 09 11 19 21 29 31 39
[EDX] 010 02 0A 12 1A 22 2A 32 3A
[EBX] 011 03 0B 13 1B 23 2B 33 3B
[--1[-1 00 100 04 oc 14 1C 24 2C 34 3C
disp32 101 05 0D 15 1D 25 2D 35 3D
[ESI] 110 06 OE 16 1E 26 2E 36 3E
[EDI] 111 07 OF 17 1F 27 2F 37 3F
disp8[EAX] 000 40 48 50 58 60 68 70 78
disp8[ECX] 001 41 49 51 59 61 69 71 79
disp8[EDX] 010 42 4A 52 5A 62 6A 72 7A
disp8[EBX] 011 43 4B 53 5B 63 6B 73 7B
disp8[--][--] 01 100 44 4C 54 5C 64 6C 74 7C
disp8[EBP] 101 45 4D 55 5D 65 6D 75 7D
disp8[ESI] 110 46 4E 56 5E 66 6E 76 7E
disp8[EDI] 111 a7 4F 57 5F 67 6F 77 7F
disp32[EAX] 000 80 88 90 98 A0 A8 BO B8
disp32[ECX] 001 81 89 91 99 Al A9 Bl B9
disp32[EDX] 010 82 8A 92 9A A2 AA B2 BA
disp32[EBX] 011 83 8B 93 9B A3 AB B3 BB
disp32[--][--] 10 100 84 8C 94 9C A4 AC B4 BC
disp32[EBP] 101 85 8D 95 9D A5 AD B5 BD
disp32[ESI] 110 86 8E 96 9E A6 AE B6 BE
disp32[EDI] 111 87 8F 97 9F A7 AF B7 BF
EAX/AX/AL 000 Cco cs DO D8 EO E8 FO F8
ECX/CX/CL 001 C1 C9 D1 D9 El E9 F1 F9
EDX/DX/DL 010 c2 CA D2 DA E2 EA F2 FA
EBX/BX/BL 11 011 C3 CB D3 DB E3 EB F3 FB
ESP/SP/AH 100 C4 CcC D4 DC E4 EC F4 FC
EBP/BP/CH 101 C5 CD D5 DD E5 ED F5 FD
ESI/SI/DH 110 C6 CE D6 DE E6 EE F6 FE
EDI/DI/BH 111 C7 CF D7 DF E7 EF F7 FF

[--][-] means a SIB byte follows the ModRM byte. disp8 denotes an 8-bit displacement following the SIB
byte that is sign-extended to 32 bits and added to the index. disp32 denotes a 32-bit displacement following
the ModRM byte that is added to the index.

ASM386 Assembly Language Reference

Chapter 6

191

Table 6-15. 32-Bit Addressing Forms with SIB Byte in Hexadecimal

r32 EAX ECX EDX EBX ESP * ESI EDI
Base = 0 1 2 3 4 5 6 7
Base = 000 001 010 011 100 101 110 111
Scaled Index ‘SF ‘Index ‘SIB Values in Hexadecimal

[EAX] 000 00 01 02 03 04 05 06 07
[ECX] 001 08 09 0A 0B oC oD OE OF
[EDX] 010 10 11 12 13 14 15 16 17
[EBX] 00 011 18 19 1A 1B 1C 1D 1E 1F
none 100 20 21 22 23 24 25 26 27
[EBP] 101 28 29 2A 2B 2C 2D 2E 2F
[ESI] 110 30 31 32 33 34 35 36 37
[EDI] 111 38 39 3A 3B 3C 3D 3E 3F
[EAX*2] 000 40 41 42 43 44 45 46 47
[ECX*2] 001 48 49 4A 4B 4C 4D 4E 4F
[EDX*2] 010 50 51 52 53 54 55 56 57
[EBX*2] 01 011 58 59 5A 5B 5C 5D 5E 5F
none 100 60 61 62 63 64 65 66 67
[EBP*2] 101 68 69 6A 6B 6C 6D 6E 6F
[ESI*2] 110 70 71 72 73 74 75 76 77
[EDI*2] 111 78 79 7A 7B 7C 7D 7E 7F
[EAX*4] 000 80 81 82 83 84 85 86 87
[ECX*4] 001 88 89 8A 8B 8C 8D 8E 8F
[EDX*4] 010 90 91 92 93 94 95 96 97
[EBX*4] 10 011 98 99 9A 9B 9C 9D 9E 9F
none 100 A0 Al A2 A3 A4 A5 A6 A7
[EBP*4] 101 A8 A9 AA AB AC AD AE AF
[ESI*4] 110 BO Bl B2 B3 B4 B5 B6 B7
[EDI*4] 111 B8 B9 BA BB BC BD BE BF
[EAX*8] 000 Cco C1 c2 C3 Cc4 C5 Cc6 Cc7
[ECX*8] 001 cs Cc9 CA CB CcC CD CE CF
[EDX*8] 010 DO D1 D2 D3 D4 D5 D6 D7
[EBX*8] 11 011 D8 D9 DA DB DC DD DE DF
none 100 EO El E2 E3 E4 E5 E6 E7
[EBP*8] 101 E8 E9 EA EB EC ED EE EF
[ESI*8] 110 FO F1 F2 F3 F4 F5 F6 F7
[EDI*8] 111 F8 F9 FA FB FC FD FE FF

The [*] heading in column 5 of the SIB values means a disp32 with no base if MOD is 00, EBP otherwise.
Depending on the value of MOD, the following addressing modes are possible: disp32[index], disp8[EBP]
[index], and disp32[EBP] [index] with MOD values 00, 01, and 10, respectively.

192 Chapter 6 Processor Instructions

Processor Instruction Set Reference

This section first explains how to use the instruction set reference pages and how to
find instructions that are grouped with others. The reference pages for each
processor instruction are at the end of this section.

How to Read the Instruction Set Reference Pages

For each processor instruction, a table summarizes the opcode, instruction syntax,
clocks, and description of its operation. Following the instruction table are
reference page sections titled Operation, Discussion, Flags Affected, and
Exceptions by Mode. The following is an example of an instruction table:

Opcode Instruction Clocks Description

OCib OR AL,imm8 2 OR immediate byte to AL

0D iw OR AX,imm16 2 OR immediate word to AX

oD id OR EAX,imm32 2 OR immediate dword to EAX
80/1ib OR r/m8,imm8 217 OR immediate byte to r/m byte
81/1 iw OR r/m16,imm16 2/7 OR immediate word to r/m word
81/1id OR r/m32,imm32 2/7 OR immediate dword to r/m dword
08 /r OR r/m8,r8 2/6 OR byte register to r/m byte

09 /r OR r/m16,r16 2/6 OR word register to r/m word
09 /r OR r/m32,r32 2/6 OR dword register to r/m dword
O0A /r OR r8,r/m8 217 OR r/m byte to byte register

0B /r OR r16,r/mi16 217 OR r/m word to word register
0B /r OR r32,/m32 217 OR r/m dword to dword register

The following subsections explain the notational conventions and abbreviations
used in the instruction table columns and in the reference page sections.

ASM386 Assembly Language Reference Chapter 6 193

Opcode Column

The opcode column gives the complete object code produced for each form of the
instruction. When possible, codes are expressed as hexadecimal bytes in the sam

order in which they appear in memory. Definitions of entries other than
hexadecimal bytes are as follows:

/digit is a digit from O to 7; it indicates that tMadRMbyte of the
instruction uses only them (register or memory) operand. The reg
field of the ModRM byte contains the digit (0..7) that provides an
extension to the instruction's opcode.

/r indicates that thodRMbyte of the instruction contains both a
register operand and aftnm operand.

cb, cw, cd, cp
is a 1-byte €b), 2-byte ¢w), 4-byte €d), or 6-byte €p) value

following the opcode that is used to specify a code offset and possibly
a new value for the code segment register.

ib,iw,id isal-byteip), 2-byte (w), or 4-byte [d) immediate operand to the
instruction that follows the opcod@pdRMandSIB bytes. The
opcode determines if the operand is a signed value. All wavds (
and dwordsi@) are given with the low-order byte first.

+rb , +rw, +rd

is a register code from 0 to 7 that is added to the hexadecimal byte at
the left of the plus sign to form a single opcode byte. The register

codes are:
rb w rd

AL=0 AX=0 EAX=0
CL=1 CX=1 ECX=1
DL=2 DX=2 EDX=2
BL=3 BX=3 EBX=3
AH=4 SP=4 ESP=4
CH=5 BP=5 EBP=5
DH=6 SI=6 ESI=6

BH=7 DI=7 EDI=7

194 Chapter 6 Processor Instructions

Instruction Column

The instruction column gives the syntax of the instruction statement as it would
appear in a assembler program.

The following is a list of the symbols used to represent operands in the instruction
statements:

r8 is one of the byte registers AL, CL, DL, BL, AH, DH, CH, or BH.
For exampleMOW8,imm8 can be coded

MOV DH,3

ri6 is one of the word registers AX, CX, DX, BX, SP, BP, SI, or DI. For
exampleJNC r16 can be coded

INC BX

r32 is one of the dword registers EAX, EBX, ECX, EDX, ESP, EBP, ESI,
or EDI. For exampleDECr32 can be coded

DEC EDX

r/m8 is a 1-byte operand that is either the contents of a byte register (AL,
BL, CL, DL, AH, BH, CH, DH), or a byte from memory. For
example, MOV r8,r/m8 could be coded

MOV DL,AH
meaning set DL to the value in AH. It could also be coded
MOV DL,POWER_FLAG

meaning set DL to the memory byte variab@WER_FLAGVhere
POWER_FLA®@as declared at the top of the program.

r/m16 is a word register or memory operand used for instructions whose
operand size attribute is 16-bits. The word registers are AX, BX, CX,
DX, SP, BP, SI, DI. The contents of memory are found at the address
provided by the effective address computation. As an exawpiz,
r/m16,imm8 could be coded

ADD SP,10

meaning add 10 to the contents of the SP register. It could also be
coded

ADD [BP].WORD_ELEM,10

meaning add 10 to the memory wan®RD_ELEMvhich is part of a
structure addressed by the BP register.

ASM386 Assembly Language Reference Chapter 6 195

196

r/m32

mé8

mlé6

m32

imm8

is a dword register or memory operand used for instructions whose
operand size attribute is 32-bits. The dword registers are EAX, EBX,
ECX, EDX, ESP, EBP, ESI, EDI. The contents of memory are found
at the address provided by the effective address computation.

is a memory byte that can apply to all addressing fomm&can be a
simple memory variable of ty@YTE or it can be indexed. For
exampleLODSm8can be coded

LODS BSTRING
whereBSTRINGIs a byte array addressed by the (E)SI register.

is a memory word that can apply to all addressing formscan be
a simple variable of typ&/ORpor it can be indexed. For example,
MOWDS, mi6can be coded

MOV DS,DATA_SELECTOR

whereDATA_SELECTORs a memory variable declared with the
following statement

DATA_SELECTOR DW DATA
MOV DS,m16 can also be coded
MOV DS,SELECTOR_ARRAY[DI]

where DI is a run-time index into the fixed word array
SELECTOR_ARRAY

is a memory dword that can apply to all addressing forms.
is a memory operand whose type is not checked by the assembler.

See also: BTS and other bit instructions for an explanatian of
usage, in this chapter

is an immediate byte valugmmag8is a signed number in the range
128..127 , a symbol equated to such a number, or an expression
evaluating to such a number. For exampl@D AL,imm8 can be
coded

ADD AL,37

meaning add the number 37 to the AL regist8rAX ,imm8 can be
coded

IN AX,SERIAL_PORT

Chapter 6 Processor Instructions

if the following statement appears elsewhere within the program
SERIAL_PORT EQU 40H
MOV r8,imm8 can be coded
MOV DL,LENGTH PTR_TABLE + 1

if the following statement appears elsewhere within the program
PTR_TABLE DW 30 DUP (?)

MOV DL,LENGTH PTR_TABLE + 1 loads 31 into the DL register.
Negative values between -128 and -255 wrap around to positive
numbers because the largest negative number that can be represented
with 8-bits is -128. Numbers between 127 and 255 can be used for the
representation of unsigned numbers. When instructions combine an
imm8with a word or dword operand, the immediate value is sign-
extended to form a word or dword.

imm16 is an immediate word value used for instructions whose operand size
attribute is 16-bits. This is a number in the range -32763..32762, a
symbol equated to such a number, or an expression evaluating to such
a number. For examplapD AX, imm16 can be coded

ADD AX,1000

meaning add the number 1000 to the AX regisk@Vr16,imm16
can be coded

MOV DI,OFFSET COUNTER

whereCOUNTERs a label. The instruction would mo@®UNTER
offset within its segment (not the contentCAfUNTERINto the DI
register.

imm32 is an immediate dword value used for instructions whose operand size
attribute is 32-bits. This is a number in the range
2147483648..2147483647

rel8 is a label in the range from 128 bytes before the end of the instruction
to 127 bytes after the end of the instruction. For exampiesel8
can be coded

JMP PROCESS_NEXT

if the labelPROCESS_NEXTappears nearby in the same code
segment.LOOPrel8 can be coded

FLOOP XY_LOOP

if XY_LOOP: appears several lines above.

ASM386 Assembly Language Reference Chapter 6 197

rell6, rel32
is a label within the same code segment as the instrucidts
applies to instructions with an operand size attribute of 16+ei32
applies to instructions with an operand size attribute of 32-bits. The
label cannot be BARIabel. For exampledMPre/16 can be coded

JMP ABORTX

if the destination label is declared (possibly several pages away) in the
same code segment as the jun@aLL re/l16 can be coded

CALL GET_CONSOLE
if the following statement appears elsewhere in the program
EXTRN GET_CONSOLE:NEAR

ptri6:16 , ptr16:32
is aFARIabel, typically in a code segment different from that of the
instruction. These labels are also called full pointersl6:16 is
used when the instruction's operand size attribute is 16-bits;
ptr16:32 is used with the 32-bit attribute. The notation 16:16
indicates that the value of the pointer has two parts. The value on the
left of the colon is a 16-bit selector or value destined for the code
segment register. The value on the right corresponds to the offset
within the destination segment. For exam@el.L ptr16:16 can be
coded

CALL SERVICE_ACTION
if the following statement appears elsewhere in the program
EXTRN SERVICE_ACTION:FAR

ml6:16, mi16:32
is a memory operand containing a full pointer composed of two
numbers. The number to the left of the colon corresponds to the
pointer's segment selector. The number to the right corresponds to its
offset. Like theptr16:16 andptr16:32 operandsm16:16 and
m16:32 operands are memory locations which contain full pointers.

198 Chapter 6 Processor Instructions

m16&32, m16&16, m32&32
is a memory operand consisting of paired data items whose sizes are
indicated on the left and the right side of the ampersand. All memory
addressing forms are allowed. Ari6&160or m32&32operand is used
by theBOUNDnstruction (the operand specifies upper and lower
bounds for array indicesLIDT m16&32andLGDTm16&32load a
word into the limit field, and a dword into the base field of the
Interrupt and Global Descriptor Table registers. For exam@BT
m16&32can be coded

LGDT GLOBAL_ARRAY

if the following statement appears in a data segment elsewhere in the
program (and is followed by the array initializations)

GLOBAL_ARRAY LABEL BYTE
LIDT m16&32 can be coded
LIDT [BP].IPT_TABLE
wherelPT_TABLE is the element of a structure addressed by the BP

register.

moffs8, moffs16, moffs32
(memory offset) is a simple memory variable of t{y'E WORDor
DWORDsed by tha1OMnstruction. A simple offset relative to the
segment base specifies the actual addressviddeMoyte is used in
the instruction. The number shown witloffs indicates its size,
which is determined by the address size attribute of the instruction.
For example, the instructionOVvmoffs32, EAXcan be coded

MOV ITEM_COUNT,EAX

wherelTEM_COUNTis a simple dword memory variable. These
special forms of th&OVinstruction generate less code.

Sreg is a segment register. The segment register values are ES=0, CS=1,
SS=2, DS=3, FS=4, and GS=5.

ASM386 Assembly Language Reference Chapter 6 199

Clocks Column

200

The clocks column gives the number of clock cycles for each form of the
instruction. The clock values apply only to the Intel386 processor. Instructions
which are not available on the Intel386 or 376 processors have a-daéh the
clocks column.

The clock count calculations make the following assumptions:

1. The instruction has been prefetched and decoded and is ready for execution.
2. Bus cycles do not require wait states.
3. There are no a numeric coprocessor data transfers or local bus HOLD requests
delaying processor access to the bus.
4. No exceptions are detected during instruction execution.
Memory operands are aligned on 4-byte boundaries.
Opcode Instruction Clocks Description
OCib OR AL,imm8 2 OR immediate byte to AL
0D iw OR AX,imm16 2 OR immediate word to AX
oD id OR EAX,imm32 2 OR immediate dword to EAX
80/1ib OR r/m8,imm8 217 OR immediate byte to r/m byte
81/1 iw OR r/m16,imm16 2/7 OR immediate word to r/m word
81/1id OR r/m32,imm32 2/7 OR immediate dword to r/m dword
08 /r OR r/m8,r8 2/6 OR byte register to r/m byte
09 /r OR r/m16,r16 2/6 OR word register to r/m word
09 /r OR r/m32,r32 2/6 OR dword register to r/m dword
O0A /r OR r8,r/m8 217 OR r/m byte to byte register
0B /r OR r16,r/mi16 217 OR r/m word to word register
0B /r OR r32,/m32 217 OR r/m dword to dword register

Clock counts for instructions that haver@n (register or memory) operand are
separated by a slash. The count to the left is used for a register operand; the coun
to the right is used for a memory operand.

Chapter 6 Processor Instructions

The following symbols are used in the clock count specifications:
Norn represents the number of times a clock cycle is repeated.

m represents the number of components in the next instruction executed,
where the entire displacement (if any) counts as one component, and
all other bytes of the instruction and prefix(es) each count as one
component.

pm = is a label that applies when the instruction executes in protected
mode. pm = is omitted when the clock counts are the same for
protected, real address, and virtual 8086 modes.

Tor ¥ indicates additional information about clock counts below the table.

Description Column
The description column briefly explains the various forms of the instruction.

The Operation and Discussion sections that follow the table contain more details of
the instruction's operation.

Operation Section

This reference page section contains an algorithmic description of the instruction
coded in a notation similar to the Algol languages. The algorithms are composed
of the following elements:

1. Keywords of the algorithmic language, labels, and processor registers are
capitalized; variables, functions, and prose descriptions are in capital and
lower case letters. Comments are enclosed within the symbol+painsi{).
Semi-colons separate the statements of the algorithms.

2. Compound statements are indented; compound statements are sometimes
terminated byYENDIF, ENDIFELSE, ENDWHILE or ENDFORor clarity or if
their component statements extend across page breaks.

3. Arregister name implies the contents of the register. A register name enclosed
in brackets[(]) implies the contents of the location whose address is
contained in that register. For exam@g;[DI] indicates the contents of the
location whose ES segment relative address is in registgsDI. indicates
the contents of the address contained in register Sl relative to Sl's default
segment (DS) or overridden segment.

4. := isthe assignment operator. For example,B; indicates that the value
of B is assigned to A.

ASM386 Assembly Language Reference Chapter 6 201

202

5.

=, NOT= >, >=, <, and<= are relational operators used to compare two values.
These operators mean "equal, not equal, greater than, greater or equal, less
than, less or equal," respectively. A relational expression suchas A=B is
TRUEIf the value of A is equal to that of B; otherwise, IE/AL_SE

OperandSize represents the 16- or 32-bit operand size attribute of an
instruction. StackSize represents the 16- or 32-bit stack size attribute of an
instruction. AddressSize represents the 16- or 32-bit address size attribute of
the instruction. For example,

IF instruction = CMPSW THEN
OperandSize := 16;
ELSE
IF instruction = CMPSD THEN
OperandSize := 32;

indicates that the assembler will set the operand size attribute according to the
mnemonic form of th€MPSnstruction used. The Operation sections for
certain instructions indicate how the assembler determines these attributes.

See also: OperandSize, StackSize, and AddressSize, Chapter 6

The following functions are used in the algorithmic descriptions:

1.

Truncate(value) reduces the size of the value to fit in 16-bits by discarding
high-order bits as needed.

Addr (operand) returns the effective address of the operand. (This value is the
address calculation prior to adding the segment base).

ZeroExtend(value) returns a value zero-extended to the operand size attribute
of the instruction. For example, ZeroExtend of a byte-long -10D value
converts the byte from F6H to 000000F6H. If the value passed to ZeroExtend
and the operand size attribute are the same size, ZeroExtend returns the value
unaltered.

SignExtendvalue) returns a value sign-extended to the operand size attribute
of the instruction. For example, SignExtend of a byte-long -10D converts the
byte from F6H to FFFFFFF6H. If the value passed to SignExtend and the
operand size attribute are the same size, SignExtend returns the value
unaltered.

Push(value) pushes a value onto the stack. The number of bytes pushed is
determined by the operand size attribute of the instruction.

See also: PUSHInstruction, in this chapter

Chapter 6 Processor Instructions

6. Pop(value) removes the value from the top of the stack and returns it. The
statement

EAX := Pop();

assigns the 32-bit value that Pop took from the top of the stack to the EAX
register. Pop will return either a word or a dword depending on the operand
size attribute.

See also: POPiInstruction, in this chapter

7. Bit[BitBase,BitOffset] returns the address of a bit within a bit string. Bits are
numbered from right to left within registers and within memory bytes. If the
base operand is a 32-bit register, the offset can be in the range 0..31. This
offset addresses a bit within the indicated register. An example,
BIT[EAX,21], is illustrated in Figure 6-3.

31 21 0

b BitOffset=21 ———

W-3424

Figure 6-3. BitOffset for BIT[EAX,21]

In memory, the 2 bytes of a word are stored with the low-order byte at the lower
address. If BitBase is a memory address, BitOffset can range from -2 gigabits to
+2 gigabits. The addressed bit is numbered (BitOffset MOD 8) within the byte at
address (BitBase + (BitOffset DIV 8)), where DIV is signed division with rounding
towards negative infinity, and MOD returns a positive number. This is illustrated
in Figure 6-4.

ASM386 Assembly Language Reference Chapter 6 203

204

76543210

Positive Offset
76543210

76543210

[
BitBase + 1
L

BitBase

BitBase - 1

L BitOffset = 13 4

76543210

Negative Offset
76543210

76543210

BitBase

BitBase - 1

T
BitBase - 2
L

—— BitOffset = 11 J

W-3425

Figure 6-4. Memory Bit Indexing

IOPermission(Src, width(Src)) checks the 1/0O permission bits for every byte
of the Src operand before external 1/0 operations.

See also: I/O permission bit map, Appendix A

SwitchTasksperforms certain protected mode checks before the processor
changes the value afS:(E)IP . Before the processor executeALL, RET,

INT, IRET, orJMPinstruction in protected mode, it checks the access rights
(AR) of the descriptor table entry for the selector associated with the new CS.
AR determines whether an intersegment control transfer is:

e Through a gate
* Atask switch
* Merely aFARjump to a code segment at the same privilege level

The SwitchTasks function is an abbreviation for the following checks and
actions:

IF new TSS descriptor NOT PRESENT (*P bit of AR = 0*) THEN
#NP(new TSS);

IF new TSS descriptor BUSY (*B bit of AR = 1*) THEN
#GP(new TSS);

IF new TSS descriptor limit < 103 (*or < 43 for 286 TSS*) THEN
#TS(new TSS);

Chapter 6 Processor Instructions

Save machine state in current TSS;
(*copy general, segment, and flags registers to current TSS*)
IF nesting tasks THEN
new TSS backlink := current TSS selector;
ELSE (*in current TSS descriptor*)
AR := NOT BUSY; (*B bit = 0%)
ENDIFELSE;
TR (*task register*) := new TSS selector;
new TSS descriptor := BUSY; (*B bit of AR = 1%*)
TS (*flag in MSW of CRO*) := 1,
Set general and EFLAGS (*NT := 1 if nested task*) registers
to new TSS values;

Load selectors for LDT, SS, CS, DS, ES, FS, GS, and, if paging
enabled, CR3 page directory physical address associated with

new TSS;
(*Check validity of selectors for LDT and Sreges; if paging
enabled, check CR3 associated with new TSS*)
(*Check LDT validity: *)
IF LDT selector NOT within GDT limits
OR LDT selector does not index GDT THEN
#TS(LDT selector);
IF AR (*of LDT descriptor*) indicates non-LDT segment THEN
#TS(LDT selector);
IF AR (*of LDT descriptor*) indicates NOT PRESENT THEN
#TS(LDT selector);
(*END check LDT validity*)
Load new LDT descriptor into LDT cache; (*valid LDT*)
CPL (*of new TSS*) := RPL; (*of new TSS CS selector¥)
(*Check validity CS: *)
IF CS selector = null THEN #TS(CS selector);
IF CS selector NOT within its descriptor table limits THEN
#TS(CS selector);
IF AR (*of CS descriptor*) indicates non-code segment THEN
#TS(CS selector);
IF nonconforming AND DPL NOT = CPL THEN #TS(CS selector);
IF conforming AND DPL > CPL THEN #TS(CS selector);
IF AR (*of CS descriptor*) indicates NOT PRESENT THEN
#NP(CS selector);
(*END checks CS validity*)

ASM386 Assembly Language Reference Chapter 6 205

206

Load new CS descriptor into CS cache; (*valid CS*)
(*Check validity SS: *)
IF new SS selector = null THEN #TS(SS selector):
IF SS selector NOT within its descriptor table limits THEN
#TS(SS selector);
IF RPL (*of SS selector*) NOT = CPL THEN #TS(SS selector);
IF DPL (*of SS descriptor*) NOT = CPL THEN #TS(SS selector);
IF AR (*of SS descriptor*) indicates code
OR non-writable data segment THEN
#TS(SS selector);
IF AR (*of SS descriptor*) indicates NOT PRESENT THEN
#NP(SS selector);
(*END checks SS validity*)
Load new SS descriptor into SS cache; (*valid SS*)
(*Check each of DS, ES, FS, GS segment selector(s) validity*)
IF selector index NOT within its descriptor table limits THEN
#TS(segment selector);
IF AR (*of new selector*) indicates non-data
OR non-readable code segment THEN
#TS(segment selector);
IF data OR nonconforming code THEN
IF DPL < CPL THEN #GP(segment selector);
IF DPL < RPL THEN #GP(segment selector);
ENDIF; (*data or nonconforming code*)
IF AR (*of segment descriptor*)indicates NOT PRESENT THEN
#NP(segment selector);
(*END checks DS, ES, FS, GS validity*)
Load new segment descriptor(s) into Sreg cache(s); (*valid
DS,ES,FS,GS¥)
IF PG (*bit 31 of CRO*) = 1 THEN (*paging enabled*)
IF current TSS CR3 = new TSS CR3 THEN
NOP;
ELSE
Flush page translation cache;
Load CR3 (*of new TSS*);
ENDIF; (*page directory base address in CR3*)

Chapter 6 Processor Instructions

Discussion Section

This section contains a further explanation of the instruction's operation.

Flags Affected Section
This section lists the flags that are affected by the instruction, as follows:

« Ifaflag is always cleared or always set by the instruction, the flag's value
(=0 or =1) is also listed.

« If aflag is undefined, its value may be changed by the instruction in an
indeterminate manner.

Most processor instructions assign values to flags in a uniform manner. See each
instruction's Operation section for any unconventional flag value assignments it
makes. If a flag is not mentioned in the Flags Affected section, the instruction
leaves it unchanged.

See also: Flags, Appendix A

Exceptions by Mode Section

This section lists the exceptions that can occur when the instruction executes. Each
processor operating mode can generate different exceptions:

Protected This subsection lists the exceptions that can occur when the
instruction executes in protected mode. If you write applications in a
protected mode environment, consult your operating system
documentation to determine what is done when processor exceptions
occur.

Real Address
This subsection lists the exceptions that can occur when the
instruction executes in real address mode. This mode has fewer
exception conditions than protected mode. Real address mode
exceptions do not pass error codes to interrupt procedures.

One possible exception for many instructions is Interrupt 13. The
processor generates an Interrupt 13 whenever a memory operand is
partly or wholly accessed from the effective address OFFFFH in a
segment. This exception occurs because the second byte of the word
is at location 10000H, not at O; thus, it exceeds the segment's
addressability limit.

ASM386 Assembly Language Reference Chapter 6 207

Virtual 8086
This subsection lists the exceptions that can occur when the
instruction executes in virtual 8086 mode. Virtual 8086 mode allows
the processor to simulate virtual 8086 machines. Virtual 8086 mode
exceptions are the same as those for Real 8086, with the following
additions:

* 1/Oinstructions cause a #GP(0) exception if the IOPL (I/O
privilege level) is less than 3 and an 1/O permission bit is set.

* Memory references can cause page faults, noted in the
reference pages as #PF(fault-code).

When a virtual 8086 mode exception occurs, the processor is set to
protected mode.

Processor exception names are formed from a cross-hatch character (#) followed b
2 letters and an optional error code in parentheses. Table 6-16 summarizes the
processor exceptions.

208 Chapter 6 Processor Instructions

Table 6-16. Processor Exceptions and Interrupts

Interrupt Instruction that May
Name Cause Number Generate this Interrupt
Divide error 0 DIV, IDIV
Debug exceptions 1 Any instruction
1-byte INT opcode 3 INT
2-byte interrupt 32-255 INT number
Interrupt on overflow 4 INTO
Array bounds check 5 BOUND
uD Invalid opcode 6 Any illegal instruction
#NM No math unit available 7 ESC, WAIT
#DF Double fault 8 Any instruction that can generate an
exception
Coprocessor segment 9 Any operand to an ESC instruction that
overrun wraps around the end of a segment
#TS Invalid task state segment 10 JMP, CALL, any
(TSS) interrupt, IRET
#NP Segment/gate not present 11 Any segment register modifier
#SS Stack fault 12 Any instruction that references memory
through the SS segment register
#GP General protection fault 13 Any memory reference instruction or
code fetch
#PF Page fault 14 Any memory reference instruction or
code fetch
#MF Math fault 16 ESC, WAIT
See also: Processor exceptions, Appendix A

ASM386 Assembly Language Reference

Chapter 6

209

How to Look Up an Instruction

The processor instructions are presented in mnemonic alphabetical order, with the
following exceptions:

« Floating-point instructionsg§SCinstructions for the a numeric coprocessor) are
at the end of Chapter 7.

« String handling instructions that have byte, word, and dword variants (with
suffixes B, W, and D, respectively) are grouped with the basic instruction
form.

The REPprefix variants for string instructions are also grouped. See the
following instructions for the variants that are listed on the right:

CMPS CMPSB, CMPSW, and CMPSD
INS INSB, INSW, and INSD

LODS LODSB, LODSW, and LODSD
MOVS MOVSB, MOVSW, and MOVSD
OUTS OUTSB, OUTSW, and OUTSD
SCAS SCASB, SCASW, and SCASD
STOS STOSB, STOSW, and STOSD
REP REPE, REPZ, REPNE, and REPNZ

e Some conversion instructions are grouped. See the following instructions for
the variant listed on the right:

CBW CWDE
CWD CDQ

* See theJcc andSETcc instruction tables for the many variant forms of these
conditional instructions. Se@OPfor theLOOPcond variants.

* See the following instructions for the variants listed on the right:

INT INTO
IRET IRETD
POPA POPAD
PUSHA PUSHAD
POPF POPFD
PUSHF PUSHFD
XLAT XLATB

210 Chapter 6 Processor Instructions

« Some load and store instructions are grouped. See the following instructions
for those listed on the right:

LGDT LIDT

LGDTW LGDTD, LIDTW, and LIDTD
SGDT SIDT

SGDTW SGDTD, SIDTW, and SIDTD
LDS LES, LFS, LGS and LSS

e The rotate instructions and some of the shift instructions are grouped. See the
following instructions for those listed on the right:

RCL RCR, ROL, and ROR
SAL SAR, SHL, and SHR

* SeeVERRfor theVERWnNSstruction.

The remainder of this chapter consists of the processor instruction reference pages
in mnemonic alphabetical order.

ASM386 Assembly Language Reference Chapter 6 211

Processor Instructions

AAA Ascll Adjust after Addition

Opcode Instruction Clocks Description
37 AAA 4 ASCII adjust AL after addition
Operation
IF ((AL AND OFH) > 9) OR (AF = 1) THEN
AL := AL + 6;
AH = AH + 1,
AF =1;
CF:=1;
ELSE
CF :=0;
AF :=0;
ENDIFELSE;

AL := AL AND OFH,;

Discussion

CodeAAAonly following anADDinstruction that leaves a byte result in the AL
register. The lower nibbles of ta@Doperands should be in the range 0 through 9
(BCDdigits) so thanAAadjusts AL to contain the correct decimal digit result. If
ADDproduced a decimal carrxAAincrements the AH register and sets the carry
(CF) and auxiliary carry (AF) flags to 1. ADbDproduced no decimal carigAA

clears the carry and auxiliary flags (0) and leaves AH unchanged. In either case,
AL is left with its upper nibble set to 0. To convert AL to an ASCII result, follow
the AAAinstruction withORAL, 30H.

Flags Affected

AF and CF as described in the Discussion section; OF, SF, ZF, and PF are
undefined.

Exceptions by Mode

Protected

None

212 Chapter 6 Processor Instructions

Real Address

None

Virtual 8086

None

ASM386 Assembly Language Reference Chapter 6 213

AAD

AAD Ascll Adjust AX before Division

Opcode Instruction Clocks Description
D5 0A AAD 19 ASCII adjust AX before division
Operation
AL:=AH * OAH + AL;
AH:=0;
Discussion

AADprepares 2 unpack&tDdigits (the least significant digit in AL, the most
significant digit in AH) for a division operation that will yield an unpacked result.
This is done by setting AL to AL + (10 * AH), and then setting AH to 0. AXis
then equal to the binary equivalent of the original unpacked 2-digit number.

Flags Affected
SF, ZF, and PF as described in Appendix A; OF, AF, and CF are undefined

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

214 Chapter 6 Processor Instructions

AAM

AAM Ascli Adjust AX after Multiply

Opcode Instruction Clocks Description
D4 0A AAM 17 ASCII adjust AX after multiply
Operation
AH := AL / OAH,;

AL := AL MOD 0AH;

Discussion

CodeAAMonly following aMULinstruction on two unpackeBCDdigits that leaves
the result in the AX register. AL contains tl&Lresult, because it is always less
than 100.AAMunpacks this result by dividing AL by 10, leaving the quotient (most
significant digit) in AH and the remainder (least significant digit) in AL.

Flags Affected
F, ZF, and PF as described in Appendix A; OF, AF, and CF are undefined

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

ASM386 Assembly Language Reference Chapter 6 215

AAS

AAS ascii Adjust AL after Subtraction

Opcode Instruction Clocks Description
3F AAS 4 ASCII adjust AL after subtraction
Operation
IF (AL AND OFH) > 9 OR AF =1 THEN
AL := AL - 6;
AH :=AH - 1;
AF =1;
CF:=1;
ELSE
CF :=0;
AF :=0;
ENDIFELSE;

AL := AL AND OFH;

Discussion

CodeAASonly following aSuBinstruction that leaves the byte result in the AL
register. The lower nibbles of tis&Boperands should be in the range 0 through 9
(BCDdigits) so thanASadjusts AL to contain the correct decimal digit result. If
SuBproduced a decimal carrxASdecrements the AH register and sets the carry
(CF) and auxiliary carry (AF) flags to 1. $tuBproduced no decimal carmAS

clears the carry and auxiliary carry flags (0) and leaves AH unchanged. In either
case, AL is left with its upper nibble set to 0. To convert AL to an ASCII result,
follow the AASwith ORAL, 30H.

Flags Affected

AF and CF as described in the Discussion section; OF, SF, ZF, and PF are
undefined

Exceptions by Mode

Protected

None

216 Chapter 6 Processor Instructions

Real Address

None

Virtual 8086

None

ASM386 Assembly Language Reference Chapter 6 217

ADC

ADC Add with Carry

Opcode Instruction Clocks Description
14ib ADC AL,imm8 2 Add with carry immediate byte to AL
15iw ADC AX,imm16 2 Add with carry immediate word to AX
15id ADC EAX,imm32 2 Add with carry immediate dword to EAX
80 /2ib ADC r/m8,imm8 217 Add with carry immediate byte tém byte
81 /2iw ADC r/ml16imml6e 2/7 Add with carry immediate word tém
word
81 /2id ADC r/m32imm32 2/7 Add with carry immediate dword tém
dword
83 /2ib ADC r/m16imm8 217 Add with carry sign-extended immediate
byte tor/m word
83 /2ib ADC r/m32imm8 217 Add with carry sign-extended immediate
byte intor/m dword
10/r ADC r/m8,r8 217 Add with carry byte register tém byte
11/r ADC r/m16r16 217 Add with carry word register t@m word
11/r ADC r/m32r32 217 Add with carry dword register tém dword
12/r ADC r8,r/m8 2/6 Add with carryr/m byte to byte register
13/r ADC r16,r/m16 2/6 Add with carryr/m word to word register
13/r ADC r32,r/m32 2/6 Add with CFr/m dword to dword register
Operation

IF (Src is byte) AND (Dest is word or dword) THEN
Dest := Dest + SignExtend(Src) + CF;

ELSE
Dest := Dest + Src + CF;

Discussion

ADCperforms integer addition of the two operands, Dest and Src, and of the carry
flag, CF. ADCassigns the result to the first operand (Dest), and sets the flags
accordingly. ADCis usually executed as part of a multi-byte or multi-word addition
operation. When an immediate byte value is added to a word or dword operand,
the immediate value is first sign-extended to the size of the operand.

218 Chapter 6 Processor Instructions

ADC

Flags Affected
OF, SF, ZF, AF, CF, and PF as described in Appendix A

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) if page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 219

ADD

ADD (Integer) Add

Opcode Instruction Clocks Description

04ib ADD AL,imm8 2 Add immediate byte to AL

05iw ADD AX,imm16 2 Add immediate word to AX

05id ADD EAX,imm32 2 Add immediate dword to EAX

80 /0ib ADD r/m8,imm8 217 Add immediate byte tdm byte

81 /0iw ADD r/m16,imml16 2/7 Add immediate word todm word

81/0id ADD r/m32,imm32 2/7 Add immediate dword tdm dword

83/0ib ADD r/m16,imm8 2/7 Add sign-extended immediate byterim
word

83/0ib ADD r/m32,imm8 2/7 Add sign-extended immediate byter/m
dword

00/r ADD r/m8,r8 217 Add byte register tom byte

0l/r ADD r/m16,r16 217 Add word register tom word

0l/r ADD r/m32,r32 217 Add dword register tom dword

02/r ADD r8,r/m8 2/6 Addr/m byte to byte register

03/r ADD r16,r/m16 2/6 Addr/m word to word register

03/r ADD r32,r/m32 217 Addr/m dword to dword register

Operation

IF (Src is byte) AND (Dest is word or dword) THEN
Dest := Dest + SignExtend(Src);

ELSE
Dest := Dest + Src;

Discussion

ADDperforms integer addition of the two operand®Dassigns the result to the
first operand (Dest) and sets the flags accordingly. When an immediate byte is
added to a word or dword operand, the immediate value is sign-extended to the siz
of the operand.

Flags Affected

OF, SF, ZF, AF, CF, and PF as described in Appendix A

220 Chapter 6 Processor Instructions

ADD

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 221

AND

AND Logical AND

Opcode Instruction Clocks Description
24ib AND AL,imm8 2 AND immediate byte to AL
25iw AND AX,imm16 2 AND immediate word to AX
25id AND EAX,imm32 2 AND immediate dword to EAX
80 /4ib AND r/m8,imm8 217 AND immediate byte tdm byte
81 /4iw AND r/ml16imml6 2/7 AND immediate word to/m word
81/4id AND r/m32imm32 2/7 AND immediate dword tem dword
83 /4ib AND r/m16imm8 217 AND sign-extended byte tém word
83 /4ib AND r/m32imm8 217 AND sign-extended byte wm dword
20/r AND r/m8,r8 217 AND byte register to/m byte
21/r AND r/m16r16 217 AND word register to/m word
21/r AND r/m32r32 217 AND dword register to/m dword
22]/r AND r8,r/m8 2/6 AND r/m byte to byte register
23/r AND r16,r/m16 2/6 AND r/m word to word register
23/r AND r32,r/m32 2/6 AND r/m dword to dword register
Operation
Dest := Dest AND Src;
CF :=0;
OF :=0;
Discussion

If corresponding bits of the operands are bothNIDsets the corresponding result
bit to 1. OtherwiseANDsets the corresponding result bit to O.

Flags Affected
CF =0, OF = 0; PF, SF, and ZF as described in Appendix A

222 Chapter 6 Processor Instructions

AND

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 223

ARPL

ARPL Adjust RPL Field of Selector

Opcode Instruction Clocks Description

63/r ARPL r/m16r16 pm=20/21 Adjust RPL of/m16to not less
than RPL ofr16

Operation
IF RPL (*bits 0,1*) of Dest < RPL (*bits 0,1*) of Src THEN
ZF =1;
RPL (*bits 0,1*) of Dest := RPL (*bits 0,1*) of Src;
ELSE
ZF :=0;
Discussion

TheARPLinstruction has 2 operands:

1. The first operand is a 16-bit memory variable or word register that contains the
value of a selector.

2. The second operand is a word register that also contains a selector.

If the RPL field (requesting privilege level -- lower two bits) of the first operand is
less than th&PL field of the second operandRPLsets ZF to 1 and increases the
RPL field of the first operand to match that of the second operand. Otherwise,
ARPLclears ZF (0) and makes no change in the first operand.

ARPLappears only in operating system software. It is used to guarantee that a
selector parameter to a subroutine does not request more privilege than the caller i
allowed. The second operandadtPLis normally a register that contains the CS
selector value of the caller.

Flags Affected

ZF as described in the Discussion section
Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

224 Chapter 6 Processor Instructions

ARPL

Real Address
Interrupt 6

Virtual 8086
Interrupt 6; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 225

BOUND

BOUND check Array Index Against Bounds
Opcode Instruction Clocks Description

62/r BOUND r16, 107 Interrupt 5 ifr16 is not within boundsn16&16
62/r BOUND r32, 107 Interrupt 5 ifr32 is not within boundsn32&32

T Does not include clocks for Interrupt 5.

Operation

IF (LeftSrc < [RightSrc] (* lower limit *)
OR LeftSrc > [RightSrc + OperandSize/8]) (* upper limit *)
THEN Interrupt 5;

Discussion

BOUNIhecks that a signed array index is within limits. The register operand
contains the index. Contiguous dword or word operands specify the lower and
upper limits. If the index is not within bounds, an Interrupt 5 occurs; the return
EIP points to theBOUNDNstruction. The second operand must be a memory
operand, not a register.

The bounds limit data structure can be placed in memory just before the array
itself. This makes the limits addressable via a constant offset from the beginning o
the array.

Flags Affected

None
Exceptions by Mode

Protected

Interrupt 5 if the bounds test fails; #GP(0) for an illegal memory operand effective
address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in th
SS segment; #PF(fault-code) for a page fault; #UD if the second operand is a
ModRMbyte representing a register

226 Chapter 6 Processor Instructions

BOUND

Real Address

Interrupt 5 if the bounds test fails; Interrupt 13 if any part of the operand would lie
outside the effective address space from 0 to OFFFFH; Interrupt 6 if the second
operand is a register

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 227

BSF

BSF Bit Scan Forward

Opcode Instruction Clocks Description
OF BC BSFH16,r/m16 10+t Bit scan forward om/m word
OF BC BSFH32,r/m32 10+t Bit scan forward om/m dword

T nis the number of leading zero bits.

Operation
IF r/m =0THEN
ZF=1;
register := UNDEFINED;
ELSE
temp :=0;
ZF :=0;

WHILE Bit[r/m,temp] = 0 DO
temp :=temp + 1;
ENDWHILE;
register := temp;
Discussion

BSF scans the bits in the second operand from right to left starting at BEFO.
places the index of the first set bit that it finds into the first operand and clears ZF.
If no bit is set in the second operaB&F sets ZF, and the first operand is
undefined.
Flags Affected

ZF as described in the Discussion section
Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for
page fault

228 Chapter 6 Processor Instructions

BSF

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 229

BSR

BSR Bit Scan Reverse

Opcode Instruction Clocks
OFBD BSRr16,/mi6 10+nt
OFBD BSRr32r/m32 10+t

T nis the number of leading zero bits.

Operation
IF r/m =0 THEN
ZF=1;
register := UNDEFINED;
ELSE
temp := OperandSize - 1;
ZF :=0;

WHILE Bit[r/m,temp] = 0 DO
temp :=temp - 1,

ENDWHILE;

register ;= temp;

Discussion

Description

Bit scan reverse orm word
Bit scan reverse omm dword

BSRscans the bits in the second operand from left to right starting at the most
significant bit (31 or 15)BSRplaces the index of the first bit that it finds set into
the first operand and clears ZF. If no bit is 88Rsets ZF, and the first operand is

undefined.

Flags Affected

ZF as described in the Discussion section

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for

page fault

230 Chapter 6

Processor Instructions

BSR

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 231

BSWAP

BSWAP Byte Swap (not available on Intel386 or 376 processors)

Opcode Instruction Clocks Description

OF C8 +rd BSWAPr32 — Swapsr32 high byte for low byte, middle-
high byte for middle-low byte

Operation

temp:= r32;

r32 [0..7] := temp[24..31];
r32 [8..15] := temp[16..23];
r32 [16..23] := temp[8..15];
r32 [24..31] :=temp[0..7];

Discussion

BSWARwaps the high bytes and low bytes of a 32-bit regi®8wWARakes a
single operand as its source and destination.

Flags Affected

None
Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

232 Chapter 6 Processor Instructions

BT

BT Bit Test

Opcode Instruction Clocks Description

OF A3/r BT r/m16ri6 3/12 Save bit in carry flag
OF A3/r BT r/m32r32 3/12 Save bit in carry flag
OF BA /4ib BT r16,imm8 3 Save bit in carry flag
OF BA /4ib BT r32,imm8 3 Save bit in carry flag
OF BA /4ib BT mimml6 6 Save bit in carry flag
OF BA /4ib BT mimm32 6 Save bit in carry flag
OF BA /4ib BTm 6 Save bit in carry flag
Operation

CF := Bit[LeftSrc,RightSrc];

Discussion
BT copies the value of a selected bit into the carry flag. Bllheperands specify:

e A bit string (register first operand) or bit string base address (memory first
operand)

« A bit offset (second operand) to the selected bit

If the first operand is a register, the bit offset of the selected bit can be specified as
an immediate byte constant as well as a value in a general register. The bit offset is
taken modulo the operand size, so the range is 0..31 (or 0..15 for a 16-bit operand).

If the bit string is in memory, the first operand is its base address, and the second
operand is an offset relative to this base address.USBattribute of the first
operand determines register size and offset limits for the second operand.

If the first operand is in BSE32 segment, the second operand must be either a
dword register, containing a value, or an immediate constant value within the
range:

-2 gigabits to (+2 gigabits - 1).
For non-combinabl&dSE32 segments, assembly time address calculation requires
the effective address of the bit string and bit offset to satisfy:

0 < = ((effective address * 8) + (bit offset)) < 32 gigabits.

ASM386 Assembly Language Reference Chapter 6 233

BT

If the first operand is in BSE16 segment, the second operand must be either a
word register, containing a value, or an immediate constant value within the range:

-32 Kbits to (+32 Kbits - 1).

For non-combinabl&dSE16 segments, assembly time address calculation requires
the effective address of the bit string and bit offset to satisfy:

0 < = ((effective address * 8) + (bit offset)) < 512 Kbits.

If the bit string is in memory, the assembler will combine the bit offset with the
effective address to generate a dword aligned 32-bit address, or a word aligned 16-
bit address, and it will adjust the bit offset accordingly.

When accessing a bit in memory, the processor may access 4 or 2 bytes starting
from the memory address:

» Effective Address + (4 * (BitOffset DIV 32)) for a 32-bit operand size
» Effective Address + (2 * (BitOffset DIV 16)) for a 16-bit operand size

It may do this even when only a single byte needs to be accessed in order to reach
the given bit. Therefore, avoid referencing areas of memory close to address spac
holes. In particular, avoid references to memory-mapped I/O registers. Instead,
use theviovinstructions to load from these addresses. Then, use a register form of
BT to manipulate the data.

TheBT mform (without offset) assumes an operand of BT, but the
assembler does not check the type. For example,

BT BAZ.Y
accesses a bit wheBazZ andY were defined as follows:

: structure definition
FOO STRUC

X DBIT 11 DUP (110B)
Y DBIT 1B

Z DBIT 1B

FOO ENDS

BAZ FOO <>

Flags Affected

234

CF as described in the Discussion section; all other flags are undefined

Chapter 6 Processor Instructions

BT

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 235

BTC

BTC BitTestand Complement

Opcode Instruction Clocks Description

OF BB/r BTCr/ml16rl6 6/13 Save bit in carry flag; complement bit
OF BB/r BTC r/m32r32 6/13 Save bit in carry flag; complement bit
OF BA /7ib BTCr16,imm8 6 Save bit in carry flag; complement bit

OF BA /7ib BTCr32,imm8 Save bit in carry flag; complement bit
OF BA /7ib BTC mimm16
OF BA /7ib BTC m,imm32

OF BA/7ib BTCm

Save bit in carry flag; complement bit
Save bit in carry flag; complement bit

0 0 00 O

Save bit in carry flag; complement bit

Operation

CF := Bit[LeftSrc, RightSrc];
Bit[LeftSrc,RightSrc] := NOT Bit[LeftSrc,RightSrc];

Discussion

BTCcopies the value of a selected bit into the carry flag and then complements the
bit. TheBTCoperands specify:

* A bit string (register first operand) or bit string base address (memory first
operand)

« A bit offset (second operand) to the selected bit

If the first operand is a register, the bit offset of the selected bit can be specified as
an immediate byte constant as well as a value in a general register. The bit offset |
taken modulo the operand size, so the range is 0..31 (or 0..15 for a 16-bit operand)

If the bit string is in memory, the first operand is its base address, and the second
operand is an offset relative to this base address.USBattribute of the first
operand determines register size and offset limits for the second operand.

If the first operand is in BSE32 segment, the second operand must be either a
dword register, containing a value, or an immediate constant value within the
range:

-2 gigabits to (+2 gigabits - 1).

For non-combinabl&dSE32 segments, assembly time address calculation requires
the effective address of the bit string and bit offset to satisfy:

0 < = ((effective address * 8) + (bit offset)) < 32 gigabits.

236 Chapter 6 Processor Instructions

BTC

If the first operand is in BSE16 segment, the second operand must be either a
word register, containing a value, or an immediate constant value within the range:

-32 Kbits to (+32 Kbits - 1).

For non-combinabl&dSE16 segments, assembly time address calculation requires
the effective address of the bit string and bit offset to satisfy:

0 < = ((effective address * 8) + (bit offset)) < 512 Kbits.

If the bit string is in memory, the assembler will combine the bit offset with the
effective address to generate a dword aligned 32-bit address, or a word aligned 16-
bit address, and it will adjust the bit offset accordingly.

When accessing a bit in memory, the processor may access 4 or 2 bytes starting
from the memory address:

» Effective Address + (4 * (BitOffset DIV 32)) for a 32-bit operand size
» Effective Address + (2 * (BitOffset DIV 16)) for a 16-bit operand size

It may do this even when only a single byte needs to be accessed in order to reach
the given bit. Therefore, avoid referencing areas of memory close to address space
holes. In particular, avoid references to memory-mapped /O registers. Instead,
use theviOvinstructions to load from (or store to) these addresses. Use a register
form of BTCto manipulate the data.

TheBTC mform (without offset) assumes an operand of BT, but the
assembler does not check the type. For example,

BTC BAZ.Y
accesses a bit wheBazZ andY were defined as follows:

: structure definition
FOO STRUC

X DBIT 11 DUP (110B)
Y DBIT 1B

Z DBIT 1B

FOO ENDS

BAZ FOO <>

Flags Affected

CF as described in the Discussion section; the other flags are undefined

ASM386 Assembly Language Reference Chapter 6 237

BTC

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

238 Chapter 6 Processor Instructions

BTR

BTR Bit Test and Reset

Opcode Instruction Clocks Description

OF B3/r BTRr/m16rl6 6/13 Save bit in carry flag; clear bit
OF B3/r BTR r/m32r32 6/13 Save bit in carry flag; clear bit
OF BA/6ib BTRr16,imm8 6 Save bit in carry flag; clear bit
OF BA/6ib BTRr32,imm8 6 Save bit in carry flag; clear bit
OF BA/6ib BTR m,imm16 13 Save bit in carry flag; clear bit
OF BA/6ib BTR m,imm32 13 Save bit in carry flag; clear bit
OF BA/6ib BTRm 13 Save bit in carry flag; clear bit
Operation

CF := Bit[LeftSrc,RightSrc];
Bit[LeftSrc,RightSrc] := 0;
Discussion

BTRcopies the value of a selected bit into the carry flag and then clears the bit.
TheBTRoperands specify:

e A bit string (register first operand) or bit string base address (memory first
operand)

« A bit offset (second operand) to the selected bit

If the first operand is a register, the bit offset of the selected bit can be specified as
an immediate byte constant as well as a value in a general register. The bit offset is
taken modulo the operand size, so the range is 0..31 (or 0..15 for a 16-bit operand).

If the bit string is in memory, the first operand is its base address, and the second
operand is an offset relative to this base address.USBattribute of the first
operand determines register size and offset limits for the second operand.

If the first operand is in BSE32 segment, the second operand must be either a
dword register, containing a value, or an immediate constant value within the
range:

-2 gigabits to (+2 gigabits - 1).

ASM386 Assembly Language Reference Chapter 6 239

BTR

For non-combinable&#SE32 segments, assembly time address calculation requires
the effective address of the bit string and bit offset to satisfy:

0 < = ((effective address * 8) + (bit offset)) < 32 gigabits.

If the first operand is in BSE16 segment, the second operand must be either a
word register, containing a value, or an immediate constant value within the range:

-32 Kbits to (+32 Kbits - 1).

For non-combinabl&dSE16 segments, assembly time address calculation requires
the effective address of the bit string and bit offset to satisfy:

0 < = ((effective address * 8) + (bit offset)) < 512 Kbits.

If the bit string is in memory, the assembler will combine the bit offset with the
effective address to generate a dword aligned 32-bit address, or a word aligned
16-bit address, and it will adjust the bit offset accordingly.

When accessing a bit in memory, the processor may access 4 or 2 bytes starting
from the memory address:

» Effective Address + (4 * (BitOffset DIV 32)) for a 32-bit operand size
» Effective Address + (2 * (BitOffset DIV 16)) for a 16-bit operand size

It may do this even when only a single byte needs to be accessed in order to reach
the given bit. Therefore, avoid referencing areas of memory close to address spac
holes. In particular, avoid references to memory-mapped /O registers. Instead,
use theviOvinstructions to load from (or store to) these addresses. Use a register
form of BTRto manipulate the data.

TheBTRmform (without offset) assumes an operand of BT, but the
assembler does not check the type. For example,

BTR BAZ.Y
accesses a bit wheBazZ andY were defined as follows:

: structure definition
FOO STRUC

X DBIT 11 DUP (110B)
Y DBIT 1B

Z DBIT 1B

FOO ENDS

BAZ FOO <>

240 Chapter 6 Processor Instructions

BTR

Flags Affected

CF as described in the Discussion section; the other flags are undefined
Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 241

BTS

BTS Bit Test and Set

Opcode Instruction Clocks Description

OF AB/r BTSr/ml1l6rl6 6/13 Save bit in carry flag; set bit
OF AB/r BTSr/m32r32 6/13 Save bit in carry flag; set bit
OF BA/5ib BTSrl6,mm8 6 Save bit in carry flag; set bit

OF BA/5ib BTSr32,imm8
OF BA/5ib BTSmimm1l6
OF BA/5ib BTSm,imm32
OF BA/5ib BTSm

Save bit in carry flag; set bit
Save bit in carry flag; set bit
Save bit in carry flag; set bit

0 0O 00 O

Save bit in carry flag; set bit

Operation

CF := Bit[LeftSrc,RightSrc];
Bit[LeftSrc,RightSrc] := 1;

Discussion

242

BTS copies the value of a selected bit into the carry flag and then sets the bit. The
BTS operands specify:

e A bit string (register first operand) or bit string base address (memory first
operand)

« A bit offset (second operand) to the selected bit

If the first operand is a register, the bit offset of the selected bit can be specified as
an immediate byte constant as well as a value in a general register. The bit offset |
taken modulo the operand size, so the range is 0..31 (or 0..15 for a 16-bit operand)

If the bit string is in memory, the first operand is its base address, and the second
operand is an offset relative to this base address.USBattribute of the first
operand determines register size and offset limits for the second operand.

If the first operand is in BSE32 segment, the second operand must be either a
dword register, containing a value, or an immediate constant value within the
range:

-2 gigabits to (+2 gigabits - 1).

Chapter 6 Processor Instructions

BTS

For non-combinable&#SE32 segments, assembly time address calculation requires
the effective address of the bit string and bit offset to satisfy:

0 < = ((effective address * 8) + (bit offset)) < 32 gigabits.

If the first operand is in BSE16 segment, the second operand must be either a
word register, containing a value, or an immediate constant value within the range:

-32 Kbits to (+32 Kbits - 1).

For non-combinabl&dSE16 segments, assembly time address calculation requires
the effective address of the bit string and bit offset to satisfy:

0 < = ((effective address * 8) + (bit offset)) < 512 Kbits.

If the bit string is in memory, the assembler will combine the bit offset with the
effective address to generate a dword aligned 32-bit address, or a word aligned
16-bit address, and it will adjust the bit offset accordingly.

When accessing a bit in memory, the processor may access 4 or 2 bytes starting
from the memory address:

» Effective Address + (4 * (BitOffset DIV 32)) for a 32-bit operand size
» Effective Address + (2 * (BitOffset DIV 16)) for a 16-bit operand size

It may do this even when only a single byte needs to be accessed in order to reach
the given bit. Therefore, avoid referencing areas of memory close to address space
holes. In particular, avoid references to memory-mapped 1/O registers. Instead,
use theviOvinstructions to load from (or store to) these addresses. Use a register
form of BTS to manipulate the data.

TheBTS mform (without offset) assumes an operand of BT, but the
assembler does not check the type. For example,

BTS BAZ.Y
accesses a bit wheBazZ andY were defined as follows:

: structure definition
FOO STRUC

X DBIT 11 DUP (110B)
Y DBIT 1B

Z DBIT 1B

FOO ENDS

BAZ FOO <>

ASM386 Assembly Language Reference Chapter 6 243

BTS

Flags Affected

CF as described in the Discussion section; the other flags are undefined
Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, or GS segments; #SS(0) for an illegal
address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
form O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

244 Chapter 6 Processor Instructions

CALL

CALL call Procedure

Opcode
E8cw

FF /2
9A cd

9A cd
9A cd

9A cd

9A cd
FF /3

FF /3
FF /3

FF /3

FF /3
E8cd

FF /2
9A cp

9A cp
9A cp

9A cp

9A cp

Instruction
CALL rell6

CALLr/m16
CALL ptrl6:16

CALL ptrl6:16
CALL ptrl6:16

CALL ptrl6:16

CALL ptrl6:16
CALLmM16:16

CALL m16:16
CALL m16:16

CALLmM16:16

CALL mM16:16
CALL rel32

CALLr/m32
CALL ptrl16:32

CALL ptrl16:32
CALL ptrl16:32

CALL ptr32:32

CALL ptrl16:32

Clocks
7+m

7+m/10+m
17+m,pm=34+4m

pnE52+m
pnF86-+m

pn¥94+4x+m

prE217-309
22+m,pm=38+m

pr56+m
prF90+m

prF98+4x4m

pre222-314
7+m

7+m/10+m
17+m,pm=34+4m

pnE52+4m
pn=86+m

pnFE94+4x+m

prF217-309

ASM386 Assembly Language Reference

Description

Call near, displacement relative to
next instruction

Call near, register indirect/memory
indirect

Call intersegment to full pointer
given

Call gate, same privilege

Call gate, more privilege, no
parameters

Call gate, more privilege, x
parameters

Call to task

Call intersegment, addressrah
dword

Call gate, same privilege

Call gate, more privilege, no
parameters

Call gate, more privilege, x
parameters

Call to task

Call near, displacement relative to
next instruction

Call near, indirect

Call intersegment, to full pointer
given

Call gate, same privilege

Call gate, more privilege, no
parameters

Call gate, more privilege, x
parameters

Call to task

Chapter 6

245

CALL

FF /3 CALL m16:32 22+m,pm=38+m Call intersegment, addressrah

dword
FF /3 CALL m16:32 prE56+m Call gate, same privilege
FF /3 CALL m16:32 pre90+m Call gate, more privilege, no
parameters

FF /3 CALL m16:32 pre98+4x+4m Call gate, more privilege, x

parameters
FF /3 CALL m16:32 pn:c222-312f Call to task

T See also: 80386 Programmer's Reference Manual

Operation
IF destination address > its segment limit THEN #GP(0);
IF rel16 or rel32 type call THEN (*near relative call*)
IF OperandSize = 16 THEN
Push(IP);
EIP := (EIP + rel16) AND 0000FFFFH;
ELSE (*OperandSize = 32*)
Push(EIP):
EIP := EIP + rel32;
ENNDIF; (*rel16 or rel32 type call*)
IF r/m16 or r/m32 type call THEN (*near absolute call*)
IF OperandSize = 16 THEN
Push(IP);
EIP := [r/m16] AND 0000FFFFH;
ELSE (*OperandSize = 32*)
Push(EIP);
EIP := [r/m32];
ENDIF; (*r/m16 or r/m32 type call*)
IF(PE=0O0OR (PE=1ANDVM=1))
(*mode = real address or virtual 8086*)
AND instruction = FarCall THEN
(*operand is m16:16/32 or ptr16:16/32%)
IF OperandSize = 16 THEN
Push(CS);
Push(IP); (*next instruction address: 16-bits*)
ELSE (*OperandSize = 32*)
Push(CS);
Push(EIP);

246 Chapter 6

Processor Instructions

CALL

IF operand is m16:16 or m16:32 THEN (*indirect far call*)
IF OperandSize = 16 THEN
CS:IP := [m16:16];
EIP := EIP AND 0000FFFFH; (*clear upper bits*)
ELSE
CS:EIP := ptr16:32;
ENDIF; (*ptrl6:16 or ptrl6:32 type call*)
ENDIF; (*mode = real address or virtual 8086*)
IF (PE = 1 AND VM = 0) (*mode = protected*)
AND instruction = FarCall THEN
IF new CS selector is null THEN #GP(0);
IF new CS selector is NOT within its descriptor table limits
THEN #GP(new CS selector);
(*Examine AR of selected descriptor for various
legal values; depending on value: *)
GOTO CONFORMING_CODE_SEGMENT;
GOTO NONCONFORMING_CODE_SEGMENT;
GOTO CALL_GATE;
GOTO TASK_GATE;
GOTO TASK_STATE_SEGMENT;
ELSE #GP(code segment selector); (*AR illegal*)

CONFORMING_CODE_SEGMENT:
IF DPL > CPL THEN #GP(code segment selector);
IF segment NOT PRESENT THEN
#NP (code segment selector);
Stack must be big enough for return address ELSE
#SS(0);
IF target_offset NOT in code segment limit THEN #GP(0);
Load code segment descriptor into CS cache;
Load CS with new code segment selector;
Load EIP with ZeroExtend(new offset);
IF OperandSize = 16 THEN
EIP : = EIP AND 0000FFFFH;

NONCONFORMING_CODE_SEGMENT:
IF RPL > CPL THEN #GP(code segment selector);
IF DPL NOT = CPL then #GP(code segment selector);
IF segment NOT PRESENT THEN
#NP(code segment selector);
Stack must be big enough for return address ELSE#SS(0);
IF target_offset NOT in code segment limit THEN #GP(0);
Load code segment descriptor into CS cache;

ASM386 Assembly Language Reference Chapter 6 247

CALL

248

Load CS with new code segment selector;
Set RPL of CS to CPL;
Load EIP with ZeroExtend(new offset);
IF OperandSize = 16 THEN
EIP := EIP AND 0000FFFFH;

CALL_GATE:

IF call gate DPL < CPL THEN #GP(call gate selector);

IF call gate DPL < RPL THEN #GP(call gate selector);

IF call gate NOT PRESENT THEN #NP(call gate selector);

(*Examine code segment selector in call gate descriptor: *)

IF selector is null THEN #GP(0);

IF selector is NOT within its descriptor table limits THEN
#GP (code segment selector);

IF AR of selected descriptor indicates non-code segment THEN
#GP(code segment selector);

IF DPL of selected descriptor > CPL THEN
#GP(code segment selector);

IF non-conforming code segment AND DPL < CPL THEN
GOTO MORE_PRIVILEGE;

ELSE
GOTO SAME_PRIVILEGE;

MORE_PRIVILEGE:
Get new SS selector for new privilege level from TSS;
(*Check selector and descriptor for new SS: *)
IF selector is null THEN #TS(0);
IF selector index NOT within descriptor table limits THEN
#TS(SS selector);
IF selector's RPL NOT = DPL of code segment THEN
#TS(SS selector);
IF stack segment DPL NOT = DPL of code segment THEN
#TS(SS selector);
Descriptor must indicate writable data segment ELSE
#TS(SS selector);
IF segment NOT PRESENT THEN #SS(SS selector);
IF OperandSize = 32 THEN
New stack must have room for parameters plus 16 bytes
ELSE #SS(0);
IF target_offset NOT in code segment limit THEN #GP(0);
Load new SS:ESP value from TSS;
Load new CS:EIP value from gate;

Chapter 6 Processor Instructions

CALL

ELSE (*OperandSize = 16*)

New stack must have room for parameters plus 8 bytes
ELSE #SS(0);

IF target_offset NOT in code segment limit THEN #GP(0);
Load new SS:SP from TSS;
Load new CS:IP value from gate;

ENDIFELSE;

Load CS descriptor;

Load SS descriptor;

Push long pointer of old stack onto new stack;

Get word count from call gate, mask to 5-bits;

Copy parameters from old stack onto new stack;

Push return address onto new stack;

Set CPL to stack segment DPL;

Set RPL of CS to CPL;

(*END CALL_GATE to MORE_PRIVILEGE*)

SAME_PRIVILEGE:

IF OperandSize = 32 THEN
Stack must have room for 6-byte return address

(*padded to 8 bytes*) ELSE #SS(0);

IF target_offset NOT in code segment limit THEN #GP(0);
Load CS:EIP from gate;

ELSE (*OperandSize = 16*)
Stack must have room for 4-byte return address

ELSE #SS(0);

IF target_offset NOT in code segment limit THEN #GP(0);
Load CS:IP from gate;

ENDIFELSE;

Push return address onto stack;

Load code segment descriptor into CS cache;

Set RPL of CS to CPL;

(*END CALL_GATE®)

TASK_GATE:

IF task gate DPL < CPL THEN #TS(gate selector);

IF task gate DPL < RPL THEN #TS(gate selector);

IF task gate NOT PRESENT THEN #NP(gate selector);

(*Examine selector to TSS, given in task gate descriptor: *)
Must specify global in local/global bit ELSE #TS(TSS selector);
Index must be within GDT limits ELSE #TS(TSS selector);

(*END checks selector in task gate descriptor*)

ASM386 Assembly Language Reference Chapter 6

249

CALL

IF new TSS stack selector(s) THEN

(*Check new TSS privileged stack selectors: *)
IF stack selector NOT PRESENT THEN #SS(bad stack selector);
IF stack selector invalid THEN #TS(bad stack selector);

(*END checks new TSS stack selector(s)*)

SwitchTasks (*with nesting*) to TSS;

IF (E)IP NOT in code segment limit THEN #TS(0);

TASK_STATE_SEGMENT:
IF TSS DPL < CPL THEN #TS(TSS selector);
IF TSS DPL < RPL THEN #TS(TSS selector);
SwitchTasks (*with nesting*) to TSS;
IF (E)IP NOT in code segment limit THEN #TS(0);

Discussion

250

TheCALL instruction causes a procedure (designated by the operand) to be
executed. After &ETinstruction is executed within the procedure, the caller's
execution resumes at the instruction following @ae. L.

The assembler automatically generates the correct fo@aldf according to the
procedure operand's type. A procedure name is a label representing the destinatio
of theCALL

Near calls are those withni16 , /m32 , rel16 , orrel32 operands. Near calls do
not need to change or save the segment register (CS) valu€Albhes/32 and

CALL rel16 forms determine the destination by adding a signed offset to the next
instruction's address:

« Therel32 form is used when the operand size attribute is 32-bits. The result
is stored in the 32-bit EIP register.

« Therel16 form is used when theALL's operand size attribute is 16-bits. The
result is also stored in EIP, but its upper bits are cleared so that the offset value
does not exceed 16-bits.

CALL r/m16 andCALL r/m32 specify a register or memory location from which
the absolute segment offset for the procedure is fetched.

In real address or virtual 8086 mode, the long pointer provides 16-bits for the CS
register and 32- or 16-bits for the

Far calls are those withtr16:32 , ptr16:16 , m16:32, andm16:16 operands.
CALL ptr16:32 uses a 6-byte operand as a long pointer to the procethire;
ptr16:16 uses a 4-byte operan@ALL m16:32 andCALL m16:16 fetch the long
pointer from the specified memory location (indirection).

Chapter 6 Processor Instructions

CALL

EIP register (depending on the operand size attribute). These fo@nslopush
both CS and EIP or IP as a return address.

In protected modeSALL ptr16:32 andCALL ptr16:16 consult the access rights
(AR) in the descriptor indexed by the selector part of the long pointer. Depending
on the value of ARCALL will perform one of the following control transfers:

e Afar call to the same protection level
e Aninter-protection level far call
* Atask switch
Any far call from a 32-bit code segment to a 16-bit code segment should be made
from the first 64K bytes of the 32-bit code segmeTiLL's operand size attribute
is set to 16, so it can save only 16-bits as a return address offset.
Flags Affected

All flags are affected if a task switch occurs; otherwise, no flags are affected
Exceptions by Mode

Protected

For near indirect calls: #GP(0) for an illegal memory operand effective address in
the CS, DS, ES, FS, or GS segments; #SS(0) if pushing the return address exceeds
the bounds of the stack segment; #GP(0) if the indirect offset obtained is beyond
the code segment limits; #PF(fault-code) for a page fault

For near direct calls: #GP(0) if procedure location is beyond the code segment
limits; #SS(0) if pushing the return address exceeds the bounds of the stack
segment; #PF(fault-code) for a page fault

For far calls: #GP, #NP, #SS, and #TS, as indicated in the Operation section

Real Address

Interrupt 13 if any part of the operand would be outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault code) for a page fault

ASM386 Assembly Language Reference Chapter 6 251

CBW/CWDE

CBW/CWDE convert Byte to Word/Convert Word to Dword

Opcode Instruction Clocks Description

98 CBW 3 AX := sign-extend of AL
98 CWDE 3 EAX := sign-extend of AX
Operation

IF OperandSize = 16 (*instruction = CBW*) THEN
AX := SignExtend(AL);

ELSE (*OperandSize = 32, instruction = CWDE¥)
EAX := SignExtend(AX);

Discussion

CBWeonverts the signed byte in AL to a signed word in AX by extending the most
significant bit of AL (the sign bit) into all of the bits of AHCWDEonverts the

signed word in AX to a dword in EAX. Note thatDHs not a variant o€EwD
Cwhuses DX:AX, rather than EAX, as a destination.

Flags Affected

None
Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

252 Chapter 6 Processor Instructions

CLC

CLC clear Carry Flag

Opcode Instruction Clocks
F8 CLC 2
Operation

CF :=0;
Discussion

CLCclears the carry flag. It does not affect other flags or registers.

Flags Affected
CF=0

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

ASM386 Assembly Language Reference

Description
Clear carry flag

Chapter 6

253

CLD

CLD clear Direction Flag

Opcode Instruction Clocks Description
FC CLD 2 Clear direction flag
Operation
DF :=0;
Discussion

CLDclears the direction flag. Aft&rLDexecutes, string operations will increment
the index registers (E)SI and/or (E)DELDdoes not affect other flags or registers.

Flags Affected
DF=0

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

254 Chapter 6 Processor Instructions

CLI

CLI clear Interrupt Flag

Opcode Instruction Clocks Description

FA CLI 3 Clear interrupt flag; interrupts disabled
Operation
IF CPL > |IOPL THEN
#GP(0);
ELSE

IF (*interrupt flag*) := 0;

Discussion

CLI clears the interrupt flag if the current privilege level is at least as privileged as
IOPL. (IOPL specifies the least privileged level at which I/O can be performed.)

After CLI executes, external interrupts are not recognized until the interrupt flag is
set. CLI affects no other flags.

Flags Affected
IF=0

Exceptions by Mode

Protected

#GP(0) if the current privilege level is greater (has less privilege) than IOPL in the
flags register.

Real Address

None

Virtual 8086
#GP(0) as for Protected Mode

ASM386 Assembly Language Reference Chapter 6 255

CLTS

CLTS clear Task Switched Flag in CRO

Opcode Instruction Clocks Description
OF 06 CLTS 5 Clear task-switched flag
Operation

TS (*Flag in CRO*) := 0;

Discussion

CLTSclears the task-switched (TS) flag in the machine status W@/ 0f
register CRO. The processor sets this flag every time a task switch occurs.

CLTSappears only in operating system software. It is a privileged instruction that
can be executed only at level 0. The TS flag is used to synchronize processor task
switching with numerics coprocessor context switching as follows:

« Every execution of aBSCinstruction is trapped if the TS flag is set.

« Every execution of an (WAIT instruction is trapped if both the TS and MP
flags are set.

These cases generate Interrupt 7. If a task switch occurs ai8Cénumeric)
instruction begins executing, the numerics coprocessor context may need to be
saved before a neBSCinstruction can be issued. A fault handler should save the
current context, restore the new task context, and reset the TS flag.

Flags Affected
TS =0 (TS in CRO, not the (EDAGSregister)

Exceptions by Mode

Protected
#GP(0) ifCLTSIs executed with a current privilege level other than O

Real Address

None (valid in Real Address Mode to allow initialization for Protected Mode)

Virtual 8086
#GP(0)

256 Chapter 6 Processor Instructions

CMC

CMC Complement Carry Flag

Opcode Instruction Clocks Description
F5 CMC 2 Complement carry flag

Operation
CF := NOT CF;

Discussion

CMcCchanges the carry flag value from 0 to 1 or from 1 to 0. It does not affect any
other flags.

Flags Affected
CF as described

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

ASM386 Assembly Language Reference Chapter 6 257

CMP

CMP Compare Two Operands

Opcode Instruction Clocks Description
3Cib CMP AL,imm8 2 Compare immediate byte to AL
3Diw CMP AX,imm16 2 Compare immediate word to AX
3Did CMP EAX,imm32 2 Compare immediate dword to EAX
80 /7ib CMP r/m8,imm8 2/5 Compare immediate byte tttn byte
81 /7iw CMPr/m16imm16 2/5 Compare immediate word tom word
81 /7id CMP r/m32imm32 2/5 Compare immediate dword fton
dword
83 /7ib CMP r/m16imm8 2/5 Compare sign extended immediate byte
to r/m word
83 /7ib CMP r/m32imm8 2/5 Compare sign extended immediate byte
to r/m dword
38/r CMPr/m8,r8 2/5 Compare byte register ton byte
39/r CMPr/m16rl16 2/5 Compare word register ton word
39/r CMPr/m32r32 2/5 Compare dword register tom dword
3AIr CMPr8,r/m8 2/6 Compare/m byte to byte register
3B/r CMPr16,//m16 2/6 Compare/m word to word register
3B/r CMPr32,r/m32 2/6 Compare/m dword to dword register
Operation

(*CMP's purpose is to set the flags*)

IF (RightSrc is byte) AND (LeftSrc is word or dword) THEN
LeftSrc - SignExtend(RightSrc);

ELSE
LeftSrc - RightSrc;

258 Chapter 6 Processor Instructions

CMP

Discussion

CMPsubtracts the second operand from the first and sets the flags accordingly. If
an operand greater than one byte is compared to an immediate byte, the byte value
is first sign-extendedCMPdoes not store the result of its non-destructive
subtraction.CMPis used in conjunction with conditional jumps and$Edcc
instructions. (See thic instructions for a list of signed and unsigned flag tests
provided.)

Flags Affected

OF, SF, ZF, AF, PF, and CF as described in Appendix A
Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 259

CMPS/CMPSB/CMPSW/CMPSD

CMPS/CMPSB/CMPSW/CMPSD Compare String Operands

Opcode Instruction Clocks Description
A6 CMPSm8m8 10 Compare bytes ES:[(E)DI] (second operand)
with [(E)SI] (first operand)
A7 CMPS 10 Compare words ES:[(E)DI] (second operand)
m1l6m16 with [(E)SI] (first operand)
A7 CMPS 10 Compare dwords ES:[(E)DI] (second operand)
m32m32 with [(E)SlI] (first operand)
A6 CMPSB 10 Compare bytes ES:[(E)DI] with DS: [(E)SI]
A7 CMPSW 10 Compare words ES:[(E)DI] with DS: [(E)SI]
A7 CMPSD 10 Compare dwords ES:[(E)DI] with DS:[(E)SI]
Operation
IF (instruction = CMPSD) OR (instruction has dword operands)
THEN
OperandSize = 32; (*Assembler action*)
ELSE

OperandSize = 16;
IF AddressSize = 16 THEN
Use Sl for Srcindex and DI for DestIndex;
ELSE (*AddressSize = 32*)
Use ESI for Srcindex and EDI for DestIindex;
IF byte type instruction THEN
[Srcindex] - [Destindex]; (*low-byte comparison in words*)
IF DF = 0 THEN IncDec := 1 ELSE IncDec := -1,
ELSE
[Srcindex] - [Destindex]; (*comparison*)
IF OperandSize = 16 THEN
IF DF = 0 THEN IncDec := 2 ELSE IncDec := -2;
ELSE (*OperandSize = 32*)
IF DF = 0 THEN IncDec := 4 ELSE IncDec := -4,
Srcindex := Srcindex + IncDec;
Destindex := Destindex + IncDec;

260 Chapter 6 Processor Instructions

CMPS/CMPSB/CMPSW/CMPSD

Discussion

CMPScompares the byte, word, or dword pointed to by the source index register
with the byte, word, or dword pointed to by the destination index registePS
does the comparison by subtracting the destination operand from the source
operand.CMPSdoes not store the result of its subtraction; it sets the flags.

If the address size attribute of this instruction is 16-kiksPSuses Sl and DI for
source and destination index registers; otherwise, it uses ESI and EDI. Load the
correct index values into the appropriate registers before exeQMiRg The

(E)SI) and (E)DI contents determine addresses for compared memory values.

The direction of subtraction f@MPSs [SI] - [DI] or [ESI] - [EDI]. The left
operand ((E)SI) is the source, and the right operand ((E)DI) is the destination.
CMPIeverses ASM386's conventional operand ordering: left-to-right is usually
destination-source.

The CMPSoperands determine whether bytes, words, or dwords are compared. The
segment addressability of the first operand (Sl or ESI) determines whether a
segment override byte is produced or whether the default segment register DS is
used. The second operand (DI or EDI) must be addressable from the ES register;
no segment override is possible.

After the comparison, both the source index and destination index registers are
automatically advanced. If the direction flag iQQ®was executed), the registers
increment; if the direction flag is 5{Dwas executed), the registers decrement.
The registers increment or decrement by 1 if a byte is compared, by 2 if a word is
compared, or by 4 if a dword is compared.

CMPSBCMPSWandCMPSLare synonyms for the byte, word, and dwonPS
instructions. They are simpler, but they do not provide type checking, nor do they
allow the (E)SI operand to override the DS segment.

CMP<can be preceded by tREPEor REPNEprefix for block comparison of (E)CX
bytes, words, or dwords. See &EPreference page for details about this
operation.

Flags Affected
OF, SF, ZF, AF, PF, and CF as described in Appendix A

ASM386 Assembly Language Reference Chapter 6 261

CMPS/CMPSB/CMPSW/CMPSD

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

262 Chapter 6 Processor Instructions

CMPXCHG

CMPXCHG Compare Exchange (not available on Intel386 or 376 processors)

Opcode Instruction Clocks Description

OF A6/r CMPXCHGI/m8,r8 — Compare AL withr/m8; if equal,
mover8 tor/mg; if not equal, move
r/m8to AL

OF A7/r CMPXCHGr/m16,rl6 — Compare AX withr/m16; if equal,
moverl6 to r/m16 if not equal, move
r/ml6to AX

OF A7/r CMPXCHGr/m32r32 — Compare EAX with/m32 if equal,

mover32 to r/m32, if not equal, move

r/m32to EAX

Operation
IF OperandSize = 8 (* r/m 8, r8, AL*) THEN
temp := r/m 8;
IF AL = temp THEN
r’m8:= r8;
ELSE
r/m 8 := temp;
AL :=temp;
IF OperandSize = 16 (* r/m 16, r16, AX*) THEN
temp := r/m 16;
IF AX =temp THEN
r/m 16 := r16;
ELSE
r/m 16 := temp;
AX :=temp;
IF OperandSize = 32 (* r/m 32, r32, EAX*) THEN
temp := r/m 32;
IF EAX = temp THEN
r/m 32 := r32;
ELSE
r/m 32 := temp;
EAX = temp;

ASM386 Assembly Language Reference Chapter 6

263

CMPXCHG

Discussion

CMPXCH@ompares the contents of AL, AX, or EAX with the contents of the first
operand and sets the flags accordingly. If the comparison is equal, the second
operand is copied into the first; if the comparison is not equal, the first operand is
copied into AL, AX, or EAX.

TheLOCKprefix is only valid for the forms aiMPXCH®&hich involve memory
operands.

Flags Affected
OF, SF, ZF, AF, PF, and CF as described in Appendix A

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

264 Chapter 6 Processor Instructions

CWD/CDQ

CWD/ CDQ Convert Word to Dword/Convert Dword to Qword

Opcode Instruction Clocks Description
99 CWD 2 DX:AX := sign-extend of AX
99 CDQ 2 EDX:EAX := sign-extend of EAX

Operation

IF Operand Size = 16 (*CWD instruction*) THEN
IF AX <0 THEN
DX := OFFFFH,;
ELSE
DX :=0;
ELSE (*OperandSize = 32, CDQ instruction*)
IF EAX <0 THEN
EDX := OFFFFFFFFH,;
ELSE
EDX :=0;

Discussion

Cwrxonverts the signed word in AX to a signed dword in DX:AX by extending the
most significant bit of AX into all the bits of DX. CDQ converts the signed dword
in EAX to a signed gword in the register pair EDX:EAX by extending the most
significant bit of EAX (the sign bit) into all the bits of EDX.

Note thatCWDEHs not a variant oEWD CWDHises EAX as a destination, rather
than (E)DX:(E)AX.

Flags Affected

None
Exceptions by Mode

Protected

None

ASM386 Assembly Language Reference Chapter 6 265

CWD/CDQ

Real Address

None

Virtual 8086

None

266 Chapter 6 Processor Instructions

DAA

DAA Decimal Adjust AL after Addition

Opcode Instruction Clocks Description
27 DAA 4 Decimal adjust AL after addition
Operation
IF ((AL AND OFH) > 9) OR (AF = 1) THEN
AL := AL + 6;
AF =1;
ELSE
AF :=0;
IF (AL > 9FH) OR (CF = 1) THEN
AL := AL + 60H;
CF:=1;
ELSE
CF:=0;
Discussion

CodeDAAonly after anADDinstruction that leaves a 2-BCD-digit byte result in the
AL register. TheaDDoperands should consist of 2 paclegzDdigits. TheDAA
instruction adjusts AL to contain the correct 2-digit packed decimal result.

Flags Affected

AF and CF as described in the Operation section; SF, ZF, and PF, as described in
Appendix A

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

ASM386 Assembly Language Reference Chapter 6 267

DAS

DAS Decimal Adjust AL after Subtraction

Opcode Instruction Clocks Description
2F DAS 4 Decimal adjust AL after subtraction

Operation

IF (AL AND OFH) > 9 OR AF =1 THEN
AL := AL - 6;
AF =1;
ELSE
AF :=0;
IF (AL > 9FH) OR (CF = 1) THEN
AL := AL - 60H;
CF:=1;
ELSE
CF :=0;
Discussion

CodeDAsSonly after a subtraction instruction that leaveseCPBdigit byte result
in the AL register. The operands should consist of 2 pagka&dligits. DAS
adjusts AL to contain the correct 2-digit packed decimal result.

Flags Affected

AF and CF as described in the Operation section; SF, ZF, and PF as described in
Appendix A

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

268 Chapter 6 Processor Instructions

DEC

DEC Decrement by 1

Opcode Instruction Clocks Description

FE /1 DECr/m8 2/6 Decrement/m byte by 1

FF/1 DECr/m16 2/6 Decrement/m word by 1

FF/1 DECr/m32 2/6 Decrement/m dword by 1
48+Hw DECr16 2 Decrement word register by 1
48+d DECr32 2 Decrement dword register by 1
Operation

Dest := Dest - 1;

Discussion

DECsubtracts 1 from the operandECdoes not change the carry flag. (Use the
SUBInstruction with an immediate operand of 1 to affect the carry flag.)

Flags Affected
OF, SF, ZF, AF, and PF as described in Appendix A

Exceptions by Mode

Protected

#GP(0) if the result is a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 269

DIV

DIV Unsigned Divide

Opcode Instruction Clocks Description

F6 /6 DIVr/m8 14/17 Unsigned divide AX bym byte (AL = Quo,
AH = Rem)

F71/6 DIVr/m16 22/25 Unsigned divide DX:AX by/m word
(AX = Quo, DX = Rem)

F71/6 DIV r/m32 38/41 Unsigned divide EDX:EAX bg/m dword

(EAX = Quo, EDX = Rem)

Operation

(*Divisions are unsigned. The only operand is the divisor;
the dividend, quotient, and remainder use implicit
registers.*)
IF r/m =0 THEN
Interrupt O;
temp := dividend / (r/m);
IF temp does not fit in quotient THEN
Interrupt O;
ELSE
quotient := temp;
remainder := dividend MOD (r/m);

Discussion

DIV performs an unsigned division. The dividend is impliziy/'s single operand
is the divisor. The remainder is always less than the divisor.

The divisor, dividend, quotient, and remainder locations are summarized as

follows:
Table 6-17. Operands and Implicit Destinations for DIV
Size Divisor Dividend Quotient Remainder
byte r/m8 AX AL AH
word r/m16 DX:AX AX DX
dword r/m32 EDX:EAX EAX EDX
Flags Affected

OF, SF, ZF, AR, PF, and CF are undefined

270 Chapter 6 Processor Instructions

DIV

Exceptions by Mode

Protected

Interrupt O if the quotient is too large to fit in the destination register (AL or AX),

or if the divisor is 0; #GP(0) for an illegal memory operand effective address in the
CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment;
#PF(fault-code) for a page fault

Real Address

Interrupt O if the quotient is too large to fit in the destination register (AL or AX),
or if the divisor is 0; Interrupt 13 if any part of the operand would lie outside the
effective address space from 0 to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 271

ENTER

ENTER Make Stack Frame for Procedure Parameters

Opcode Instruction Clocks Description
C8iw 00 ENTERImm160 10 Make procedure stack frame
C8iw 01 ENTERIimmM161 12 Make stack frame for nested
procedure
C8iw ib ENTERImMmM16 15+4{-1) Make stack frame for nested
imm8 procedure
Operation

level := level MOD 32; (*level is rightmost parameter*)
IF stack segment is USE = 32 THEN
StackAddrSize := 32; (*Assembler action*)

Push(EBP);

frame_pointer := ESP;
ELSE

StackAddrSize := 16;

Push(BP);

frame_pointer := SP;
IF level > 0 THEN
FORi:=1TO (level - 1) DO
IF StackAddrSize = 16 THEN
Push[BP];
BP :=BP - 2;
ELSE (*StackAddrSize = 32*)
Push[EBP];
EBP := EBP - 4;
ENDFOR;
ENDIF; (*level > 0%)
IF StackAddrSize = 16 THEN
BP := frame_pointer;
SP := SP - first_operand;
ELSE
EBP := frame_pointer;
ESP := ESP - ZeroExtend(first_operand);

272 Chapter 6 Processor Instructions

ENTER

Discussion

ENTERcreates the stack frame required by most block-structured high-level
languages. The first operand specifies the number of bytes of dynamic storage
allocated on the stack for the routine being entered. The second operand gives the
lexical nesting level (0-31) of the routine within the high-level source code. It
determines the number of stack frame pointers copied into the new stack frame
from the preceding frame.

If the stack size attribute is 16-bits, the processor uses BP as the frame pointer and
SP as the stack pointer. If the stack size attribute is 32-bits, the processor uses EBP
for the frame pointer and ESP for the stack pointer.

ENTERpushes the frame pointer (BP or EBENTERcopies the frame pointer
addresses for enclosing callers' frames, if any; it then sets the frame pointer to the
current stack pointer value and subtracts the first operand from the stack pointer.

For example, a procedure with 12 bytes of local variables would haseTER
12,0 instruction at its entry point and.BAVEinstruction before evelRET. The
12 local bytes would be addressed as negative offsets from (E)BP.

Flags Affected

None
Exceptions by Mode

Protected

#SS(0) if SP or ESP would exceed the stack limit at any point during instruction
execution; #PF(fault-code) for a page fault

Real Address

None

Virtual 8086

None

ASM386 Assembly Language Reference Chapter 6 273

HLT

HLT Hait

Opcode Instruction Clocks Description
F4 HLT 5 Halt
Operation

Enter Halt state;

Discussion

HLT stops instruction execution and places the processor in a Halt state. An
enabled interrupt, NMI, or a hardware RESET# will resume execution. If an
interrupt or NMI is used to resume execution after HLT, the saved CS:IP (or
CS:EIP) value points to the instruction following HLT.

Flags Affected

None
Exceptions by Mode

Protected

HLT is a privileged instruction: #GP(0) if the current privilege level is not O

Real Address

None

Virtual 8086

Same as Protected Mode

274 Chapter 6 Processor Instructions

IDIV

IDIV signed Divide

Opcode Instruction Clocks Description

F6 /7 IDIVI/im8 19 Signed divide AX by/m byte(AL=Quo,AH=Rem)

F7 17 IDIVr/m16 27 Signed divide DX:AX by/m
word(AX=Quo,DX=Rem)

F7 17 IDIVIim32 43 Signed divide EDX:EAX by/m

dword(EAX=Quo,EDX=Rem)

Operation

(*The only operand is the divisor; the dividend, quotient,
and remainder use implicit registers.*)
IF r/m =0 THEN

Interrupt O;
ELSE
temp := dividend / (r’m);
IF temp does not fit in quotient register THEN
Interrupt O;
ELSE
quotient := temp;
remainder := dividend MOD (r’m);
Discussion

IDIV performs a signed division. The dividend, quotient, and remainder are
implicitly allocated to fixed registers. Only the divisor is given as an expligit
operand. The type of the divisor (size) determines which instructions and registers

to use as follows:

Table 6-18. Operands and Implicit Destinations for IDIV

Size Divisor Dividend Quotient Remainder
byte r/m8 AX AL AH

word r/m16 DX:AX AX DX

dword r/m32 EDX:EAX EAX EDX

ASM386 Assembly Language Reference Chapter 6 275

IDIV

If the resulting quotient is too large to fit in the destination, or if the divisor is 0, an
Interrupt O is generated. Nonintegral quotients are truncated toward 0. The
remainder has the same sign as the dividend, and its absolute value is always less
than the divisor's.

Flags Affected
For dword operands, CF and OF are set (1) if EDX is not the sign extension of
EAX; otherwise, CF = 0 and OF = 0; SF, ZF, AF, and PF are undefined
Exceptions by Mode

Protected

Interrupt O if the quotient is too large to fit in the implicit destination register, or if
the divisor is 0; #GP (0) for an illegal memory operand effective address in the CS,
DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment;
#PF(fault-code) for a page fault

Real Address

Interrupt O if the quotient is too large to fit in the implicit destination register, or if
the divisor is O; Interrupt 13 if any part of the operand would lie outside the address
space from 0 to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

276 Chapter 6 Processor Instructions

IMUL

IMUL signed Multiply

Opcode Instruction Clocks Description
F6 /5 IMUL r/m8 9-14/12-17 AX:=AL *r/m byte
F7/5 IMUL r/m16 9-22/12-25 DX:AX := AL *r/m word
F7/5 IMUL r/m32 9-38/12-41 EDX:EAX := EAX *r/m dword
OF AF/r IMUL rl6,r/m16 9-22/12-25 word register := word register/f
word
OF AF/r IMUL r32,r/m32 9-38/12-41 dword register := dword registarrh
dword
6B /rib IMUL rl16,r/m16 9-14/12-17 word register :#m16* sign-extended
imm8 immediate byte
6B /rib IMUL r32,r/m32 9-14/12-17 dword register #m32* sign-extended
imm8 immediate byte
6B /rib IMUL r16,imm8 9-14/12-17 word register := word register * sign-
extended immediate byte
6B /rib IMUL r32,imm8 9-14/12-17 dword register := dword register * sign-

extended immediate byte
69/r iw IMUL rl16,r/m16 9-22/12-25 word register :#m16* immediate

word
69/r id IMUL r32,r/m32 9-38/12-41 dword register #m32* immediate
imm32 dword
69/r iw IMUL rl16,imm16 9-22/12-25 word register :#m16* immediate
word
69/r id IMUL r32,imm32 9-38/12-41 dword register #m32* immediate
dword

ASM386 Assembly Language Reference Chapter 6 277

IMUL

|:| Note

The processor uses an early-out multiply algorithm. The actual
number of clocks depends on the position of the most significant
bit in the optimizing multiplier, shown underlined in the table.
The optimization occurs for positive and negative values.
Because of the early-out algorithm, clock counts given are
minimum to maximum. To calculate the actual clocks, use the
following formula:

IF m=0 THEN ActualClock := 9;
ELSE ActualClock := max(ceiling(lagm|), 3) + 6 clocks;

wherem s the optimizing multiplier. Add 3 clocks if the multiplier is
a memory operand.
Operation

result := multiplicand * multiplier;

Discussion

IMUL performs signed multiplication. Some forms of the instruction use implicit
register operands. The operand combinations for all forms of the instruction are
shown in the Description column of the preceding table.

IMUL clears the overflow and carry flags under the following conditions:

Table 6-19. When IMUL Clears CF and OF

Operand(s) Condition for Clearing CF and OF

r/m8 AX = sign-extend AL to 16-bits

r/m16 DX:AX = sign-extend AX to 32-bits
r/m32 EDX:EAX = sign-extend EAX to 64-bits
ri6,r/milé Result exactly fits within r16

r32,r/m32 Result exactly fits within r32
r16,r/mi16,imm16 Result exactly fits within r16
r32,r/m32,imm32 Result exactly fits within r32

ThelMUL accumulator formsijIUL r/m8 , IMUL r/m16 , orIMUL r/m32) yield a
result even if the overflow flag is set because such a result is twice the size of the
multiplicand and multiplier. This is large enough to handle any possible result.

278 Chapter 6 Processor Instructions

IMUL

Flags Affected
OF and CF as shown in Table 6-19; SF, ZF, AF, and PF are undefined

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 279

IN

IN Input from Port

Opcode Instruction Clocks Description

E4ib IN AL,imm8 12,pm:6T/26¢ Input byte from immediate port
into AL

E5ib IN AX,imm8 12,pm:6T/26¢ Input word from immediate port
into AX

E5ib IN EAX,imm8 12,pm:6T/26¢ Input dword from immediate port
into EAX

EC IN AL,DX 13pme7T/27% Input byte from port DX into AL

ED IN AX,DX 13,pme71/27% Input word from port DX into AX

ED IN EAX,DX 13pne7i/27% Input dword from port DX into
EAX

T If CPL <= I0PL
I If CPL > IOPL or if in virtual 8086 mode

Operation

IF (PE = 1) AND ((VM = 1) OR (CPL > IOPL)) THEN
(*virtual 8086 mode or protected mode with CPL > IOPL¥)

IF NOT IOPermission(Src, width(Src)) THEN #GP(0);
Dest := [Src]; (*reads from I/O address space?*)

Discussion

IN transfers a data byte, word, or dword from the port numbered by the second
operand into the register (AL, AX, or EAX) specified by the first operand. Access
any port from 0 to 65535 by placing the port number in the DX register and using
anIN instruction with DX as the second operand. These /O instructions can be

shortened by using an 8-bit number of a port in the instruction.
If executed in virtual 8086 mode or in protected mode @iRh greater thamOPL :

* IN cannot access any given byte unless the 1/0O permission bit map has a
corresponding clear bit.

See also: I/O permission bit map, Appendix A

e IN also cannot access a dword or word unless it can access every byte in the

dword or word.

280 Chapter 6 Processor Instructions

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) if the current privilege level is larger (has less privilege) than IOPL and any
of the corresponding I/O permission bits in TSS equals 1

Real Address

None

Virtual 8086
#GP(0) if any of the corresponding I/O permission bits in TSS equals 1

ASM386 Assembly Language Reference Chapter 6 281

INC

INC Increment by 1

Opcode Instruction Clocks Description

FE /0 INCr/m8 2/6 Increment/m byte by 1

FF /0 INCr/m16 2/6 Increment/m word by 1

FF /0 INCr/m32 2/6 Increment/m dword by 1

40 +rw INCrl16 2 Increment word register by 1
40 +rd INC r32 2 Increment dword register by 1
Operation

Dest := Dest + 1;

Discussion

INC adds 1 to the operand. It does not change the carry flag. (UsBhe
instruction with a second operand of 1 to affect the carry flag.)

Flags Affected
OF, SF, ZF, AF, and PF as described in Appendix A

Exceptions by Mode

Protected

#GP(0) if the operand is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the address space from O tc
OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

282 Chapter 6 Processor Instructions

INS/INSB/INSW/INSD

INS/INSB/INSW/INSD Input from Port to String

Opcode Instruction Clocks Description

6C INSm8DX 15pme=9T/2gt Input byte from port DX into ES:(E)DI

6D INSm16DX 15pne9f/2ot Input word from port DX into
ES:(E)DI

6D INSm32DX 15pne9i/2ot Input dword from port DX into
ES:(E)DI

6C INSB 15pne9 /20t Input byte from port DX into ES:(E)DI

6D INSW 15pm:91L/29'JF Input word from port DX into
ES:(E)DI

6D INSD 15pm:9Jr/29'JF Input dword from port DX into
ES:(E)DI

T If CPL <= I0OPL
I If CPL > IOPL or if in virtual 8086 mode

Operation

IF AddressSize = 16 THEN
Use DI for Destindex;
ELSE (*AddressSize = 32*)
Use EDI for Destindex;

IF (PE =1) AND ((VM =1) OR (CPL > IOPL)) THEN
(*virtual 8086 mode or protected mode with CPL > IOPL¥)
IF NOT IOPermission(Src, width(Src)) THEN #GP(0);

IF byte type instruction THEN
ES:[Destindex] := [DX]; (*reads at DX from 1/O address space*)
IF DF = 0 THEN IncDec := 1 ELSE IncDec := -1;
ELSE (*read word or dword*)
IF OperandSize = 16 THEN
ES:[Destindex] := [DX];
IF DF = 0 THEN IncDec := 2 ELSE IncDec := -2;
ELSE (*OperandSize = 32%)
ES:[Destindex] := [DX];
IF DF = 0 THEN IncDec := 4 ELSE IncDec := -4;
Destindex := Destindex + IncDec;

ASM386 Assembly Language Reference Chapter 6

283

INS/INSB/INSW/INSD

Discussion

INS transfers data from the port numbered by the DX register to the memory byte,
word, or dword at ES:Destinationindex. The memory operand must be addressable
from ES; no segment override is possible. The destination is DI if the address size
attribute of the instruction is 16-bits, or EDI if the address size attribute is 32-bits.

INS does not allow the specification of the port number as an immediate value.
The port must be addressed through the DX register. Load the correct value into
DX before executing the\S instruction.

The destination address is determined by the contents of the (E)DI register (not by
the first operand to INS). The purpose of the operand is to validate ES segment
addressability and to determine the data type (byte, word, or dword).

After the transfer, (E)DI advances automatically. If the direction flag is 0 (CLD
was executed), (E)DI increments; if the direction flag is 1 (STD was executed),
(E)DI decrements. (E)DI increments or decrements by 1 if a byte is input, by 2 if a
word is input, or by 4 if a dword is input.

INSB, INSWandINSD are synonyms of the byte, word, and dwig
instructions. They are simpler, but they provide no type or segment checking.

If executed in virtual 8086 mode or in protected mode @ih greater thatOPL:

* INS cannot access any given byte unless the I/O permission bit map has a
corresponding clear bit.

See also: I/O permission bit map, Appendix A

e INS also cannot access a dword or word unless it can access every byte in the
dword or word.

INS can be preceded by tREPprefix for block input of (E)CX bytes or words.
See theREPreference page for details of this operation.

Flags Affected

None

Exceptions by Mode

Protected

284

#GP(0) if CPL is numerically greater th#pPL and any of the corresponding I/O
permission bits imMSS equals 1; #GP(0) if the destination is in a nonwritable
segment; #GP(0) for an illegal memory operand effective address in the ES
segment; #PF(fault-code) for a page fault

Chapter 6 Processor Instructions

INS/INSB/INSW/INSD

Real Address

Interrupt 13 if any part of the operand would lie outside the address space from 0 to
OFFFFH

Virtual 8086

#GP(0) if any of the corresponding I/O permission bits in TSS equals 1; #GP(0) for
an illegal memory operand effective address in the ES segment; #PF(fault-code) for
a page fault

ASM386 Assembly Language Reference Chapter 6 285

INT/INTO

INT/INTO Transfer Control to Interrupt Procedure

Opcode Instruction Clocks Description
CcC INT 3 33 Interrupt 3 - trap to debugger
CcC INT 3 pm=59 Interrupt 3 - protected mode, same privilege
CcC INT 3 pm=99 Interrupt 3 - protected mode, more privilege
CcC INT 3 pm=119 Interrupt 3 - from virtual 8086 mode to
privilege level 0
CcC INT 3 pm:224-314r Interrupt 3 - protected mode, via task gate
CDib INT imm8 37 Interrupt numbered by immediate byte
CDib INT imm8 pre59 Interrupt - protected mode, same privilege
CDib INT imm8 pr99 Interrupt - protected mode, more privilege
CDib INT imm8 pre119 Interrupt - from virtual 8086 mode to
privilege level 0
CDib INT imm8 pn$224-314r Interrupt - protected mode, via task gate
CE INTO Fail:3pm=3 Interrupt 4 - if overflow flag is 1
Pass:35
CE INTO pm=59 Interrupt 4 - protected mode, same privilege
CE INTO pm=99 Interrupt 4 - protected mode, more privilege
CE INTO pm=119 Interrupt 4 - from virtual 8086 mode to
privilege level 0
CE INTO pm:224-314i’ Interrupt 4 - protected mode, via task gate

T See also: 80386 Programmer's Reference Manual

Operation

286

(*These operations also occur for exceptions and external
interrupts®)
IF PE = 0 THEN (*real address mode*)
IF interrupt table entry > IDT limit THEN #DF(0);
ELSE
Push(FLAGS);
IF := 0; (*Clear interrupt flag*)
TF := 0; (*Clear trap flag*)
Push(CS);
Push(IP);
(*no error codes are pushed*)

Chapter 6 Processor Instructions

INT/INTO

CS := IDT[interrupt number * 4].selector;
IP := IDT[interrupt number * 4].offset;

ELSE
IF VM =1 THEN
GOTO INTERRUPT_FROM_VIRTUAL_8086_MODE;
ELSE

GOTO PROTECTED_MODE;

PROTECTED_MODE:

IF interrupt vector NOT within IDT table limit THEN
#GP(vector number * 8+2+EXT);

Descriptor AR must indicate interrupt, trap or task gate
ELSE #GP(vector number * 8+2+EXT);

IF software interrupt (*caused by INT n, INT 3, INTO,
BOUNDY)

AND gate descriptor DPL < CPL THEN
#GP(vector number * 8+2+EXT);

IF gate NOT PRESENT THEN #NP(vector number * 8+2+EXT);

IF trap gate OR interrupt gate THEN
GOTO TRAP_OR_INTERRUPT_GATE;

ELSE
GOTO TASK_GATE;

TRAP_OR_INTERRUPT_GATE:
(*Examine CS selector and descriptor given in gatedescriptor: *)
IF selector is null THEN #GP(EXT);
IF selector NOT within its descriptor table limits THEN
#GP(selector + EXT);
IF descriptor AR indicates non-code segment THEN
#GP(selector + EXT);
IF segment NOT PRESENT THEN #NP(selector + EXT);
IF code segment is non-conforming AND DPL < CPL THEN
GOTO INTERRUPT_TO_MORE_PRIVILEGED;
IF code segment is conforming OR code segment DPL=CPL
THEN GOTO INTERRUPT_TO_SAME_PRIVILEGE;
ELSE #GP(CS selector + EXT);

INTERRUPT_TO_MORE_PRIVILEGED:
(*Check selector and descriptor for new stack in currentTSS: *)
IF selector is null THEN #GP(EXT);
IF selector index NOT within descriptor table limits THEN
#TS(SS selector + EXT);
IF selector's RPL NOT = DPL of code segment THEN
#TS(SS selector + EXT);

ASM386 Assembly Language Reference Chapter 6

287

INT/INTO

IF stack segment DPL NOT = DPL of code segment THEN

#TS(SS selector + EXT);
Descriptor must indicate writable data segment
ELSE #TS(SS selector + EXT);

IF segment NOT PRESENT THEN #SS(SSselector +EXT);

IF 32-bit gate THEN
New stack must have room for 24 bytes ELSE #SS(0);
IF interrupt caused by exception with error code THEN
Stack limits must allow pushing 2 more bytes
ELSE #SS(0);
gate_offset must be within CS segment boundaries
ELSE #GP(0);
Load new SS and ESP values from TSS;
CS:EIP := selector:offset from gate;
ELSE (*16-bit gate*)
New stack must have room for 12 bytes ELSE #SS(0);
IF interrupt caused by exception with error code THEN
Stack limits must allow pushing 2 more bytes
ELSE #SS(0);
gate_offset must be within CS segment boundaries
ELSE #GP(0);
Load new SS and SP values from TSS;
CS:IP := selector:offset from gate;
ENDIFELSE;
Load CS descriptor into CS cache;
Load SS descriptor into SS cache;
IF 32-bit gate THEN
Push(long pointer to old stack); (*3 words padded to 4*)
Push(EFLAGS);
Push(long pointer to return location);
(*3 words padded to 4*)
ELSE (*16-bit gate*)
Push(long pointer to old stack); (*2 words*)
Push(FLAGS);
Push(long pointer to return location); (*2 words*)
ENDIFELSE;
CPL := (*new code segment's*) DPL;
RPL (*of CS*) := CPL;
Push error code if exception;
IF interrupt gate THEN IF := 0; (*interrupt flag disabled*)
TF:=0;
NT :=0;

288 Chapter 6

Processor Instructions

INT/INTO

INTERRUPT_TO_SAME_PRIVILEGE:
IF 32-bit gate THEN
Current stack limits must allow pushing 12 bytes
ELSE #SS(0);
IF interrupt caused by exception with error code THEN
Stack limits must allow pushing 2 more bytes
ELSE #SS(0);
gate_offset must be within CS limit ELSE #GP(0);
Push(EFLAGS);
Push(long pointer to return location); (*3 words pad to 4*)
CS:EIP := selector:offset from gate;
ELSE (*16-bit gate*)
Current stack limits must allow pushing 6 bytes
ELSE #SS(0);
IF interrupt caused by exception with error code THEN
Stack limits must allow pushing 2 more bytes
ELSE #SS(0);
gate_offset must be in CS limit ELSE #GP(0);
Push(FLAGS);
Push(long pointer to return location); (*2 words*)
CS:IP := selector:offset from gate;
ENDIFELSE;
Load CS descriptor into CS cache;
RPL (*of CS*) := CPL;
Push error code (*if any*) onto stack;
IF interrupt gate THEN IF := 0O; (*clear interrupt flag*)
TF :=0;
NT :=0;
INTERRUPT_FROM_VIRTUAL8086_MODE:
tempEFlags := EFLAGS;
VM :=0;
TF:=0;
IF service through task gate THEN GOTO TASK_GATE;
ELSE (*service through trap or interrupt gate*)
IF interrupt gate THEN IF := 0; (*Clear interrupt flag*)
tempSS = SS;
tempESP := ESP;
SS := TSS.SSO0; (*Change to level 0 stack segment*)
ESP := TSS.ESPO; (*Change to level 0 stack pointer*)
Push(GS); (*padded to 2 words*)
Push(FS); (*padded to 2 words*)
Push(DS); (*padded to 2 words*)
Push(ES); (*padded to 2 words*)

ASM386 Assembly Language Reference Chapter 6 289

INT/INTO

GS =0;

FS :=0;

DS :=0;

ES :=0;

Push(TempSS); (*padded to 2 words*)

Push(TempESP);

Push(TempEFlags);

Push(CS); (*padded to 2 words*)

Push(EIP);

CS:EIP := selector:offset from trap or interrupt gate;
(*starts execution of new routine in protected mode*)
TASK_GATE:

(*Examine selector to TSS in task gate descriptor: *)

IF TSS selector specifies local in local/global bit THEN

#TS(TSS selector);

IF index NOT within GDT limits THEN #TS(TSS selector);
SwitchTasks (*with nesting*) to TSS;

IF interrupt caused by exception with error code THEN
Stack limits must allow pushing 2 more bytes ELSE SS(0);
Push error code onto stack;

ENDIF;

(E)IP must be in CS limit ELSE #GP(0);

Discussion

290

TheINT n instruction gives control to an interrupt procedure via software. The
immediate operand gives the index number (0 to 255) into the interrupt descriptor
table (IDT) for the routine called. In protected mode, the IDT consists of an array
of 8-byte descriptors; each descriptor must indicate an interrupt, trap, or task gate.
In real address mode, the IDT is an array of 4 byte-long pointers. In protected and
real address modes, the base linear address of the IDT is defined by the contents ¢
the IDTR.

TheINTO conditional software instruction is identical to tN& n instruction
except that the interrupt number is implicitly 4, and the interrupt is made only if the
processor overflow flag is set.

The first 32 interrupts are reserved by Intel for system use. Some of these
interrupts are used for internally generated exceptions.

INT n behaves like a far call except that the flags register is pushed onto the stack
before the return address. Interrupt procedures return ViREMTARETD
instruction, which pops the flags and return address from the stack.

Chapter 6 Processor Instructions

INT/INTO

In real address modi®\NT n pushes the flags, CS, and the return IP onto the stack
and then jumps to the long pointer indexed by the interrupt number.

Flags Affected

None
Exceptions by Mode

Protected
#GP, #NP, #SS, and #TS as described in the Operation section

Real Address

None; if SP or ESP =1, 3, or 5 before executiNigy or INTO, the processor will
shut down due to insufficient stack space

Virtual 8086

ForINT n only, #GP(0) ifiOPL is less than 3 to allow emulation; Interrupt 3
(OCCH) generates Interrupt BITO generates Interrupt 4 if the overflow flag
equalsl

ASM386 Assembly Language Reference Chapter 6 291

INVD

INVD Invalidate Data Cache (not available on Intel386 or 376 processors)

Opcode Instruction Clocks Description
OF 08 INVD — Destructively flush data cache
Operation

FOR ALL CacheEntries DO
Bit[CacheEntry,Valid] := 0;

Discussion

INVD destructively invalidates (flushes) the data cache of all entries. The entries
are flushed by resetting their valid bits. This instruction takes no operand.

Flags Affected

None
Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

292 Chapter 6 Processor Instructions

INVLPG

INVLPG Iinvalidate Paging Cache Entry
(not available on Intel386 or 376 processors)

Opcode Instruction Clocks Description
OF 01 /7 INVLPGmM — Invalidate paging cache entry for
Operation

VirtualAddr := Segment + Addr(m);
IF VirtualAddr IN PagingCache THEN
Bit[PageCacheEntry,0] := 0;

Discussion

INVLPG invalidates (flushes) a page entry from the 486 processor's on-chip paging
cache (translation lookaside buffer). The full virtual addressi®fgenerated. The
paging cache is then checked to see if the corresponding entry for that virtual
address exists in the cache. If so, the entry is flushed by resetting the Present bit
(bit 0).

Only memory operands are valid with this instruction.

Flags Affected

None
Exceptions by Mode

Protected

#UD if a register operand is used.

Real Address

None

Virtual 8086

None

ASM386 Assembly Language Reference Chapter 6 293

IRET/IRETD

IRET/IRETD Interrupt Return

Opcode Instruction Clocks Description

CF IRET 22pm=38 16-bit interrupt return (far return, pop
flags)

CF IRET pm=82 16-bit interrupt return to lesser privilege

CF IRET pm=214-27§ 16-bit interrupt return different task
(NT =1)

CF IRETD 22pm=38 32-bit interrupt return (far return, pop
flags)

CF IRETD pm=60 32-bit interrupt return to virtual 8086
mode

CF IRETD pm=82 32-bit interrupt return to lesser privilege

CF IRETD pm=214-27§ 32-bit interrupt return, different task
(NT =1)

T See also: 80386 Programmer's Reference Manual

Operation

IF PE = 0 THEN (*real address mode*)
IF OperandSize = 32 (*instruction IRETD*) THEN
EIP := Pop(); (*pop stack top into EIP*)
ELSE (*instruction IRET*)
IP :=Pop();
CS :=Pop();
IF OperandSize = 32 THEN
EFLAGS := Pop();
ELSE (*OperandSize = 16*)
FLAGS :=Pop();
ELSE (*protected mode*)
IF VM = 1 THEN #GP(0);
IFNT =1 THEN
GOTO TASK_RETURN;
ELSE
IF VM =1 (*in flags image on stack*) THEN
GOTO STACK_RETURN_TO_VIRTUALS8086;
ELSE
GOTO STACK_RETURN;
TASK_RETURN:
(*Examine back link selector in TSS addressed by currentTR: *)

294 Chapter 6 Processor Instructions

IRET/IRETD

Must specify global in local/global bit ELSE
#TS(new TSS selector);
Index must be within GDT limits ELSE #TS(new TSS selector);
AR must specify TSS ELSE #TS(new TSS selector);
New TSS must be busy ELSE #TS(new TSS selector);
IF TSS NOT PRESENT THEN #NP(new TSS selector);
(*END check back link selector*)
SwitchTasks without nesting to TSS
specified by back link selector;
Mark task just abandoned as NOT busy;
(E)IP must be within code segment limit ELSE #GP(0);

STACK_RETURN_TO_VIRTUALB8086:
EFLAGS := SS:[ESP + 8]; (*sets VM in interrupted routine*)
EIP := Pop();
CS := Pop(); (*behaves as in 8086, due to VM = 1*)
throwaway := Pop(); (*Pop EFLAGS already read*)
ES := Pop(); (*pop 2 words; throw away high-order word*)
DS := Pop(); (*pop 2 words; throw away high-order word*)
FS := Pop(); (*pop 2 words; throw away high-order word*)
GS = Pop(); (*pop 2 words; throw away high-order word*)
tempESP := Pop();
tempSS = Pop();
SS:ESP := tempSS:tempESP;

(*resume execution in virtual 8086 mode*)

STACK_RETURN:
IF OperandSize = 32 THEN
Fourth word on stack must be within stack limits ELSE #SS(0);
ELSE (*OperandSize = 16¥)
Second word on stack must be within stack limits ELSE #SS(0);
IF return CS selector RPL < CPL THEN #GP(return selector);
IF return selector RPL = CPL THEN
GOTO RETURN_SAME_PRIVILEGE;
ELSE
GOTO RETURN_LESS_PRIVILEGED;
RETURN_SAME_PRIVILEGE:
IF OperandSize = 32 THEN
Top 12 bytes on stack must be within limits ELSE #SS(0);
Return CS selector (*at ESP+4*) must be non-null ELSE
#GP(0);
ELSE (*OperandSize = 16¥)
Top 6 bytes on stack must be within limits ELSE #SS(0);

ASM386 Assembly Language Reference Chapter 6 295

IRET/IRETD

296

Return CS selector (*at SP+2*) must be non-null ELSE
#GP(0);
ENDIFELSE;
IF selector index NOT within its descriptor table limits THEN
#GP(return selector);
AR must indicate code segment ELSE #GP(return selector);
IF non-conforming AND code segment DPL NOT = CPL THEN
#GP(return selector);
IF conforming AND code segment DPL > CPL THEN
#GP(return selector);
IF segment NOT PRESENT THEN #NP(return selector);
return_offset must be within code segment boundaries ELSE
#GP(0);
IF OperandSize = 32 THEN
Load CS:EIP from stack;
Load CS cache with new code segment descriptor;
Load EFLAGS with third dword from stack;
(E)SP := (E)SP + 12;
ELSE (*OperandSize = 16¥)
Load CS:IP from stack;
Load CS cache with new code segment descriptor;
Load FLAGS with third word on stack;
(E)SP := (E)SP + 6;

RETURN_LESS PRIVILEGED:
IF OperandSize = 32 THEN
Top 20 bytes on stack must be within limits ELSE #SS(0);
ELSE (*OperandSize = 16*)
Top 10 bytes on stack must be within limits ELSE #SS(0);
(*Examine return CS selector and associated descriptor: *)
IF selector is null THEN #GP(0);
IF selector index NOT within its descriptor table limits THEN
#GP(return selector);
IF AR does NOT indicate code segment THEN
#GP(return selector);
IF non-conforming AND
code segment DPL NOT = CS selector RPL THEN
#GP(return selector);
IF conforming AND code segment DPL < = CPL THEN
#GP(return selector);

IF segment NOT PRESENT THEN #NP(return selector);
(*END check return CS selector and associated descriptor*)
(*Examine return SS selector and associated descriptor: *)

IF selector is null THEN #GP(0);

Chapter 6 Processor Instructions

IRET/IRETD

IF selector index NOT within its descriptor table limits THEN
#GP(SS selector);
IF selector RPL NOT = RPL of return CS selector THEN
#GP(SS selector);
IF AR does NOT indicate writable data segment THEN
#GP(SS selector);
IF stack segment DPL NOT = RPL of return CS selector
THEN #GP(SS selector);
IF SS NOT PRESENT THEN #NP(SS selector);
(*END check return SS selector and associated descriptor*)
return_offset must be in code segment ELSE#GP(0);
IF OperandSize = 32 THEN
Load CS:EIP from stack;
Load EFLAGS with values at (ESP + 8);
ELSE (*OperandSize = 16*)
Load CS:IP from stack;
Load FLAGS with values at (SP+4);
ENDIFELSE;
Load SS:(E)SP from stack;
CPL := RPL of CS return selector;
Load CS cache with CS descriptor;
Load SS cache with SS descriptor;
FOR each of ES, FS, GS, and DS DO
IF current register value NOT valid for interrupted routine
THEN zero register and clear valid flag;
(*To be valid, register setting must satisfy:
Selector index is within its descriptor table limits;
AR indicates data or readable code segment;
IF segment is data or non-conforming code THEN
DPL must be >= CPL or DPL must be >= RPL;*)
ENDFOR,;

Discussion

IRETD is a 32-bit andRET is a 16-bit return from an interrupt routine, whatever

the USEattribute (32- or 16-bit) of the containing segment. In real address mode,
IRET (D) pops the (E)IP, CS, and the flags register from the stack and resumes the
interrupted routine. In protected mode, the actiofREf (D) depends on the

setting of the nested task flag (NT) bit in the flag register. When popping the new
flag image from the stack, thePL bits in the flag register are changed only when
CPL equals 0.

ASM386 Assembly Language Reference Chapter 6 297

IRET/IRETD

If NT equals OJRET (D) returns from an interrupt procedure without a task switch.
The code that resumes execution afR&=T (D) must be equally or less privileged
than the interrupt routine (as indicated by R bits of the CS selector popped
from the stack). If the destination code is less privilege#T (D) also pops (E)SP
and SS from the stack.

If NT equals 1JRET (D) reverses the operation of taaLL or INT that caused a
task switch. The task executifRET (D) has its updated state saved in its task
state segment. If the task is reentered, the code that faRBEVED) is executed.

Flags Affected

All; the flags register is popped from stack
Exceptions by Mode

Protected
#GP, #NP, #TS, or #SS, as indicated in the preceding Operation section

Real Address
Interrupt 13 if any part of the operand being popped lies beyond address OFFFFH

Virtual 8086
#GP(0) if IOPL is less than 3 to permit emulation

298 Chapter 6 Processor Instructions

Jcc

JCC Jump if Condition is Met

Opcode
77chb
73ch
72cb
76c¢cb
72cb
E3cb
E3cb
74cb
74cb
7Fcb
7Dcb
7Ccb
7Ecb

76c¢cb
72cb
73cb
77cb
73cb
75c¢b
7Ecb
7Cch
7D cb
7Fcb
71cb
7Bch
79cb

Instruction
JArel8
JAErel8
JBrel8
JBErel8
JCrel8
JCXZrel8
JECXZrel8
JErel8
JZrel8
JGrel8
JGErel8
JLrel8
JLErel8

JNATrel8
JNAE rel8
JNBrel8
JNBErel8
JNCrel8
JNErel8
JINGrel8
JNGErel8
JNL rel8
JNLErel8
JNOrel8
JNPrel8
JNSrel8

Clocks
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
9+m,5
9+m,5
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3

7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3

Description

Jump short if above (CF=0 and ZF=0)
Jump short if above or equal (CF=0)
Jump short if below (CF=1)

Jump short if below or equal (CF=1 or ZF=1)
Jump short if carry (CF=1)

Jump short if CX register is 0

Jump short if ECX register is 0

Jump short if equal (ZF=1)

Jump short if 0 (ZF=1)

Jump short if greater (ZF=0 and SF=0F)
Jump short if greater or equal (SF=0F)
Jump short if less (SF NOT = OF)

Jump short if less or equal (ZF=1 and
SF NOT = OF)

Jump short if not above (CF=1 or ZF=1)

Jump short if not above or equal (CF=1)

Jump short if not below (CF=0)

Jump short if not below or equal (CF=0 and ZF=0)
Jump short if not carry (CF=0)

Jump short if not equal (ZF=0)

Jump short if not greater (ZF=1 or SF NOT = OF)
Jump short if not greater or equal (SF NOT = OF)
Jump short if not less (SF=0OF)

Jump short if not less or equal (ZF=0 and SF=0F)
Jump short if not overflow (OF=0)

Jump short if not parity (PF=0)

Jump short if not sign (SF=0)

NOTE: The first clock count is for the true condition (branch taken); the second clock count is for the false
condition (branch not taken). rel16/32 indicates that these instructions map to two; one with a 16-bit relative
displacement, the other with a 32-bit relative displacement, depending on the operand size attribute of the
instruction. The assembler does not allow an operand override for relative jumps.

ASM386 Assembly Language Reference Chapter 6 299

Jcc

Opcode
75cb
70cb

7A cb
7Acb
7Bcb

78ch
74cb

OF 87cw/cd
OF 83cw/cd
OF 82cw/cd
OF 86cw/cd

OF 82cw/cd
OF 84cw/cd
OF 84cw/cd
OF 8Fcw/cd
OF 8Dcw/cd
OF 8Ccw/cd
OF 8Ecw/cd

OF 86c¢cw/cd
OF 82cw/cd
OF 83cw/cd
OF 87cw/cd

OF 83cwl/cd
OF 85cw/cd
OF 8Ecw/cd

OF 8Ccw/cd

Instruction
JNZrel8
JOrel8
JPrel8
JPErel8
JPOrel8
JSrel8
JZrel8
JArell6/32
JAErell16/32
JBrell6/32
JBErell6/32

JCrel16/32
JErell6/32
JZrell6/32
JGrell6/32
JGErell6/32
JLrell6/32
JLErel16/32

JNATrell6/32

JNAErel16/32

JNBrel16/32

JNBErel16/32

JNCrell6/32
JNErell16/32
IJNGrel16/32

Clocks
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3

7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3

7+m,3
7+m,3
7+m,3
7+m,3

7+m,3
7+m,3
7+m,3

JNGErell16/32 7+m,3

Description

Jump short if not zero (ZF=0)

Jump short if overflow (OF=1)

Jump short if parity (PF=1)

Jump short if parity even (PF=1)

Jump short if parity odd (PF=0)

Jump short if sign (SF=1)

Jump short if zero (ZF = 1)

Jump near if above (CF=0 and ZF=0)
Jump near if above or equal (CF=0)
Jump near if below (CF=1)

Jump near if below or equal (CF=1 or
ZF=1)

Jump near if carry (CF=1)

Jump near if equal (ZF=1)

Jump near if 0 (ZF=1)

Jump near if greater (ZF=0 and SF=0F)
Jump near if greater or equal (SF=0F)
Jump near if less (SF NOT = OF)

Jump near if less or equal (ZF=1 and SF
NOT = OF)

Jump near if not above (CF=1 or ZF=1)
Jump near if not above or equal (CF=1)
Jump near if not below (CF=0)

Jump near if not below or equal (CF=0 and
ZF=0)

Jump near if not carry (CF=0)

Jump near if not equal (ZF=0)

Jump near if not greater (ZF=1 or SF NOT
= OF)

Jump near if not greater or equal

(SF NOT = OF)

NOTE: The first clock count is for the true condition (branch taken); the second clock count is for the false
condition (branch not taken). rel16/32 indicates that these instructions map to two; one with a 16-bit relative
displacement, the other with a 32-bit relative displacement, depending on the operand size attribute of the
instruction. The assembler does not allow an operand override for relative jumps.

300

Chapter 6

Processor Instructions

Jcc

Opcode
OF 8Dcw/cd
OF 8Fcw/cd

OF 81cw/cd
OF 8Bcwi/cd
OF 89cw/cd
OF 85cw/cd
OF 80cw/cd
OF 8Acwi/cd
OF 8Acw/cd
OF 8Bcwi/cd
OF 88cw/cd
OF 84cw/cd

Instruction
JNL rel16/32
JNLErel16/32

JNOrel16/32
JNPrell16/32
JNSrel16/32
JNZrell16/32
JOrell16/32
JPrel16/32
JPErel16/32
JPOrel16/32
JSrel16/32
JZrell6/32

Clocks
7+m,3
7+m,3

7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3
7+m,3

Description
Jump near if not less (SF=OF)

Jump near if not less or equal (ZF=0
and SF=0F)

Jump near if not overflow (OF=0)
Jump near if not parity (PF=0)
Jump near if not sign (SF=0)
Jump near if not zero (ZF=0)
Jump near if overflow (OF=1)
Jump near if parity (PF=1)

Jump near if parity even (PF=1)
Jump near if parity odd (PF=0)
Jump near if sign (SF=1)

Jump near if 0 (ZF=1)

NOTE: The first clock count is for the true condition (branch taken); the second clock count is for the false
condition (branch not taken). rel16/32 indicates that these instructions map to two; one with a 16-bit relative
displacement, the other with a 32-bit relative displacement, depending on the operand size attribute of the
instruction. The assembler does not allow an operand override for relative jumps.

Operation

IF condition THEN

EIP := EIP + SignExtend(

IF OperandSize = 16 THEN
EIP := EIP AND O0000FFFFH;

ASM386 Assembly Language Reference

rel8/rel16/rel32)

Chapter 6

301

Jcc

Discussion

Conditional jumps (exce@ECXZ andJCXZ) test the flags which have been set by

a previous instruction. If the given condition is true, a jump is made to the location
(label) specified as the operand. The conditions for each mnemonic are
parenthesized in the Description column of the preceding table. The terms less an
greater are used for comparisons of signed integers; above and below are used for
unsigned integers.

Instruction coding is most efficient when the target for the conditional jump is in
the current code segment and within

-128 to +127 bytes of the next instruction's first byte. The jump can also target a
label in the range:

o -32768to +32767 for @SE16 code segment.
o -281to (+21-1) for aUSE32code segment.

When the target for the conditional jump is a far label (in a different segment), use
the opposite case of the jump instruction (U8.andJNE), and then access the
target with an unconditional jump to the far label. For example, you cannot code:

JZ FARLABEL
You must instead code:

JNZ BEYOND
BEYOND:
JMP FARLABEL

The assembler provides more than one mnemonic for most of the conditional jump
opcodes because there are several interpretations for a particular state of the flags.
For example, use JE for a jump when two characters compared in AX are equal.
Or, uselZ (a synonym fodE) for a jump when the result is 0 if AX A8\Ded with

a bit field mask.

Use J(E)CXZ within a conditional loop. The conditional loop instructions use an
implicit limiting count in the ECX or CX register, and J(E)CXZ tests the contents
of (E)CX for 0. (The other Jcc instructions test the flags.) J(E)CXZ is useful at the
beginning of a conditional loop that terminates with a conditional loop instruction
(such as. OOPNETARGET_LABE). J(E)CXZ prohibits entry to such a loop if

(E)CX equals 0; otherwise, the loop would execute 32G or 64K times.

Flags Affected
None
302 Chapter 6 Processor Instructions

Jcc

Exceptions by Mode

Protected
#GP(0) if the offset jumped to is beyond the limits of the code segment

Real Address

None

Virtual 8086

None

ASM386 Assembly Language Reference Chapter 6 303

JMP

JMP Jump
Opcode Instruction
EBcb JMPrel8
E9cw JMPrell6
FF /4 JMPr/m16
EAcd JMPptrl6:16
EAcd JMPptrl6:16
EAcd JMPptrl6:16
EAcd JMPptrl6:16
FF /5 JMPmM16:16
FF /5 JMPmM16:16
FF /5 JMPmM16:16
FF /5 JMPmM16:16
E9cd JMPrel32
FF /4 JMPr/m32
EAcp JMPptr16:32
EAcp JMPptr16:32
EAcp JMPptr16:32
EAcp JMPptr16:32
FF /5 JMPmM16:32
FF /5 JMPmM16:32
FF /5 JMPmM16:32
FF /5 JMPmM16:32

Clocks
7+m
7+m

7+m/10+m
12+m,pm=27+4m

pnF45+m
prF218-31F
prF218-31F
43+m,pm=31+mn

prF49+4m

pre223-317

pre223-317
7+m

7+m,10+m
124m,pm=27+m

pn¥45+m
prE218-31%
prE218-31%
43+m,pm=31+m

prF49+m
pre223-317
pre223-317

T See also: 80386 Programmer's Reference Manual

304

Chapter 6

Description
Jump short

Jump near, displacement relative to
next instruction

Jump near indirect

Jump intersegment, 4-byte
immediate address

Jump to call gate, same privilege
Jump via task state segment
Jump via task gate

Jumpr/m16:16indirect and
intersegment

Jump to call gate, same privilege
Jump via task state segment
Jump via task gate

Jump near, displacement relative to
next instruction

Jump near, indirect

Jump intersegment, 6-byte
immediate address

Jump to call gate, same privilege
Jump via task state segment
Jump via task gate

Jump intersegment, address/at
dword

Jump to call gate, same privilege
Jump via task state segment
Jump via task gate

Processor Instructions

JMP

Operation
IF instruction = relative JMP (* rel8/16/32 operand*) THEN
EIP :=EIP + rel8/16/32;

IF protected mode AND destination address > its segment limit
THEN #GP(0);
IF OperandSize = 16 THEN
EIP := EIP AND 0000FFFFH;
ENDIF; (*relative JIMP*)
IF instruction = near indirect JMP (* r/m16/m32 operand*) THEN
IF OperandSize = 16 THEN
EIP:=[r/m16 1 AND 0000FFFFH;
ELSE (*OperandSize = 32*)
EIP :=[r/m32 ;
ENDIF; (*near indirect IMP¥)
IF (PE =0 OR (PE = 1 AND VM = 1)) (*real address or virtual 8086

mode*) AND instruction = far JMP (* m/ptr16:16/32 operand*) THEN
IF operand = m16:16 OR m16:32 (*indirect*) THEN
IF OperandSize = 16 THEN
CS:IP:=[mi16:167;

EIP := EIP AND 0000FFFFH; (*clear upper 16-bits*)
ELSE (*OperandSize = 32*)

CS:EIP = m16:32];
ENDIF; (* m16:16 or m16:32 indirect IMP¥)
IF operand = ptrl6:16 or ptrl6:32 (*absolute IMP*) THEN
IF OperandSize = 16 THEN
CS:IP := ptri6:16

EIP := EIP AND 0000FFFFH; (*clear upper 16-bits*)
ELSE (*OperandSize = 32*)
CS:EIP = ptri6:32
ENDIF; (* ptrl6:16 or ptr16:32 absolute IMP¥)

IF (PE = 1 AND VM = 0) (*protected mode*)
AND instruction = far JIMP THEN
IF operand = m16:16 OR m16:32 (*indirect*) THEN
(*check access of dword effective address*)
IF limit violation THEN #GP(0);
ENDIF; (*check access*)
IF destination selector is null THEN #GP(0);
IF destination selector index NOT within its descriptor table limits
THEN #GP(selector);
(*Examine AR of destination descriptor: *)
IF invalid AR THEN #GP(selector);
ELSE (*depending on AR value: *)

ASM386 Assembly Language Reference Chapter 6

305

JMP

306

GOTO CONFORMING_CODE_SEGMENT,;
GOTO NONCONFORMING_CODE_SEGMENT;
GOTO CALL_GATE;

GOTO TASK_GATE;

GOTO TASK_STATE_SEGMENT,;

CONFORMING_CODE_SEGMENT:
IF target_segment DPL > CPL or
gate DPL < Max(CPL,RPL) THEN #GP(selector);
IF segment NOT PRESENT THEN #NP(selector);
IF target_offset NOT within code segment limit THEN #GP(0);
IF OperandSize = 32 THEN
Load CS:EIP from destination pointer;
ELSE
Load CS:IP from destination pointer;
Load CS cache with new segment descriptor;

NONCONFORMING_CODE_SEGMENT:
IF gate DPL < Max(CPL,RPL) THEN #GP(selector);
IF target_segment DPL NOT = CPL THEN #GP(selector);
IF segment NOT PRESENT THEN #NP(selector);
IF target_offset NOT within code segment limit THEN #GP(0);
IF OperandSize = 32 THEN
Load CS:EIP from destination pointer;
ELSE
Load CS:IP from destination pointer;
Load CS cache with new segment descriptor;
RPL (*of CS*) := CPL;
CALL_GATE:
IF descriptor DPL < CPL THEN #GP(gate selector);
IF descriptor DPL < gate selector RPL THEN
#GP(gate selector);
IF gate NOT PRESENT THEN #NP(gate selector);
(*Examine selector to code segment in call gate descriptor: *)
IF selector is null THEN #GP(0);
IF selector NOT within its descriptor table limits THEN
#GP(CS selector);
IF descriptor AR indicates non-code segment THEN
#GP(CS selector);
IF nonconforming AND
code segment descriptor DPL NOT = CPL THEN
#GP(CS selector);
IF conforming AND
code segment descriptor DPL > CPL THEN

Chapter 6

Processor Instructions

JMP

#GP(CS selector);
IF code segment NOT PRESENT THEN #NP(CS selector);
IF target_offset NOT within code segment limit THEN
#GP(0);
(*END check code segment selector in call gate descriptor*)
IF OperandSize = 32 THEN
Load CS:EIP from call gate;
ELSE
Load CS:IP from call gate;
Load CS cache with new code segment descriptor;
RPL (*of CS*) := CPL;

TASK_GATE:
IF gate descriptor DPL < CPL THEN #TS(gate selector);
IF gate descriptor DPL < gate selector RPL THEN
#TS(gate selector);
IF task gate NOT PRESENT THEN #NP(gate selector);
(*Examine selector to TSS given in task gate descriptor: *)
IF selector specifies local in local/global bit THEN
#TS(TSS selector);

IF index NOT within GDT limits THEN #TS(TSS selector);
(*END check TSS selector given in task gate descriptor*)
SwitchTasks (*without nesting*) to TSS;

IF (E)IP NOT within code segment limit THEN #TS(0);
TASK_STATE_SEGMENT:

IF TSS DPL < CPL THEN #TS(TSS selector);

IF TSS DPL < TSS selector RPL THEN #TS(TSS selector);

SwitchTasks (*without nesting*) to TSS;

IF (E)IP NOT within code segment limit THEN #TS(0);

ASM386 Assembly Language Reference Chapter 6 307

JMP

Discussion

TheJMPinstruction transfers control to a different point in the instruction stream
without recording return information.

The assembler automatically generates the correct form and sets the operand size
attribute of the instruction according to the type of label:

Table 6-20. JMP Label Types, Operand Sizes and Instructions

Operand

Size Instruction Chosen Label Type

T E8 cd JMP rel8 NEAR (short within code segment)

T E9 cw JMP rel16 NEAR within USE16 code segment

T E9 cd JMP rel32 NEAR within USE32 code segment

T FF /4 JMP r16 NEAR (label in register and USE16 code segment)
T FF /4 JMP r32 NEAR (label in register and USE32 code segment)
16 FF /4 JMP m16 memory indirect NEAR USE16 code segment

32 FF /4 JMP m32 memory indirect NEAR USE32 code segment

16 FF /5 JMP m16:16 memory indirect FAR USE16 code segment

32 FF /5 JMP m16:32 memory indirect FAR USE32 code segment

16 EA cd JMP ptr16:16 FAR to USE16 code segment

32 EA cp JMP ptr16:32 FAR to USE32 code segment

T The operand size attribute defaults to the USE attribute of the code segment.

308

Jumps with labels of typem16 , /m32 , rel8 , rel16 , andrel32 are near
jumps. They do not involve changing the segment register value.

JMPrel8 ,IMPrell6 , andJMPrel32 determine the destination by adding an

offset to the address of the instruction following iM®. Therel/16 form is used

when the instruction's operand size attribute is 16-bUis& {6 segment only);

rel32 is used when the operand size attribute is 32-bs&€82 segment only).

The result is stored in the 32-bit EIP register. The upper 16-bits of EIP are cleared
for arel16 operand so that the offset does not exceed 16-bits.

JMPr/m16 andJMPr/m32 specify a register or memory location from which the
absolute offset is fetched. The number of bits in the offset depends on the operand
size attribute.

JMPptr16:16 andJMPptr16:32 use a 4-byte or 6-byte operand as a long
pointer to the destinationIMP m16:16 andJMP m16:32 fetch the long pointer
from the memory location specified (indirection).

Chapter 6 Processor Instructions

JMP

In real address or virtual 8086 mode, the long pointer provides 16-bits for the CS
register and 16- or 32-bits for the EIP register (depending on the operand size
attribute). In protected mode, the long pointer formaw check the access rights
(AR) in the descriptor indexed by the selector part of the long pointer. Depending
on the value of ARJMP performs one of the following control transfers:

* Ajump to a code segment at the same privilege level
* Ajump to a conforming code segment (at a more privileged level)
* Atask switch
See also: Protected mode control trans®&0886 Programmer's Reference
Manual
Flags Affected

All if a task switch takes place; none if no task switch occurs
Exceptions by Mode

Protected
Near direct jumps: #GP(0) if the label is beyond the code segment limits

Near indirect jumps: #GP(0) for an illegal memory operand effective address in the
CS, DS, ES, FS, or GS segments: #SS(0) for an illegal address in the SS segment;
#GP if the indirect offset obtained is beyond the code segment limits; #PF(fault-
code) for a page fault

Far jumps: #GP, #NP, #SS, and #TS, as indicated in the Operation section

Real Address

Interrupt 13 if any part of the operand would be outside of the address space from 0
to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 309

LAHF

LAHF Load Flags into AH Register

Opcode Instruction Clocks Description

9F LAHF 2 Load AH with flags SF ZF xx AF xx PF
xx CF

Operation

(AH) := (SF):(ZF):xx:(AF):xx:(PF):xx:(CF);

Discussion

LAHF transfers the low byte of the flag dword to AH. The bits, fn®&Bto LSB,
are sign, zero, indeterminate, auxiliary, carry, indeterminate, parity, indeterminate,
and carry.

Flags Affected

None
Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

310 Chapter 6 Processor Instructions

LAR

LAR Load Access Rights

Opcode Instruction Clocks Description
OF 02 /r LARr16,r/mi6 pnel5/16 rl6 :=r/ml6masked by FFOO
OF 02 /r LARr32,r/m32 pnel5/16 r32:=r/m32masked by 00FxFFOO0

Operation

IF selector index NOT within its table limits
OR ((descriptor (*selected by Src*) does
NOT indicate conforming code segment)
AND (CPL > DPL (*of descriptor*)
OR RPL (*of Src*) > DPL))
OR
descriptor (*selected by Src*) is Invalid
(*see Table 6-21%)

THEN
ZF :=0;
ELSE
ZF:=1;

temp := second dword of selected descriptor;
IF OperandSize = 32 THEN

Dest := temp AND O0OFxFFOOH,;
ELSE (*OperandSize = 16%)

Dest := (Truncate(temp)) AND FFOOH,;

Discussion

LAR loads the destination register (first operand) with the segment descriptor's
access rights that it obtains from the second operand; the second operand should be
a selector.LAR clears ZF if:

e The selector (second operand) index is outside its table limits.

* The associated descriptor does not indicate a conforming code segment, and
the current privilege level or the selector's privilege level does not permit
access to the descriptor.

* The AR of the descriptor has an invalid type field value (see Table 6-21).

OtherwiseLAR sets ZF and loads a masked form of the second dword of the
descriptor.LAR masks this dword with 00FxFFOO0 and loads the result (or its lower
16-bits) into the destination register. The X in the 32-bit mask value indicates that
the upper 4-bits of the limit field are undefined in the value loaddd\By

ASM386 Assembly Language Reference Chapter 6 311

LAR

All code and data segment descriptors are validA® The valid/invalid system
descriptor types forAR are the following:

Table 6-21. System Descriptor Types for LAR

Type Valid/Invalid Name

0 Invalid Invalid

1 Valid Available 286 processor TSS

2 Valid LDT

3 Valid Busy 286 processor TSS

4 Valid 286 processor call gate

5 Valid 286/Intel386 processor task gate

6 Valid 286 processor trap gate

7 Valid 286 processor interrupt gate

8 Invalid Invalid

9 Valid Available Intel386 processor TSS

A Invalid Invalid

B Valid Busy Intel386 processor TSS

C Valid Intel386 processor call gate

D Invalid Invalid

E Valid Intel386 processor trap gate

F Valid Intel386 processor interrupt gate
Flags Affected

ZF as described in the Discussion section
Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for
page fault

312 Chapter 6 Processor Instructions

LAR

Real Address

Interrupt 6;LARis not recognized in Real Address Mode

Virtual 8086

Same as Real Address Mode

ASM386 Assembly Language Reference Chapter 6 313

LDS/LES/LFS/LGS/LSS

LDS/LES/LFS/LGS/LSS
Opcode Instruction Clocks
C5/r LDSr16,m16:16 7 pm=22
C5/r LDSr32,m16:32 7 pm=22
OF B2/r LSSr16,m16:16 7 pm=22
OF B2/r LSSr32,m16:32 7 pm=22
Calr LESr16,m16:16 7 pm=22
Calr LESr32,m16:32 7 pm=22
OF B4/r LFSr16,m16:16 7 pn=25
OF B4/r LFSr32,m16:32 7, pE25
OF B5/r LGSr16,m16:16 7, pme25
OF B5/r LGSr32,m16:32 7, pe25

Operation

CASE instruction OF
LSS: Sreg is SS; (*load SS register*)
LDS: Sreg is DS; (*load DS register*)
LES: Sreg is ES; (*load ES register*)
LFS: Sreg is FS; (*load FS register*)
LGS: Sreg is GS; (*load GS register*)
ENDCASE;
IF mode = protected THEN
GOTO CHECK_SREG_LOAD;
ELSE

CHECK_SREG_LOAD:
IF Sreg = SS THEN

314

GOTO LOAD_SREG;

Load Full Pointer

Description

Load DS:16 with pointer from memory
Load DS:32 with pointer from memory
Load SS16 with pointer from memory
Load SS32 with pointer from memory
Load ES16 with pointer from memory
Load ES:32 with pointer from memory
Load FS16 with pointer from memory
Load FS32 with pointer from memory
Load GS16 with pointer from memory
Load GS32 with pointer from memory

IF selector is null THEN #GP(0);
IF selector index NOT within its descriptor table limits THEN

#GP(selector);

IF selector RPL NOT = CPL THEN #GP(selector);
AR must indicate writable data segment

ELSE #GP(selector);
IF DPL (*in AR*) NOT = CPL THEN #GP(selector);
IF segment NOT PRESENT THEN #NP(selector);
GOTO LOAD_SREG;

Chapter 6

Processor Instructions

LDS/LES/LFS/LGS/LSS

(*END checks protected mode, load SS¥*)
IF Sreg = DS OR ES OR FS OR GS THEN
IF selector index NOT within its descriptor table limits THEN
#GP(selector);
AR must indicate data or readable code segment
ELSE #GP(selector);
IF data or nonconforming code segment AND
RPL > DPL (*in AR*) OR CPL > DPL THEN
#GP(selector);
IF segment NOT PRESENT THEN #NP(selector);
GOTO LOAD_SREG;
(*END checks protected mode, load DS, ES, FS, or GS*)

LOAD_SREG:
IF OperandSize = 16 THEN
r16 := [EffectiveAddress]; (* 16-bit transfer *)
Sreg := ([EffectiveAddress] + 2); (* 16-bit transfer *)
ELSE (*OperandSize = 32*)
r32 := [EffectiveAddress]; (* 32-bit transfer *)
Sreg := ([EffectiveAddress] + 4); (* 16-bit transfer *)
ENDIFELSE; (*OperandSize = 16 or 32%)
IF mode = protected THEN
Load Sreg cache with descriptor;

Discussion

LDS/LES/LFS/LGS/LSS read a full pointer (second operand) from memory and
store it in the selected segment register:register pair. Depending on the instruction,
the 16-bit full pointer is loaded into SS, DS, ES, FS, or GS.rTherri6 (first
operand) is loaded with 32- or 16-bits depending on its operand size attribute.

When a protected mode assignment is made to one of the segment registers, its
associated segment register cache is also loaded. The data for the cache is obtained
from the descriptor table entry for the selector.

LGS/LDS/LES/LFS can load a null selector (values 0000-0003) into the DS, ES,
FS, or GS registers without causing a protection exception. However, the #GP(0)
exception is raised by any subsequent attempt to access a segment whose
corresponding segment register has a null selector. (No memory reference to the
segment occurs.)

Flags Affected

None

ASM386 Assembly Language Reference Chapter 6 315

LDS/LES/LFS/LGS/LSS

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #UD if the second
operand is a register; #GP(0) if a null selector is loaded into SS; #PF(fault-code) for
a page fault

Real Address

Interrupt 6 if the second operand is a register; Interrupt 13 if any part of the
operand would lie outside the effective address space from 0 to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

316 Chapter 6 Processor Instructions

LEA

LEA Load Effective Address

Opcode Instruction Clocks Description

8D /r LEA r16,m 2 Store effective address forin register16
8D /r LEA r32,m 2 Store effective address forin registenr32
Operation

IF OperandSize = 16 AND AddressSize = 16 THEN

ri6 :=Addr(),
IF OperandSize = 16 AND AddressSize = 32 THEN

r16 := Truncate(Addr(m); (*32-bits truncated to 16-bits*)
IF OperandSize = 32 AND AddressSize = 16 THEN

r32 := ZeroExtend(Addr(m); (*16-bits extended to 32-bits*)
IF OperandSize = 32 AND AddressSize = 32 THEN

r32 :=Addr(),

Discussion

LEA calculates the offset effective address and loads it into the 32- or 16-bit register
specified as the first operand. The first operand (destination) detergiles
operand size attribute (represented by OperandSize in the Operation algorithm).
TheUSEattribute of the segment that contaiiE\'s second operand (source)
determines the address size attribute (represented by AddressSize in the Operation
algorithm). If the address size attribute does not match the operand size attribute,
LEA truncates or zero-extends the second operand to fit the destination.

Flags Affected

None
Exceptions by Mode

Protected

#UD if the second operand is a register

ASM386 Assembly Language Reference Chapter 6 317

LEA

Real Address

Interrupt 6 if the second operand is a register

Virtual 8086

Same as Real Address Mode

318 Chapter 6 Processor Instructions

LEAVE

LEAVE High Level Procedure Exit

Opcode Instruction Clocks Description
C9 LEAVE 4 Set SP to BP, then pop BP
C9 LEAVE 4 Set ESP to EBP, then pop EBP
Operation
IF StackAddrSize = 16 THEN
SP = BP;
BP := Pop();
ELSE (*StackAddrSize = 32%)
ESP = EBP;
EBP := Pop();
Discussion

LEAVEreverses the actions of tB8ITERinstruction. By copying the frame pointer
to the stack pointet,EAVEreleases the stack space used by a procedure for its
local variables. The old frame pointer is popped into BP or EBP, restoring the
caller's frame. A subsequeRET n instruction removes any parameters that were
passed via the stack to the exiting procedure.

Flags Affected

None
Exceptions by Mode

Protected

#SS(0) if (E)BP does not point to a location within the limits of the current stack
segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 319

LGDT/LIDT

LGDT/LIDT Load Global/lnterrupt Descriptor Table Register

Opcode Instruction Clocks Description
OF01/2 LGDTm 11 Loadminto GDTR
OF01/3 LIDTm 11 Loadminto IDTR
Operation

(*OperandSize is determined by the USE attribute of the code
segment*)
IF instruction = LIDT THEN

IF OperandSize = 16 THEN

IDTR.Limit:Base := m16:24; (*24-bits of base loaded*)
ELSE
IDTR.Limit:Base := m16:32;

ELSE (*instruction = LGDT?)
IF OperandSize = 16 THEN

GDTR.Limit:Base := m16:24; (*24-bits of base loaded*)
ELSE
GDTR.Limit:Base := m16:32;
Discussion

TheLGDTandLIDT instructions load a linear base address and limit value from a
6-byte operand in memory into t@DTRor IDTR, respectively.LGDT/LIDT load

the low-order word of the operand into the limit field. If a 32-bit operand is used,
LGDT/LIDT load the high-order dword of the 6-byte operand as the base field. If a
16-bit operand is usedGDT/LIDT load the first 3 bytes of the high-order dword as
the base field; the high-order 8-bits of the 6-byte operand are not used.

LGDTandLIDT are privileged (level 0) instructions that appear in operating system
software. They are the only instructions that directly load an actual linear address
(i.e., not a segment relative address) in processor protected ®OE/LIDT are

valid in real address mode to allow power-up initialization for protected mode.

The counterpart instructions foGDT/LIDT areSGDT/SIDT. These instructions
always store into all 48-bits of the 6-byte operand. The proce&r/SIDT

write the high-order 8 address bits for both 32- and 16-bit operands. If a preceding
LGDT/LIDT loaded a 16-bit operan8GDT/SIDT store the upper 8-bits as zeros.

The 286 process@GDT/SIDT left the upper 8-bits undefined in this case.

320 Chapter 6 Processor Instructions

LGDT/LIDT

Flags Affected

None
Exceptions by Mode
Protected

#GP(0) if the current privilege level is not 0; #UD if the source operand is a
register; #GP(0) for an illegal memory operand effective address in the CS, DS, ES,

FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-
code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the address space from 0 to
OFFFFH; Interrupt 6 if the source operand is a register

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 321

LGDTW/LGDTD/LIDTW/LIDTD

LGDTW/LGDTD/LIDTW/LIDTD

Load Global/Interrupt Descriptor Table Register with WORD/DWORD Operand

Opcode Instruction Clocks Description
OF 01 /2 LGDTWm1l6 11 Loadml6into GDTR
OF 01 /2 LGDTDm32 11 Loadm32into GDTR
OF 01 /2 LIDTWm16 11 Loadm16into IDTR
OF 01 /2 LIDTDmM32 11 Loadm32into IDTR
Operation
IF instruction = LIDTW THEN
IDTR.Limit:Base = m16:24 ; (* 24-bits of base loaded *)
IF instruction = LIDTD THEN
IDTR.Limit:Base = m16:32
IF instruction = LGDTW THEN
GDTR.Limit:Base = m16:24 ; (* 24-bits of base loaded *)
IF instruction = LGDTD
GDTR.Limit:Base = m16:32
Discussion

TheLGDTWLGDTD, LIDTW, andLIDTD instructions are variants of th&DTand
LIDT instructions. They load a linear base address and limit value from 6 bytes in
memory into theGDTRor IDTR, respectively.

These variants allow the 16-bit or 32-bit form of the instructions to be used without
hard-coding address and operand prefixes to override the USE attribute currently ir
effect.

For example, since the processor starts upSE16, real address mode, if you are
writing in aUSE32 code segment for flat model, théDTWANALIDTW instructions
can be used to force the correct override prefixes.

The variants automatically generate any operand or address prefixes that are
necessary as follows:

322 Chapter 6 Processor Instructions

LGDTW/LGDTD/LIDTW/LIDTD

USE16 USE16 Address USE32 Operand USE32 Address
Instruction Operand Prefix Prefix Prefix Prefix
LGDTW/LIDTW NO NO YES YES
LGDTD/LIDTD YES YES NO NO

See also: LGDT/LIDT instructions for further discussion, flags affected, and
exceptions, in this chapter

ASM386 Assembly Language Reference Chapter 6 323

LLDT

LLDT Load Local Descriptor Table Register

Opcode Instruction Clocks Description
OF 00 /2 LLDT r/m16 20 Load selector r/m16 into LDTR
Operation

IF Tl (*of selector*) NOT =0

OR descriptor (*indexed by selector*) NOT an LDT THEN
#GP(selector);

IF LDT NOT PRESENT THEN #NP(selector);

IF selector NOT within GDT limits THEN #GP(0);

LDTR := Src;

Discussion

LLDT loads the Local Descriptor Table register (LDTR). The word operand
(memory or register) tbLDT should contain a selector to the Global Descriptor
Table (GDT). The GDT entry should be a Local Descriptor Table descriptor. If so,
then the LDTR is loaded from the entry. The selector operand can be 0; if so, the
LDTR is marked invalid. All subsequent descriptor references throughfat

(except byLAR, VERR VERWOr LSL) cause a #GP exception. LLDT does not affect
the descriptor cache entries for DS, ES, SS, FS, GS, and CS, nor does it change th
LDT field in the task state segment. The operand size attribute has no effect on this
instruction. LLDT is a privileged (level 0) instruction used only in operating

system software.

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) if the current privilege level is not 0; #GP(selector) if the selector operand
does not point into the Global Descriptor Table, or if the entry in the GDT is not a
Local Descriptor Table; #GP(0) iDT selector is outside GDT limits;

#NP(selector) if th&DT descriptor is not present; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

324 Chapter 6 Processor Instructions

LLDT

Real Address

Interrupt 6;LLDT is not recognized in Real Address Mode

Virtual 8086

Same as Real Address Mode (because the instruction is not recognized, it will not
execute or perform a memory reference)

ASM386 Assembly Language Reference Chapter 6 325

LMSW

LMSW Load Machine Status Word

Opcode Instruction Clocks Description
OF01/6 LMSWr/ml16 10/13 Load/m16into machine status word in CRO

Operation
MSW := r/m16 ; (*16-bits stored in MSW of CRO*)

Discussion

LMSWoads the machine status word from the source operand into IGFEWS a
privileged (level 0) instruction used only in operating system software. The
operand size attribute has no effectL.Msw

LMSWean be used to switch to protected mode. If itMSWmust be followed by a
jump to flush the instruction queueMSwwill not switch back to real address
mode.

This instruction is provided for compatibility with the 286 processosSwill
not affect the ET bit. In new processor programs M@eCRO rather thabMSW

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) if the current privilege level is not 0; #GP(0) for an illegal memory operand
effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal
address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

326 Chapter 6 Processor Instructions

LOCK

LOCK Assert Bus LOCK# Signal Prefix

Opcode Instruction Clocks Description
FO LOCK 0 Assert bus LOCK# signal for the next instruction

Discussion

TheLOCKprefix causes the process@CK#signal to be asserted during execution
of the instruction that follows it. In a multiprocessor environment, this signal
ensures that the processor has exclusive use of any shared memobOEKites
asserted.

TheLOCKprefix functions only with the following instructions:

BT,BTS,BTR,BTC mem,reg/imm
CMPXCHG,XADD,XCHG mem,reg
XCHG reg,mem
ADD,ADC,SBB,SUB,AND,OR,XORmem,reg/imm
NOT,NEG,INC,DEC mem

A LOCKprefix to any other instruction causes an undefined opcode exception.
XCHGalways assertsOCK#regardless of the presence or absence af@iax
prefix.

The integrity of the lock is not affected by the alignment of the memory field.
Memory locking is observed for arbitrarily misaligned fields.

Locked access is not assured if another processor is concurrently executing an
instruction that has one of the following characteristics:

* The instruction is not preceded by@CKprefix.
e The instruction is not in the preceding list.

* The instruction specifies a memory operand that does not exactly overlap the
destination operand. Locking is not guaranteed for partial overlap, even if one
memory operand is wholly contained within another.

The 8086, 80186, and 286 processors implement a superset of the proo€ssor
function. 8086/80186/286 processor programs that depeb@©kimay not
execute properly if transported to the processor.

Flags Affected

None

ASM386 Assembly Language Reference Chapter 6 327

LOCK

Exceptions by Mode

Protected

#GP(0) if the current privilege level is higher (less privileged) tt ; #UD if
LOCKIs used with an instruction not listed in the Discussion section; other
exceptions can be generated by the subsequent (locked) instruction

Real Address

Interrupt 6 iIfLOCKis used with an instruction not listed in the Discussion section;
exceptions can still be generated by the subsequent (locked) instruction

Virtual 8086

Same as Real Address Mode

328 Chapter 6 Processor Instructions

LODS/LODSB/LODSW/LODSD

LODS/LODSB/LODSW/LODSD Load String Operand

Opcode Instruction Clocks Description

AC LODS m8 5 Load byte [(E)SI] into AL, update (E)SI

AD LODS m16 5 Load word [(E)SI] into AX, update (E)SI

AD LODS m32 5 Load dword [(E)SI] into EAX, update (E)SI
AC LODSB 5 Load byte DS:[(E)SI] into AL, update (E)SI
AD LODSW 5 Load word DS:[(E)SI] into AX, update (E)SI
AD LODSD 5 Load dword DS:[(E)SI] into EAX, update (E)SI

Operation

IF AddressSize = 16 THEN
Use Sl for Srcindex;
ELSE (*AddressSize = 32*)
Use ESI for Srcindex;
IF byte instruction THEN
AL := [SrcIndex]; (* byte load *)
IF DF = 0 THEN IncDec := 1 ELSE IncDec := -1;
ELSE
IF OperandSize = 16 THEN
AX :=[Srcindex]; (* word load *)
IF DF = 0 THEN IncDec := 2 ELSE IncDec := -2;
ELSE (* OperandSize = 32 *)
EAX := [Srcindex]; (* dword load *)
IF DF = 0 THEN IncDec := 4 ELSE IncDec := -4,
Srcindex := Srcindex + IncDec;

Discussion

LODSloads the AL, AX, or EAX register with the memory byte, word, or dword at
the location pointed to by Sl or ESI. The source index register advances after the
transfer is made. If the direction flag is@_pwas executed), it increments; if the
direction flag is 1 $TDwas executed), it decrements. The increment or decrement
is 1 if a byte is loaded, 2 if a word is loaded, or 4 if a dword is loaded.

If the address size attribute for this instruction is 16-bits, Sl is used for the source
index register; otherwise, the address size attribute is 32-bits, and ESI is the source
index register.

ASM386 Assembly Language Reference Chapter 6 329

LODS/LODSB/LODSW/LODSD

The address of the source data is determined solely by the contents of (E)SI, not by
theLODSoperand. Load the correct index value into (E)SI before exedudipg
TheUSEattribute of the code segment determines whether ESI or Sl is the source
index register.

The purpose of the operand is to validate segment addressability and to determine
the data type. The type of theDSoperand determines whether a byte, word, or
dword is moved. The segment addressability of the operand determines whether a
segment override byte is produced.

LODSB LODSWLODSDare synonyms for the byte, word, and dwo@dS
instructions. They are simpler, but they provide no type or segment checking.

UseLODSwithin aLOOPconstruct when further processing of data moved into AX
or AL is necessaryLODScan be preceded by tREPprefix, butREPjust uses
clocks withLODS If REPis specified, the repeat count is taken from EORE32
segment) or CXYSE16 segment).

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

330 Chapter 6 Processor Instructions

LOOP/LOOPcond

LOOP/LOOPcond Loop Control with (E)CX Counter

Opcode Instruction Clocks Description

E2cb LOOPrel8 11+m DEC count; jump short if count NOT =0

Elcb LOOPE-rel8 11+m DEC count; jump short if count NOT =0
and ZF =1

Elcb LOOPZrel8 11+m DEC count; jump short if count NOT =0
and ZF =1

EOcb LOOPNErel8 11+m DEC count; jump short if count NOT =0
and ZF =0

EOcb LOOPNZrel8 11+m DEC count; jump short if count NOT =0
and ZF =0

Operation

IF AddressSize = 16 THEN
CountReg := CX;
ELSE
CountReg := ECX;
CountReg := CountReg - 1;
IF instruction = LOOP THEN
BranchCond := CountReg NOT = 0;
ELSE
IF instruction = LOOPE OR LOOPZ THEN
BranchCond := (ZF = 1) AND (CountReg NOT = 0);
IF instruction = LOOPNE or LOOPNZ THEN
BranchCond := (ZF = 0) AND (CountReg NOT = 0);
ENDIFELSE; (*determine BranchCond*)
IF BranchCond THEN
IF OperandSize = 16 THEN

IP := IP + SignExtend(rel8);
ELSE (*OprandSize = 32%)
EIP := EIP + SignExtend(rel8);

ASM386 Assembly Language Reference Chapter 6 331

LOOP/LOOPcond

Discussion

LOOPdecrements the count register without changing any of the flags. Conditions
are then checked for the formiadOPbeing used. If the conditions are met, a
short jump is made to the label specified as.th@Poperand.

TheLOOPoperand must be a label in the range from 128 (decimal) bytes before the
instruction to 127 bytes ahead of the instruction.

Otherwise, the assembler cannot generate the 1-byte signed displacement requirec
by the instruction format.

TheUSEattribute of the segment determines the address size attribute. If the
address size attribute is 16-bits, the CX register is used as the count register;
otherwise the ECX register is used.

TheLOOPInstructions not only provide iteration control; they combine loop index
management with conditional branching. Use these instructions by loading an
unsigned iteration count into the count register, then codedb@at the end of a
series of instructions to be iterated. The destinatiaroafPis a label that points to
the beginning of the iteration.

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) if the offset jumped to is beyond the limits of the current code segment

Real Address

None

Virtual 8086

None

332 Chapter 6 Processor Instructions

LSL

LSL Load Segment Limit

Opcode Instruction
OF 03/r LSL r16,r/m16

OF 03/r LSL r32,r/m32
OF 03/r LSL r16,r/m16

OF 03/r LSL r32,r/m32

Operation

Clocks
pn¥20/21

pn¥20/21
pn¥25/26

pnE25/26

Description

Loadrl6 := segment limit, selector
r/m16 (byte granular)

Loadr32 := segment limit, selector
r/m32 (byte granular)

Loadrl6 := segment limit, selector
r/m16 (page granular)

Loadr32 := segment limit, selector
r/m32 (page granular)

IF selector index NOT within its table limits

OR ((descriptor (*selected by Src*) does

NOT indicate conforming code segment)
AND (CPL > DPL (*of selected descriptor*)
OR RPL (*of Src*) > DPL))

OR

descriptor (*selected by Src*) is Invalid

(*see Table 6-22%)
THEN

ZF :=0;
ELSE

ZF:=1;

temp := ZeroExtend(limit); (*of descriptor selected by Src*)
(*Convert page granularity to byte granularity*)
IF G(*granularity bit of descriptor*) = 1 THEN
temp := (ShiftLeft(temp,12)) OR OFFFH,;
IF OperandSize = 32 THEN

Dest := temp;
ELSE

Dest := Truncate(temp);

ASM386 Assembly Language Reference

Chapter 6

333

LSL

Discussion

334

LSL loads a segment limit (second operand) into a register; this operand should be
a selector.

LSL clears ZF if:
e The selector (second operand) index is outside its table limits.

* The associated descriptor does not indicate a conforming code segment, and
the current privilege level or the selector's privilege level does not permit
access to the descriptor.

e The access rights (AR) of the descriptor has an invalid type field value (see
Table 6-22).

Otherwise L SL sets ZF and loads the byte-granular segment limits from the
descriptor. Code and data segment descriptors are valiiforThe valid/invalid
system descriptor types fosL are:

Table 6-22. System Descriptor Types for LSL

Type Valid/Invalid Name

0 Invalid Invalid

1 Valid Available Intel286 processor TSS
2 Valid LDT

3 Valid Busy Intel286 processor TSS

4 Invalid Intel286 processor call gate

5 Invalid Intel286/Intel386 processor task gate
6 Invalid Intel286 processor trap gate

7 Invalid Intel286 processor interrupt gate
8 Invalid Invalid

9 Valid Available Intel386 processor TSS
A Invalid Invalid

B Valid Busy Intel386 processor TSS

C Invalid Intel386 processor call gate

D Invalid Invalid

E Invalid Intel386 processor trap gate

F Invalid Intel386 processor interrupt gate

LSL always loads the segment limit as a byte granular value. If the descriptor has &
page-granular segment limitSL will translate it to a byte-granular limit before
loading it in the destination register by shifting left 12 the 20-bit raw limit from the
descriptor, then ORing it with 00000FFFH.

Chapter 6 Processor Instructions

LSL

Flags Affected

ZF as described in the Discussion section
Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segments; #PF(fault-code) for
a page fault

Real Address

Interrupt 6;LSL is not recognized in Real Address Mode

Virtual 8086

Same as Real Address Mode

ASM386 Assembly Language Reference Chapter 6 335

LTR

LTR Load Task Register

Opcode Instruction Clocks Description
OF 00 /3 LTRr/m16 pnE23/27 Load/m effective address into
task register

Operation

IF Tl (*table index field of Src selector*) = 1 THEN
#GP(selector);

IF selector index NOT within GDT limits THEN #GP(selector);

IF descriptor (*selected by Src*) NOT TSS or
descriptor marked busy THEN #GP(selector);

IF B (*in descriptor*) = 1 THEN #GP(selector);

IF TSS NOT PRESENT THEN #NP(selector);

TR := r/mi6 ;

B (*in descriptor*) := 1;

Load TSS descriptor into TR cache;

Discussion

LTR loads the task register from the source register or memory location specified
by the operand. The operand is a selector fid@descriptor. The associatedS
descriptor in th&DTis then marked busy. A task switch does not octUR is a
privileged (level 0) instruction used only in operating system software. The
operand size attribute has no effect on this instruction.

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #GP(0) if the currer
privilege level is not 0; #GP(selector) if the object named by the source selector is
not aTSSor is already busy; #NP(selector) if theSis marked not present;
#PF(fault-code) for a page fault

336 Chapter 6 Processor Instructions

LTR

Real Address

Interrupt 6;LTR is not recognized in Real Address Mode

Virtual 8086

Same as Real Address Mode

ASM386 Assembly Language Reference Chapter 6 337

MOV

M OV Move Data

Opcode Instruction Clocks Description
88/r MOV r/m8,r8 2/2 Move byte register tdm byte
89/r MOV r/m16,r16 2/2 Move word register tdm word
89/r MOV r/m32r32 2/2 Move dword register tdm
dword
8AIr MOV r8,r/m8 2/4 Mover/m byte to byte register
8B/r MOV r16,r/m16 2/4 Mover/m word to word register
8B/r MOV r32,r/m32 2/4 Mover/m dword to dword
register
8CIr MOV r/m16,Sreg 2/2 Move segment register itom
word
8E/r MOV Sregr/m16 2/5, Move r/m word to
pmE18/19 segment register
AO MOV AL, moffs8 4 Move byte atgeg:offsetto AL
Al MOV AX, moffs16 4 Move word at ¢eg:offsétto AX
Al MOV EAX,moffs32 4 Move dword atgeg:offsetto

EAX

A2 MOV moffs§AL 2 Move AL to (seg:offset
A3 MOV moffs16AX 2 Move AX to (seg:offset
A3 MOV moffs32EAX 2 Move EAX to eeg:offset
BO +rb MOV reg8imm8 2 Move immediate byte to register
ib
B8 +rw MOV regl6imm16 2 Move immediate word to register
iw
B8 +rd MOV reg32imm32 2 Move immediate dword to
id register
C6ib MOV r/m8,imm8 2/2 Move immediate byte t@dm byte
C7iw MOV r/m16imm16 2/2 Move immediate word tom
word
C7id MOV r/m32imm32 2/2 Move immediate dword tdm
dword

NOTE: moffs8, moffs16, and moffs32 all consist of a simple offset relative to the segment base. The 8, 16, and
32 refer to the size of the data. The address size attribute of the instruction determines the size of the offset,
either 16- or 32-bits. Sreg is one of SS, DS, ES, FS, or GS.

338 Chapter 6 Processor Instructions

MOV

Operation

IF Dest NOT Sreg THEN
Dest := Src;
ELSE
IF mode NOT = protected THEN
Sreg = r/m16;
ELSE
GOTO CHECK_SREG_LOAD;

CHECK_SREG_LOAD:
IF Sreg = SS THEN
IF selector is null THEN #GP(0);
IF selector index NOT within its descriptor table limits THEN
#GP(selector);
IF selector RPL NOT = CPL THEN #GP(selector);
AR must indicate writable data segment
ELSE #GP(selector);
IF DPL (*in AR*) NOT = CPL THEN #GP(selector);
IF segment NOT PRESENT THEN #NP(selector);
(*Disable interrupts until end of following instruction*)
GOTO LOAD_SREG;
(*END checks protected mode, load SS*)
IF Sreg = DS OR ES OR FS OR GS THEN
IF selector index NOT within its descriptor table limits
THEN #GP(selector);
AR must indicate data or readable code segment
ELSE #GP(selector);
IF data or nonconforming code segment AND
RPL > DPL (*in AR*) OR CPL > DPL THEN
#GP(selector);
IF segment NOT PRESENT THEN #NP(selector);
GOTO LOAD_SREG;
(*END checks protected mode, load DS, ES, FS, or GS*)

LOAD_SREG:
Sreg = r/mié6 ;
Load Sreg cache with descriptor;

ASM386 Assembly Language Reference Chapter 6

339

MOV

Discussion

MOVcopies the second operand to the first operand.

In protected mode when the destination operand is a segment register (SS, DS, ES
etc.), then the associated register cache is also loaded. The data for the cache is
obtained from the descriptor table entry for the selector. A null selector (values
0000-0003) can be loaded into the DS, ES, FS, or GS registers without causing an
exception. However, the #GP(0) exception is raised by any subsequent attempt to
access a segment whose corresponding segment register has a null selector. (No
memory reference occurs.)

A MOMnto SS inhibits all interrupts until after the execution of the next instruction
(presumably amovinto (E)SP).

Flags Affected

None

Exceptions by Mode

Protected

#GP, #SS, and #NP for an invalid load into a segment register, as described in the
Operation section; #GP(0) if the destination is a nonwritable segment; #GP(0) for
an illegal memory operand effective address in the CS, DS, ES, FS, or GS
segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

340

Same as Real Address Mode; #PF(fault-code) for a page fault

Chapter 6 Processor Instructions

MOV

MOV Move to/from Special Registers

Opcode Instruction Clocks

OF 20/r MOV r32,CR0O/ 6
CR2/CR3

OF 22/r MOV CRO/CR2/ 10/4/5
CR3r32

OF 21/r MOV r32, 22
DRO-DR3

OF 21/r MOV r32, 14
DR6/DR7

OF 23/r MOV DRO-DR3r32 22

OF23/r MOV DR6/DR7r32 16

OF 24/r MOV r32,TR3/ —
TR4/TR5

OF 24/r MOV r32,TR6/TR7 12

OF 26/r MOV TR3/TR4/ —
TR5/32

OF 26/r MOV TR6/TR7r32 12

Operation

Dest := Src;
Discussion

Description
Move control register to register

Move register to control register
Move debug register to register
Move debug register to register

Move register to debug register
Move register to debug register
Move test register to register

(not available on Intel386 or 376
processors)

Move test register to register

Move register to test register (not
available on Intel386 or 376 processors)

Move register to test register

These forms oMOVstore or load the following special registers into or from a

general purpose register:

e Control registers CR0O, CR2, and CR3
« Debug registers DRO, DR1, DR2, DR3, DR6, and DR7
» Testregisters TR3, TR4, and TR5 (not available on Intel386 or 376 processors)

e Testregisters TR6 and TR7

32-bit operands are always used with these instructions, regardless of the operand
size attribute. ThesdO¥ must be executed at privilege level O or in real address
mode; otherwise, a protection exception will be raised.

ASM386 Assembly Language Reference

Chapter 6 341

MOV

The reg field within thévodRMoyte specifies which of the special registers in each
category is involved; the reg field value is identical to the integer suffix of the
special register name. The two bits in the mod field are always 11/nTHeeld
specifies the general register involved.

Flags Affected
OF, SF, ZF, AF, PF, and CF are undefined

Exceptions by Mode

Protected
#GP(0) if the current privilege level is not 0

Real Address

None

Virtual 8086

#GP(0) if instruction execution is attempted

342 Chapter 6 Processor Instructions

MOVS/MOVSB/MOVSW/MOVSD

MOVS/MOVSB/MOVSW/MOVSD Move String to String

Opcode Instruction Clocks Description

A4 MOVS m8m8 7 Move byte [(E)SI] to ES:[(E)DI]

A5 MOVS m16mi16 7 Move word [(E)SI] to ES:[(E)DI]

A5 MOVS m32 m32 7 Move dword [(E)SI] to ES:[(E)DI]
A4 MOVSB 7 Move byte DS:[(E)SI] to ES:[(E)DI]
A5 MOVSW 7 Move word DS:[(E)SI] to ES:[(E)DI]
A5 MOVSD 7 Move dword DS:[(E)SI] to ES:[(E)DI]
Operation

IF (instruction = MOVSD) OR (instruction has dword operands) THEN
OperandSize := 32; (*Assembler action*)
ELSE
OperandSize := 16;
IF AddressSize = 16 THEN
Use Sl for Srcindex and DI for Destlndex;
ELSE (*AddressSize = 32*)
Use ESI for Srcindex and EDI for Destindex;
IF byte type of instruction THEN
[Destindex] := [Srcindex];
IF DF = 0 THEN IncDec := 1 ELSE IncDec := -1;
ELSE
[Destindex] := [Srcindex];
IF OperandSize = 16 THEN
IF DF = 0 THEN IncDec := 2 ELSE IncDec
ELSE (*OperandSize = 32*)
IF DF = 0 THEN IncDec := 4 ELSE IncDec := -4;
Srcindex := Srcindex + IncDec;
Destindex := Destlndex + IncDec;

Ii
]
N

ASM386 Assembly Language Reference Chapter 6

343

MOVS/MOVSB/MOVSW/MOVSD

Discussion

MOV<opies the byte, word, or dword at [(E)SI] to the byte, word, or dword at
ES:[(E)DI]. The destination operand must be addressable from the ES register; no
segment override is possible for the destination. A segment override can be used
for the source operand; the default is DS.

The contents of (E)SI and (E)DI determine the source and destination addresses,
not theMOVSoperands. The purpose of the operands is to validate segment
addressability and to determine the data type. Load the correct index values into
(E)SI and (E)DI before executing tMOVvanstruction.

MOVSBMOVSywandMOVShare synonyms for the byte, word, and dwei@vs
instructions. They are simpler, but they provide no type checking and no way to
override the DS segment for the Sl source location.

After the data is moved, both (E)SI and (E)DI advance automatically. If the
direction flag is 0 (CLD was executed), the registers increment; if the direction flag
is 1 (STD was executed), the registers decrement. (E)SI and (E)DI are incremente
or decremented by 1 if a byte was moved, by 2 if a word was moved, or by 4 if a
dword was moved.

MOV<can be preceded by tREPprefix for block movement of (E)CX bytes or
words. (See thBEPreference page for more information.) For 32-bit operands
where strings overlap, tiREPMOWvill not overlap destructively only if:

Addr(Src) >= Addr(Dest) AND DF =0
OR Addr(Src) <= Addr(Dest) AND DF = 1.

Use an 8- or 16-bit operand for overlapped strings that must be moved in a
predictable way witlREPMOVS

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) if the destination is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

344 Chapter 6 Processor Instructions

MOVS/MOVSB/MOVSW/MOVSD

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 345

MOVSX

MOVSX Move with Sign-Extend

Opcode Instruction Clocks Description

OF BE/r MOVSXrl6,r/m8 3/6 Move sign-extended byte to word register
OF BE/r MOVSXr32,r/m8 3/6 Move sign-extended byte to dword register
OF BF/r MOVSXr32,r/m16 3/6 Move sign-extended word to dword register
Operation

Dest := SignExtend(Src);

Discussion

MOVSXeads the contents of the effective address or register as a byte or a word. |
sign-extends the value to the operand size attribute of the instruction (16- or 32-
bits). ThenMOVSXstores the result in the destination register.

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

346 Chapter 6 Processor Instructions

MOVZX

MOVZX Move with Zero-Extend

Opcode Instruction Clocks Description

OF B6/r MOVZX r16,r/m8 3/6 Move zero-extended byte to word register
OF B6/r MOVZX r32,r/m8 3/6 Move zero-extended byte to dword register
OF B7/r MOVZX r32,r/m16 3/6 Move zero-extended word to dword register
Operation

Dest := ZeroExtend(Src);

Discussion

MOVZXeads the contents of the effective address or register as a byte or a word. It
zero-extends the value to the operand size attribute of the instruction (16- or 32-
bits). ThenMOVvZzxstores the result in the destination register.

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside of the effective address
space from 0 to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 347

MUL

MUL Unsigned Multiplication of AL, AX or EAX

Opcode Instruction Clocks Description
F6 /4 MUL r/m8 9-14/12-17 Unsigned multiply (AX := AL ¥/m byte)
F7 14 MULr/m16 9-22/12-25 Unsigned multiply (DX:AX := AX ¥/m word)

F71/4 MULr/m32 9-38/12-41 Unsigned multiply (EDX:EAX := EAX #m
dword)

NOTE: The processor uses an early-out multiply algorithm. The actual number of clocks depends on the
position of the most significant bit in the multiplier. Optimization occurs for both positive and negative
multiplier values. Because of the early-out algorithm, clock counts given are minimum to maximum.
To calculate the actual clocks, use the following formula:

IF m =0 THEN ActualClock := 9;
ELSE ActualClock := max(ceiling(log, |m]),3) = 6 clocks;

where m is the multiplier.

Operation

IF byte-size operation THEN
AX:=AL* /m8 ;

ELSE (*word or dword operation*)
IF OperandSize = 16 THEN

DX:AX := AX * r/milé6 ;
ELSE (*OperandSize = 32*)
EDX:EAX := EAX * /m32 ;
Discussion

MULperforms unsigned multiplication. Its actions depend on the size of its
operand, as follows:

* A byte operand is multiplied with AL; the result is left in AXlULclears the
carry and overflow flags (CF and OF) if AH is O; otherwise, it sets CF and OF.

* A word operand is multiplied with AX; the result is left in DX:AX. DX
contains the high-order 16-bits of the produdtJLclears CF and OF if DX
is 0; otherwise, it sets CF and OF.

* A dword operand is multiplied with EAX and the result is left in EDX:EAX.
EDX contains the high-order 32-bits of the produdatiLclears CF and OF if
EDX is 0; otherwise, it sets CF and OF.

348 Chapter 6 Processor Instructions

MUL

Flags Affected

OF and CF as described in the Discussion section; SF, ZF, AF, and PF are
undefined

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 349

NEG

NEG Two's Complement Negation

Opcode Instruction Clocks Description

F6 /3 NEGr/m8 2/6 Two's complement negaten byte
F71/3 NEGr/m16 2/6 Two's complement negaten word
F71/3 NEGr/m32 2/6 Two's complement negaten dword
Operation
IF r/m =0 THEN
CF :=0;
ELSE
CF =1,
r/m :=- r/m;
Discussion

NEGreplaces the value of a register or memory operand with its two's complement.
If the operand is QYEGclears the carry flag; otherwiseEGsets CF.

Flags Affected
CF as described; OF, SF, ZF, and PF as described in Appendix A

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

350 Chapter 6 Processor Instructions

NOP

NOP o Operation

Opcode Instruction Clocks Description
920 NOP 3 No operation
Discussion

NOPperforms no operatiorNOPis a one-byte instruction that affects none of the
machine context except that (E)IP increments.

NOPis an alias mnemonic for the€HG(E)AX, (E)AX instruction.

Flags Affected

None
Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

ASM386 Assembly Language Reference Chapter 6 351

NOT

NOT ones Complement Negation

Opcode Instruction Clocks Description

F6 /2 NOTr/m8 2/6 Reverse each bit ofn byte
F71/2 NOTr/ml6 2/6 Reverse each bit ofm word
F71/2 NOTr/m32 2/6 Reverse each bit ofm dword
Operation

r/m =NOT r/m;

Discussion

NOTinverts the operand. Every 1 becomes a 0, and vice versa.

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

352 Chapter 6 Processor Instructions

OR

OR Logical Inclusive OR

Opcode Instruction Clocks Description
0Cib OR AL,imm8 2 OR immediate byte to AL
0D iw OR AX,imm16 2 OR immediate word to AX
oDid OR EAXjmm32 2 OR immediate dword to EAX
80 /1ib ORr/m8imm8 217 OR immediate byte tdm byte
81/liw ORr/ml6imml6 2/7 OR immediate word tdm word
81/1id ORr/m32imm32 2/7 OR immediate dword tém dword
83 /1ib ORr/m16imm8 2/7 OR sign-extended immediate byte to r/m word
83 /1ib ORr/m32imm8 2/7 OR sign-extended immediate byte to r/m
dword

08/r ORr/m8r8 2/6 OR byte register tdm byte
09/r ORr/m16r16 2/6 OR word register tdm word
09/r OR1/m32r32 2/6 OR dword register tdm dword
OA /r ORT8,r/m8 217 ORr/m byte to byte register
0B/r ORr16,r/m16 217 ORr/m word to word register
OB/r ORr32,r/m32 217 ORr/m dword to dword register
Operation

Dest := Dest OR Srgc;

CF :=0;

OF :=0;
Discussion

A corresponding result bit is O if both corresponding bits of the operands are 0O;
otherwise, the result bit is 1.

Flags Affected
ORclears OF and CF; SF, ZF, and PF as described in Appendix A; AF is undefined

ASM386 Assembly Language Reference Chapter 6 353

OR

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

354 Chapter 6 Processor Instructions

OouT

ouT Output to Port

Opcode Instruction Clocks Description

E6ib OUTIimm8AL 10,pme4T/24f Output byte AL to immediate port
number

E7ib OUT imm8AX 10,pm:4T/24¢ Output word AX to immediate port
number

E7ib OUTImm8EAX 10pme=4T/24F Output dword EAX to immediate port
number

EE OUT DX,AL 11pne5T/25F Output byte AL to port number in DX

EF OUT DX,AX 11pne5T/25F Output word AX to port number in DX

EF OUT DX,EAX 11pme57/25F Output dword EAX to port number in DX

T 1f cPL <= 10PL
¥ 1f CPL > IOPL or if in virtual 8086 mode

Operation

IF (PE = 1 AND ((VM = 1) OR (CPL > IOPL)) THEN
(*virtual 8086 mode, or protected mode with CPL > IOPL*)

IF NOT IOPermission(Dest, width(Dest)) THEN #GP(0);
[Dest] := Src; (*I/O address space used*)

Discussion

OuTtransfers data from the register (AL, AX, or EAX) given as the second operand
to the output port numbered by the first operand. Output to any port from 0 to
65535 is performed by placing the port number in the DX register and then using
anOuUTinstruction with DX as the first operand. If the instruction contains an
eight-bit port ID, the value is zero-extended to 16-bits.

If executed in virtual 8086 mode or in protected mode @iRh greater thamOPL :

e OUTcannot access any given byte unless the I/O permission bit map has a
corresponding clear bit.

e OUTalso cannot access a dword or word unless it can access every byte in the
dword or word.

Flags Affected

None

ASM386 Assembly Language Reference Chapter 6 355

OouT

Exceptions by Mode

Protected

#GP(0) if the current privilege level is higher (has less privilege) itbeh and
any of the corresponding I/O permission bitg 88 equals 1

Real Address

None

Virtual 8086
#GP(0) if any of the corresponding I/O permission bitg§3s equals 1

356 Chapter 6 Processor Instructions

OUTS/OUTSB/OUTSW/OUTSD

OUTS/OUTSB/OUTSW/OUTSD Output String to Port

Opcode Instruction Clocks Description

6E OUTS DXym8 14pme8T/28t Output byte [(E)SI] to port in DX

6F OUTS DXym16 14pme8i/28t Output word [(E)SI] to port in DX

6F OUTS DXym32 14pme=8T/28f Output dword [(E)SI] to port in DX

6E OUTSB 14pm=8T/28f Output byte DS:[(E)SI] to port in DX
6F OUTSW 14pm=8T/28F Output word DS:[(E)SI] to port in DX
6F OUTSD 14pm=8T/28f Output dword DS:[(E)SI] to port in DX

T 1f cPL <= 10PL
¥ 1f CPL > IOPL or if in virtual 8086 mode

Operation

IF AddressSize = 16 THEN
Use Sl for Srcindex;
ELSE (* AddressSize = 32 *)
Use ESI for Srcindex;
IF (PE =1) AND ((VM =1) OR (CPL > IOPL)) THEN
(*virtual 8086 mode, or protected mode with CPL > IOPL*)
IF NOT IOPermission(Dest, width(Dest)) THEN #GP(0);
IF byte type instruction THEN
[DX] := [SrcIndex]; (*writes at DX I/O address*)
IF DF = 0 THEN IncDec := 1 ELSE IncDec := -1;
ELSE (*word or dword operand*)
[DX] := [SrcIndex];
IF OperandSize = 16 THEN
IF DF = 0 THEN IncDec := 2 ELSE IncDec := -2;
ELSE (*OperandSize = 32%)
IF DF = 0 THEN IncDec := 4 ELSE IncDec := -4,
Srcindex := Srcindex + IncDec;

Discussion

OuTsStransfers data from the memory byte, word, or dword at the source index
register to the output port numbered by DX. ESI is the source index register if the
address size attribute is 32-bits; Sl is the source index register if the address size

attribute is 16-bits.

OuTSdoes not allow specification of the port number as an immediate value. The
port must be addressed through the DX register. Load the correct value into DX
before executin@uTS

ASM386 Assembly Language Reference Chapter 6 357

OUTS/OUTSB/OUTSW/OUTSD

The source data address is determined by the contents of ESI or SI, not by the
second operand. Load the correct index value into (E)SI before exeoutitgy
The second operand determines:

e The data type: whether a byte, word, or dword is transferred

* Segment addressability: whether a segment override byte is produced, or
whether the default segment register (DS) is used

After the transfer, (E)SI advances automatically. If the direction flag is 0 (CLD

was executed), (E)SI increments; if the direction flag is 1 (STD was executed),
(E)SI decrements. (E)SI increments or decrements by 1 if a byte is output, by 2 if €
word is output, or by 4 if a dword is output.

OUTSB OUTSWandOouTSDare synonyms for the byte, word, and dwotdTS
instructions. They are simpler, but they provide no type or segment checking.

If executed in virtual 8086 mode or in protected mode @ih greater thamOPL:

e OUTScannot access any given byte unless the I/O permission bit map has a
corresponding clear bit.

e OUTSalso cannot access a dword or word unless it can access every byte in the
dword or word.

OuUTScan be preceded by tReEPprefix for block output of (E)CX bytes or words.
See therREPinstruction for details on this operation.
Flags Affected

None
Exceptions by Mode

Protected

#GP(0) if CPL is greater than IOPL and any of the corresponding 1/O permission
bits in TSS equals 1; #GP(0) for an illegal memory operand effective address in the
CS, DS, or ES segments; #SS(0) for an illegal address in the SS segment;
#PF(fault-code) for a page fault

358 Chapter 6 Processor Instructions

OUTS/OUTSB/OUTSW/OUTSD

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

#GP(0) if any of the corresponding I/O permission bits in TSS equals 1; #PF(fault-
code) for a page fault

ASM386 Assembly Language Reference Chapter 6 359

POP

POP Pop Stack Top

Opcode Instruction Clocks Description

8F /0 POPmM16 5 Pop top of stack into memory word
8F /0 POPmM32 5 Pop top of stack into memory dword
58 Hw POPri16 4 Pop top of stack into word register
4

58 +d POPr32 Pop top of stack into dword register

1F POP DS =21 Pop top of stack into DS
07 POP ES Hhm=21 Pop top of stack into ES
OF Al POP FS Hhm=21 Pop top of stack into FS
OF A9 POP GS Hhm=21 Pop top of stack into GS
17 POP SS hm=21 Pop top of stack into SS
Operation

IF Dest = Sreg AND mode = protected THEN
GOTO CHECK_SREG;
ELSE
GOTO POP_FROM_STACK;
CHECK_SREG:
IF Sreg = SS THEN
IF selector is null THEN #GP(0);
IF selector index NOT within its descriptor table limits THEN
#GP(selector);
IF selector RPL NOT = CPL THEN #GP(selector);
AR must indicate writable data segment
ELSE #GP(selector);
IF DPL (*in AR*) NOT = CPL THEN #GP(selector);
IF segment NOT PRESENT THEN #NP(selector);
(*Disable interrupts until end of following instruction*)
GOTO POP_FROM_STACK;
(*END checks protected mode, load SS*)
IF Sreg = DS OR ES OR FS OR GS THEN
IF selector index NOT within its descriptor table limits THEN
#GP(selector);
AR must indicate data or readable code segment
ELSE #GP(selector);
IF data or nonconforming code segment AND

360 Chapter 6 Processor Instructions

POP

RPL > DPL (*in AR*) OR CPL > DPL THEN
#GP(selector);
IF segment NOT PRESENT THEN #NP(selector);
GOTO POP_FROM_STACK;
(*END checks protected mode, load DS, ES, FS, or GS¥*)

POP_FROM_STACK:

IF StackAddrSize = 16 THEN
SP is StackPtr;

ELSE
ESP is StackPtr;

Dest := SS:[StackPtr];

IF Dest is Sreg AND mode = protected THEN
Load Sreg cache with descriptor;

StackPtr := StackPtr + (OperandSize / 8);

Discussion

POPcopies the top of the processor stack into its memory, register, or segment
register operand. The stack pointer (E)SP is incremented by 2 for a 16-bit operand
or by 4 for a 32-bit operand. SS:(E)SP then points to the new top of stack.

If the value popped waUSHd as an immediate operand iDSE32 segment, its
operand size was a full 32-bits. Only #1gSHof a 16-bit register decrements
(E)SP by 2 in &JSE32segment.

If the destination operand is another segment register (DS, ES, FS, GS, or SS), the
value popped must be a selector. In protected mode, loading the selector initiates
automatic loading of the descriptor associated with that selector into the segment
register cache. Loading DS, ES, FS, GS, or SS also initiates validation of both the
selector and the descriptor information.

A null value (0000-0003) can be popped into DS, ES, FS, or GS without causing a
protection exception. However, the #GP(0) exception is raised by any subsequent
attempt to access a segment whose corresponding segment register has a null
selector. (No memory reference occurs.)

POPSS inhibits all interrupts, including NMI (non-maskable interrupt), until after
execution of the next instruction. This allows sequential executip@PES and
POP(E)SP without danger of having an invalid stack during an interrupt. However,
theLSS instruction is the preferred method of loading the SS and (E)SP registers.

POPCS causes the assembler to issue an error messagRETisepop from the
stack into CSRET pops both IP and CS (operand size attribute of 16-bits) or both
EIP and CS (operand size attribute of 32-bits).

ASM386 Assembly Language Reference Chapter 6 361

POP

Flags Affected

None
Exceptions by Mode

Protected

#GP, #SS, and #NP if a segment register is being loaded; #SS(0) if the current top
of stack is not within the stack segment; #GP(0) if the result is in a nonwritable
segment; #GP(0) for an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments; #SS(0) for an illegal address in the SS segment; #PF(faul
code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

362 Chapter 6 Processor Instructions

POPA/POPAD

POPA/POPAD Pop All General Registers

Opcode Instruction Clocks Description

61 POPA 24 Pop DI, SI, BP, BX, DX, CX, and AX

61 POPAD 24 Pop EDI, ESI, EBP, EDX, ECX, and
EAX

Operation

IF OperandSize = 16 (*instruction = POPA*) THEN
DI := Pop();
Sl := Pop();
BP := Pop();
throwaway := Pop (); (* Skip SP *)
BX := Pop();
DX := Pop();
CX :=Pop();
AX :=Pop();
ELSE (*OperandSize = 32; instruction = POPAD¥)
EDI := Pop();
ESI := Pop();
EBP := Pop();
throwaway := Pop (); (* Skip ESP *)
EBX := Pop();
EDX := Pop();
ECX = Pop();
EAX := Pop();

Discussion

POPApops the eight 16-bit general registers and discards the SP rPaiea
reverses the precediySHA restoring the general registers to their values before
PUSHAwas executed. Dl is the first register popped.

POPADpops the eight 32-bit general registers and discards3healue. POPAD
reverses the precedifySHADrestoring the general registers to their values before
PUSHADwas executed. EDI is the first register popped.

Flags Affected

None

ASM386 Assembly Language Reference Chapter 6 363

POPA/POPAD

Exceptions by Mode

Protected

#SS(0) if the starting or ending stack address is not within the stack segment;
#PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

364 Chapter 6 Processor Instructions

POPF/POPFD

POPF/POPFD Pop Stack into FLAGS or EFLAGS Register

Opcode Instruction Clocks Description
9D POPF 5 Pop top of stack into FLAGS
9D POPFD 5 Pop top of stack into EFLAGS
Operation

IF StackA

ddrSize = 16 THEN
SP is StackPtr;

ELSE
ESP is StackPtr;

IF OperandSize = 16 THEN
FLAGS := Pop();
StackPtr := StackPtr + 2;

ELSE (*OperandSize = 32%)
EFLAGS := Pop();
StackPtr := StackPtr + 4;

Discussion

POPF/POPFDpops the word or dword on the top of the stack and stores the value in

the flags register. If the operand size attribute of the instruction is 160,
pops a word and stores the valu€ihGS If the operand size attribute is 32-bits,
POPFDpops a dword and stores the valuERLAGS

TheEFLAGSDbits 16 and 17 (VM and RF, respectively) are not affecteeidnfFor

POPFD POPF/POPFDchanges the I/O privilege level only if the current privilege

level is 0. Real address mode is equivalent to privilege leveO®F/POPFD

change the interrupt flag only if the current privilege level is at least as privileged
aslOPL. If aPOPFinstruction is executed with insufficient privilege, an exception

does not occur, but the privileged bits do not change.

See also: (E)FLAGS registers, Appendix A

Flags Affected
All except VM and RF

ASM386 Assembly Language Reference Chapter 6 365

POPF/POPFD

Exceptions by Mode

Protected
#SS(0) if the top of stack is not within the stack segment

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
#GP(0) if IOPL is less than 3, to permit emulation

366 Chapter 6 Processor Instructions

PUSH

PUSH push Operand onto the Stack

Opcode Instruction Clocks Description

FF /6 PUSHM16 5 Push memory word

FF /6 PUSHM32 5 Push memory dword

50+4r PUSHr16 2 Push register word

50+4r PUSHr32 2 Push register dword

6A PUSHIimm8 2 Push immediate byte

68 PUSHimm16 2 Push immediate word

68 PUSHImm32 2 Push immediate dword

OE PUSH CS 2 Push CS

1E PUSH DS 2 Push DS

06 PUSH ES 2 Push ES

OF A0 PUSH FS 2 Push FS

OF A8 PUSH GS 2 Push GS

16 PUSH SS 2 Push SS
Operation

IF StackAddrSize = 16 THEN
SP is StackPtr;
ELSE
ESP is StackPtr;
IF immoperand THEN
IF USE32 segment THEN
OperandSize = 32;
ELSE (*USE16 segment*)
OperandSize = 16;
IF Sreg operand (*CS,DS,ES,FS,GS, SS*) and USE32 segment THEN
OperandSize = 32;
StackPtr := StackPtr - (OperandSize / 8);
SS:[StackPtr] := (Src);

ASM386 Assembly Language Reference Chapter 6

367

PUSH

Discussion

PUSHdecrements the stack pointer (E)SP and copies the operand onto the top of th
stack.

In USE16 segmentsPUSHdecrements the stack pointer by 2 if the operand size
attribute of the instruction is 16-bits; otherwise, it decrements the stack pointer
by 4.

In USE32 segmentsPUSHdecrements the stack pointer by 2 if the operand is a
16-bit general register; otherwise, it decrements the stack pointer by 4.

PUSH(E)SP pushes the current value of the stack pointer. TheFRORESP
instruction pushes the decremented (by 2) value of SP.

Flags Affected

None
Exceptions by Mode

Protected

#SS(0) if the new value of (E)SP is outside the stack segment limit; #GP(0) for an
illegal memory operand effective address in the CS, DS, ES, FS, or GS segments;
#SS(0) for an illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

None; if (E)SP is 1, the processor shuts down due to a lack of stack space

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

368 Chapter 6 Processor Instructions

PUSHA/PUSHAD

PUSHA/PUSHAD Ppush all General Registers

Opcode Instruction Clocks Description
60 PUSHA 18 Push AX, CX, DX, BX, original SP, BP, SI, and DI

60 PUSHAD 18 Push EAX, ECX, EDX, EBX, original ESP, EBP, ESI,
and EDI

Operation

IF OperandSize = 16 (*PUSHA instruction*) THEN
Temp := (SP);
Push(AX);
Push(CX);
Push(DX);
Push(BX);
Push(Temp);
Push(BP);
Push(Sl);

Push(DI);
(*SP := SP - 16%)

ELSE (*OperandSize = 32, PUSHAD instruction*)
Temp := (ESP);
Push(EAX);
Push(ECX);
Push(EDX);
Push(EBX);
Push(Temp);
Push(EBP);
Push(ESI);
Push(EDI);

(*ESP := ESP - 32%)

Discussion

PUSHAandPUSHADsave the 16-bit or 32-bit general registers, respectively, on the

processor stackPUSHAdecrements the stack pointer by 16 to hold the 8 word
values. PUSHADdecrements the stack pointer by 32 to hold 8 dword values.

PUSHA/PUSHADush the registers onto the stack in the order listed in the
Operation section. Therefore, they appear in the 16 or 32 new stack bytes in
reverse order.

ASM386 Assembly Language Reference Chapter 6 369

PUSHA/PUSHAD

Flags Affected

None
Exceptions by Mode

Protected

#SS(0) if the starting or ending stack address is outside the stack segment limit;
#PF(fault-code) for a page fault

Real Address

The processor shuts down before execuBugHAor PUSHADE (E)SP equals 1, 3,
or 5; Interrupt 13 if (E)SP equals 7, 9, 11, 13, or 15

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

370 Chapter 6 Processor Instructions

PUSHF/PUSHFD

PUSHF/PUSHFD push Flags Register onto the Stack

Opcode Instruction Clocks Description

9C PUSHF 4 Push FLAGS
9C PUSHFD 4 Push EFLAGS
Operation

IF StackAddrSize = 16 THEN
SP is StackPtr;

ELSE
ESP is StackPtr;

IF OperandSize = 16 THEN
StackPtr := StackPtr - 2;
Push(FLAGS);

ELSE (*OperandSize = 32%)
StackPtr := StackPtr - 4;
Push(EFLAGS):

Discussion

PUSHFdecrements the stack pointer byP2tSHFDdecrements the stack pointer
by 4. TherPUSHF/PUSHFIxopies(E)FLAGS to the new top of stack (pointed to
by SS:(E)SP).

See also: (E)FLAGS register, Appendix A

Flags Affected

None
Exceptions by Mode

Protected
#SS(0) if the new value of (E)SP is outside the stack segment boundaries

Real Address

None; the processor shuts down due to insufficient stack space

Virtual 8086
#GP(0) iflOPL is less than 3, to permit emulation

ASM386 Assembly Language Reference Chapter 6 371

RCL/RCR/ROL/ROR

RCL/RCR/ROL/ROR Rotate

Opcode
DO /2
D2 /2
CO0 /2ib
D1/2
D3 /2
C1 /2ib
D1/2
D3 /2
C1 /2ib
DO /3
D2 /3
CO0 /3ib
D1/3
D3/3
C1/3ib
D1/3
D3 /3
C1/3ib

DO /0
D2 /0
CO0 /0ib
D1/0
D3/0
C1 /0ib
D1/0
D3/0

372

Instruction
RCLr/m8,1
RCLr/m8,CL
RCL r/m8,imm8
RCLr/m161
RCLr/m16CL
RCL r/m16imm8
RCLr/m321
RCLr/m32CL
RCL r/m32imm8
RCRr/m8,1
RCRr/m8,CL
RCRr/m8,imm8
RCRr/mi6,1
RCRr/m16,CL
RCRr/m16imm8
RCRr/im321
RCRr/m32CL
RCRr/m32imm8

ROLr/m8,1
ROLr/m8,CL
ROL r/m8,imm8
ROLr/m161
ROLr/m16,CL
ROL r/m16imm8
ROLr/im321
ROLr/m32CL

Chapter 6

Clocks
9/10
9/10
9/10
9/10
9/10
9/10
9/10
9/10
9/10
9/10
9/10
9/10
9/10
9/10
9/10
9/10
9/10
9/10

3/7
3/7
3/7
3/7
3/7
3/7
317
3/7

Description

Rotate 9-bits (CHm byte) left once

Rotate 9-bits (CHm byte) left CL times
Rotate 9-bits (CHm byte) left imm8 times
Rotate 17-bits (CHn word) left once

Rotate 17-bits (CHm word) left CL times
Rotate 17-bits (CFm word) left imm8 times
Rotate 33-bits (CHn dword) left once
Rotate 33-bits (CHn dword) left CL times
Rotate 33-bits (CHFm dword) left imm8 times
Rotate 9-bits (CHin byte) right once

Rotate 9-bits (CHm byte) right CL times
Rotate 9-bits (CHFm byte) right imm8 times
Rotate 17-bits (CHmn word) right once
Rotate 17-bits (CHm word) right CL times
Rotate 17-bits (CFm word) right imm8 times
Rotate 33-bits (CHin dword) right once
Rotate 33-bits (CHm dword) right CL times

Rotate 33-bits (CFm dword) right imm8
times

Rotate 8-bitgm byte left once

Rotate 8-bite/m byte left CL times
Rotate 8-bits/m byte left imm8 times
Rotate 16-bitdm word left once
Rotate 16-bite'm word left CL times
Rotate 16-bits/m word left imm8 times
Rotate 32-bitdm dword left once
Rotate 32-bitem dword left CL times

Processor Instructions

RCL/RCR/ROL/ROR

Opcode Instruction Clocks
C1/0ib ROLr/m32imm8 3/7
D0 /1 RORr/m8,1 317
D2 /1 RORr/m8,CL 317
CO/1ib RORr/m8imm8 3/7
D1/1 RORr/m161 37
D3/1 RORr/m16CL 317
C1/1lib RORr/m16imm8 3/7
D1/1 RORr/m321 317
D3/1 RORr/m32CL 317
C1/1lib RORt/m32imm8 3/7
Operation

Description

Rotate 32-bitgm dword left imm8 times
Rotate 8-bite/m byte right once

Rotate 8-bite/m byte right CL times
Rotate 8-bits/m word right imm8 times
Rotate 16-bitgm word right once
Rotate 16-bitem word right CL times
Rotate 16-bitgm word right imm8 times
Rotate 32-bitgm dword right once
Rotate 32-bite'm dword right CL times
Rotate 32-bit¢/m dword right imm8 times

(*RCL - Rotate through Carry Flag Left*)

temp := Count;
WHILE (temp NOT = 0) DO
tmpCF := high-order bit of (
r/m = r/m *2+CF;
CF :=tempCF;
temp :=temp - 1,
ENDWHILE;
IF Count =1 THEN
IF high-order bit of

OF :=1;
ELSE
OF :=0;

ELSE (*Count NOT = 1%)
OF := undefined;

(*ROL - Rotate Left*)

temp := Count;

WHILE (temp NOT = 0) DO
tmpCF := high-order bit of (

r/m = r/m *2+ (tmpCF);
temp :=temp - 1,
ENDWHILE;
CF :=tempCF;

ASM386 Assembly Language Reference

r’m);

r/m NOT = CF THEN

r’m);

Chapter 6

373

RCL/RCR/ROL/ROR

374

IF Count =1 THEN
IF high-order bit of r/m NOT = CF THEN
OF :=1;
ELSE
OF :=0;
ELSE (*Count NOT = 1%)
OF := undefined;

(*RCR - Rotate through Carry Flag Right*)
temp := Count;
WHILE (temp NOT =0) DO

tmpCF := low-order bit of (r’m);
r/m = r/m |2+ (CF* 2width(r’m));
CF :=tempCF;
temp :=temp - 1,
ENDWHILE;

IF COUNT =1 THEN
IF (high-order bit) NOT = (next bit) (*in

OF :=1;
ELSE
OF :=0;

ELSE (*Count NOT = 1%
OF := undefined;

(*ROR - Rotate Right*)
temp := Count;
WHILE (temp NOT =0) DO
tmpCF := low-order bit of (r’m);
r/m = r/m |2+ (tmpCF * 2width(r’m));
temp :=temp - 1,
ENDWHILE;
CF :=tempCF;
IF COUNT =1 THEN
IF (high-order bit) NOT = (next bit) (*in

OF :=1;
ELSE
OF :=0;

ELSE (*Count NOT = 1%
OF := undefined;

Chapter 6

r/m *) THEN

r/m *) THEN

Processor Instructions

RCL/RCR/ROL/ROR

Discussion
RCL/RCR/ROL/RORSshift the bits of the register or memory operand.

RCL shifts all bits left, copying the carry flag (CF) into tt&B and the top bit into
CF. RCRshifts all the bits downward, copying CF into M8Band the bottom bit
into CF.

ROL (left rotate) shifts all the bits upward and copies the top bit inta3Be RCR

(right rotate) shifts the bits downward and copies the bottom bit inte$ise The
original value of the carry flag is not a part of the result, but the carry flag receives
a copy of the bit that was shifted from one end to the other.

The second operand is a rotation count, either the contents of CL or an immediate
number in the range 1..31. The overflow flag is defined only if the second operand
equals 1; otherwise, OF is undefined. After left shifts or rotates, the CF bit is
XORed with the high-order result bit. After right shifts or rotates, the high-order

two bits of the result areORed to get OF. If a rotation count value is greater than
31, only the bottom five bits are used. In virtual 8086 mode, the processor masks
rotation counts. The 8086 does not.

Flags Affected

OF only for single rotates; OF is undefined for multi-bit rotates; CF as described in
the Discussion section

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 375

REP/REPE/REPZ/REPNE/REPNZ

REP/REPE/REPZ/REPNE/REPNZ Repeat String Operation

Opcode
F36C

F3 6D

F3 6D

F3 6C

F3 6D

F3 6D

F3 6E

F3 6F

F3 6F

F3 6E

F3 6F

F3 6F

11f CPL <= IOPL

Instruction
REP INS/m8,DX

REP INS/m16DX

REP INS/m32DX

REP INSB

REP INSW

REP INSD

REP OUTS
DX,r/m8

REP OUTS DX,6
r/ml1

REP OUTS DX,
r/m32
REP OUTSB

REP OUTSW

REP OUTSD

21f CPL > IOPL or if in virtual 8086 mode

376

Chapter 6

Clocks
13+6*(E)CX,
pE7+6*(E)CXY
27+6*(E)CX2
13+6*(E)CX,
pE7+6*(E)CXY
27+6*(E)CX2
13+6*(E)CX,
pE7+6*(E)CXY
27+6*(E)CX2
13+6*(E)CX,
pE7+6*(E)CXY
27+6*(E)CX2
13+6*(E)CX,
27+6*(E)CX2
13+6*(E)CX,
pE7+6*(E)CXY
27+6*(E)CX2
5+12*(E)CX,
pEG+5*(E)CXY
5+12*(E)CX,
pEG+5*(E)CXY
26+5*(E)CX2
5+12*(E)CX,
pEG+5*(E)CXY
26+5*(E)CX2
5+12*(E)CX,
pEG+5*(E)CXY
26+5*(E)CX2
5+12*(E)CX,
pEG+5*(E)CXY
26+5*(E)CX2
5+12*(E)CX,
pEG+5*(E)CXY
26+5*(E)CX2

Description

Input (E)CX bytes from
port DX into ES:[(E)DI]

Input (E)CX words from
port DX into ES:[(E)DI]

Input (E)CX dwords from
port DX into ES:[(E)DI]

Input (E)CX bytes from
port DX into ES:[(E)DI]

Input (E)CX words ES:

[(E)DI]

Input (E)CX dwords from
port DX into ES:[(E)DI]

Output (E)CX bytes from
[(E)SI] to port DX
Output (E)CX words from
[(E)SI] to DX

Output (E)CX dwords
from [(E)SI] to port DX

Output (E)CX bytes from
DS:[(E)SI] to port DX

Output (E)CX words from
DS:[(E)SI] to port DX

Output (E)CX dwords
from DS:[(E)SI] to port
DX

Processor Instructions

REP/REPE/REPZ/REPNE/REPNZ

Opcode Instruction Clocks Description
F3 A4 REP MOVSM8m8 5+4*(E)CX Move (E)CX bytes from [(E)Sl]u to
ES:[(E)DI]
F3 A5 REP MOVan16 m16 5+4*E)CX Move (E)CX words from [(E)SI] to
ES:[(E)DI]
F3 A5 REP MOV3an32 m32 5+4*E)CX Move (E)CX dwords from [(E)SI]
to ES:[(E)DI]
F3 A4 REP MOVSB 5+4*(E)CX Move (E)CX bytes from DS:
[(E)SI] to ES:[(E)DI]
F3 A5 REP MOVSW 5+4*(E)CX Move (E)CX words from DS:
[(E)SI] to ES:[(E)DI]
F3 A5 REP MOVSD 5+4*(E)CX Move (E)CX dwords from DS:
[(E)SI] to ES:[(E)DI]
F3AA REP STOSn8 5+5*(E)CX Fill (E)CX bytes at ES:[(E)DI] with
AL
F3 AB REP STOSn16 5+5*(E)CX Fill (E)CX words at ES:[(E)DI]
with AX
F3 AB REP STOSn32 5+5*(E)CX Fill (E)CX dwords at ES:[(E)DI]
with EAX
F3AA REP STOSB 5+5*(E)CX Fill (E)CX bytes at ES:[(E)DI] with
AL
F3 AB REP STOSW 5+5*(E)CX Fill (E)CX words at ES:[(E)DI]
with AX
F3 AB REP STOSD 5+5*(E)CX Fill (E)CX dwords at ES:[(E)DI]
with EAX
F3 A6 REPE/Z CMPS 5+9*N 3 Find nonmatching bytes in
m8m3 ES:[(E)DI] and [(E)SI]
F3 A7 REPE/Z CMPS 5+9*N 3 Find nonmatching words in
m16m16 ES:[(E)DI] and [(E)SI]
F3 A7 REPE/Z CMPS 5+9*N 3 Find nonmatching dwords in
m32m32 ES:[(E)DI] and [(E)SI]
F3 A6 REPE/Z CMPSB 5+Q4 3 Find nonmatching bytes in ES:
[(E)DI] and [(E)SI]
F3 A7 REPE/Z CMPSW 5+Q4 3 Find nonmatching words in
ES:[(E)DI] and [(E)SI]
F3 A7 REPE/Z CMPSD 5+Q4 3 Find nonmatching words in

ES:[(E)DI] and [(E)SI]

3 N denotes the number of iterations actually executed. These clock counts correspond to (E)CX iterations.

ASM386 Assembly Language Reference Chapter 6 377

REP/REPE/REPZ/REPNE/REPNZ

Opcode
F3 AE

F3 AF
F3 AF
F3 AE
F3 AF
F3 AF
F2 A6
F2 A7
F2 A7
F2 A6
F2 A7
F2 A7
F2 AE
F2 AF
F2 AF

F2 AE
F2 AF
F2 AF

Instruction
REPE/Z SCASN8

REPE/Z SCASN16

REPE/Z SCASNn32

REPE/Z SCASB

REPE/Z SCASW

REPE/Z SCASD

REPNE/NZ CMPS
m8m8

REPNE/NZ CMPS
mléml6

REPNE/NZ CMPS
m32m32

REPNE/NZ CMPSB

REPNE/NZ
CMPSW

REPNE/NZ CMPSD

REPNE/NZ
SCASmM8

REPNE/NZ
SCASmM16

REPNE/NZ
SCASmM32

REPNE/NZ SCASB

Clocks
5+8*N 3

5+8*N 3

5+8*N 3

5+84 3

5+8Y 3

5+84 3

5+9*N 3

5+9*N 3

5+9*N 3

5+0 3

5+9*N 3

5+94 3

5+8*N 3

5+8*N 3

5+8*N 3

5+84 3

REPNE/NZ SCASW 5+8X 3

REPNE/NZ SCASD

5+8Y 3

Description

Find non-AL byte starting at
ES:[(E)DI]

Find non-AX word starting at
ES:[(E)DI]

Find non-EAX dword starting at
ES:[(E)DI]

Find non-AL byte starting at
ES:[(E)DI]

Find non-AX word starting at
ES:[(E)DI]

Find non-EAX dword starting at

ES:[(E)DI]

Find matching bytes in ES:[(E)DI] and
[(B)S]]

Find matching words in ES: [(E)DI]
and [(E)SI]

Find matching dwords in ES: [(E)DI]
and [(E)SI]

Find matching bytes in ES: [(E)DI] and
[(B)S]]

Find matching words in ES: [(E)DI]
and [(E)SI]

Find matching dwords in ES: [(E)DI]
and [(E)SI]

Find AL byte starting at ES:[(E)DI]
Find AX word starting at ES: [(E)DI]

Find EAX dword starting at ES:[(E)DI]

Find AL byte starting at ES: [(E)DI]
Find AX word starting at ES: [(E)DI]
Find EAX dword starting at ES:[(E)DI]

3 N denotes the number of iterations actually executed. These clock counts correspond to (E)CX iterations.

378

Chapter 6

Processor Instructions

REP/REPE/REPZ/REPNE/REPNZ

Operation

IF AddressSize = 16 THEN
Use CX for CountReg;
ELSE (*AddressSize = 32*)
Use ECX for CountReg;
WHILE CountReg NOT =0 DO
service pending interrupts (*if any*);
execute primitive string instruction;
CountReg := CountReg - 1;
IF primitive instruction = CMPSB OR CMPSW OR CMPSD OR
SCASB OR SCASW OR SCASD THEN
IF (instruction is REPE OR REPZ) AND (ZF=1) THEN
exit WHILE loop;
IF (instruction is REPNE OR REPNZ) AND (ZF=0) THEN
exit WHILE loop;
ENDWHILE;

Discussion

REPR, REPE(repeat while equal), arREPNE(repeat while not equal) prefix a string
instruction. REPcauses the following string instruction to repeat the number of
times indicated in the count register (E)CREPEandREPNEcause the string
instruction to repeat until the indicated condition in the zero flag is no longer met.
REPZandREPNZzare synonyms faREPEandREPNE respectively.

REP/REPE/REPZ/REPNE/REPNZaffect only a single string instruction. Use the
LOOPInstruction or another looping construct to repeat a block of string
instructions.

The precise action for each iterationREP/REPE/REPZ/REPNE/REPNZis as
follows:

1. If the address size attribute is 16-bits, use CX for the count register; if the
address size attribute is 32-bits, use ECX for the count register.

Check (E)CX. Ifitis zero, exit the iteration, and move to the next instruction.
Acknowledge any pending interrupts.

Perform the string operation once.

o~ N

Decrement CX or ECX by 1; no flags are modified.

ASM386 Assembly Language Reference Chapter 6 379

REP/REPE/REPZ/REPNE/REPNZ

6. Check the zero flag if the string operatios@ASor CMPS If the repeat
condition does not hold, exit the iteration and move to the next instruction.
Exit the iteration if the prefix IREPEand ZF is O (the last comparison was not
equal), or if the prefix IREPNEand ZF is 1 (the last comparison was equal).

7. Return to step 1 for the next iteration.

RepeatedcMPSandSCASinstructions can be exited if the count is exhausted or if

the zero flag fails the repeat condition. These two cases can be distinguished eithe
by using theJECXZ/JCXZ instruction, or by using the conditional jumps that test

the zero flagJdz, JNZ, andJNE).

Not all input/output ports can handle the rate at whiclRERRINS andREPOUTS
instructions execute.

Flags Affected
ZF byREPCMPSandREPSCASas indicated in the Operation section

Exceptions by Mode

Protected

#UD if REPis used with any instruction (excapdD9 not listed in the preceding
table; further exceptions can be generated when the string operation is executed.

See also: LODSand other string instructions, in this chapter

Real Address
Interrupt 6 iIfREPis used with any instruction (excd@D9 not listed in the
preceding table; further exceptions can be generated when the string operation is
executed.

Virtual 8086

#UD if REPis used with any instruction (excapdD9 not listed in the preceding
table; further exceptions can be generated when the string operation is executed.

380 Chapter 6 Processor Instructions

RET

RET Return from Procedure

Opcode Instruction Clocks Description

C3 RET 10 Return (near) to caller

CB RET 18+#m,pm=32+m Return (far) to caller, same privilege

CB RET pmM=68 Return (far), lesser privilege, switch stacks

C2iw RETimm16 10+4m Return (near), popmm16bytes of
parameters

CAiw RETIimm16 18+mpnm=32+m Return (far), same privilege, papm16
bytes

CAiw RETImm16 pm68 Return (far), lesser privilege, popm16
bytes

Operation

IF instruction = near RET THEN
IF OperandSize = 16 THEN
IP :=Pop();
EIP := EIP AND 0000FFFFH;
ELSE (*OperandSize = 32%)

EIP := Pop();
IF instruction has immediate operand THEN
(E)SP := (E)SP + imm16;

ENDIF; (*near RET*)

IF (PE =0 OR (PE =1 AND VM = 1)) AND instruction = far RET
THEN
(*PE in CRO; VM in EFLAGS,; real address or virtual 8086 mode*)
IF OperandSize = 16 THEN
IP :=Pop();
EIP := EIP AND 0000FFFFH;
CS := Pop(); (*16-bit pop*)
ELSE (*OperandSize = 32%)
EIP := Pop();
CS := Pop(); (*32-bit pop, high-order 16-bits discarded*)
IF instruction has immediate operand THEN
(E)SP := (E)SP + imm16;

ASM386 Assembly Language Reference Chapter 6 381

RET

ENDIF; (*far RET in real address or virtual 8086 mode*)
IF (PE =1 AND VM = 0) AND instruction = far RET THEN
(*protected mode*)
IF OperandSize = 32 THEN
IF third word on stack NOT within stack limits THEN #SS(0);
ELSE
IF second word on stack NOT within stack limits THEN
#SS(0);
IF return selector RPL < CPL THEN #GP(return selector);
IF return selector RPL = CPL THEN
GOTO SAME_PRIVILEGE;
ELSE
GOTO LESS_PRIVILEGED;

SAME_PRIVILEGE:
IF return selector is null THEN #GP(0);
IF selector index NOT within its descriptor table limits THEN
#GP(selector);
IF descriptor AR indicates non-code segment THEN
#GP(selector);
IF nonconforming AND
code segment DPL NOT = CPL THEN
#GP(selector);
IF conforming AND code segment DPL > CPL THEN
#GP(selector);
IF code segment NOT PRESENT THEN #NP(selector);
IF top word on stack NOT with stack limits THEN #SS(0);
IF return_offset NOT within code segment limit THEN
#GP(0);
IF OperandSize = 32 THEN
Load CS:EIP from stack;
Load CS cache with descriptor;
ESP := ESP + (8 + immediate offset (*if any*));
ELSE (*OperandSize = 16¥)
Load CS:IP from stack;
Load CS cache with descriptor;
SP := SP + (4 + immediate offset (*if any*));

LESS_PRIVILEGED:
IF OperandSize = 32 AND top (16 + immediate) bytes
on stack NOT within stack limits THEN
#SS(0);

382 Chapter 6

Processor Instructions

RET

ELSE
IF top (8 + immediate) bytes on stack
NOT within stack limits THEN
#SS(0);
ENDIFELSE; (*check top stack bytes*)
(*Examine return CS selector and associated descriptor: *)

IF selector is null THEN #GP(0);

IF selector index NOT within its descriptor table limits
THEN

#GP(selector);
Descriptor AR must indicate code segment

ELSE #GP(selector);
IF nonconforming AND code segment DPL NOT =
return selector RPL THEN

#GP(selector);

IF conforming AND code segment DPL >

return selector RPL THEN
#GP(selector);

IF segment NOT PRESENT THEN #NP(selector);
(*END examine return CS selector and descriptor*)
(*Examine return SS selector and associated descriptor: *)

IF selector is null THEN #GP(0);

IF selector index NOT within

its descriptor table limits THEN

#GP(selector);
IF selector RPL NOT =
RPL of return CS selector THEN
#GP(selector);
Descriptor AR must indicate writable data segment
ELSE #GP(selector);
IF descriptor DPL NOT = RPL
of return CS selector THEN
#GP(selector);

IF segment NOT PRESENT THEN #NP(selector);
(*END examine return SS selector and descriptor*)

IF return_offset NOT within code segment limit THEN

#GP(0);
CPL := RPL of return CS selector;
IF OperandSize = 32 THEN
Load CS:EIP from stack;
(*CS*) RPL := CPL;
ESP := ESP + (16 + immediate offset (*if any*));
Load SS:ESP from stack;

ASM386 Assembly Language Reference Chapter 6 383

RET

ELSE (*OperandSize = 16%*)
Load CS:IP from stack;
(*CS*) RPL := CPL;
SP := SP + (8 + immediate offset (*if any*));
Load SS:SP from stack;
ENDIFELSE; (*OperandSize = 32 or 16*)
Load CS cache with return CS descriptor;
Load SS cache with return SS descriptor;
FOR each of ES, FS, GS, and DS DO
IF current register setting NOT
valid for calling routine THEN
register := null; (*selector and AR := 0%)
(*To be valid, register setting must satisfy:
Selector index must be within its
descriptor table limits;
Descriptor AR must indicate data
or readable code segment;
For data or nonconforming code segment,
DPL must be >= either CPL or RPL*)
ENDFOR,;

Discussion

384

RETtransfers control to a return address located on the stack. The address is
usually placed on the stack bycaLL instruction, and the return is made to the
instruction that follows th€ALL

RETSs optional numeric operand specifies the number of stack bytes to be released
after the return address is popped. The bytes released were input parameters to th
procedure called.

An intrasegmentNEAR RET pops the 4- or 2-byte segment offset address on the
stack into (E)IP. TheSregister is unchanged. For an intersegmesR)(RET,

the address on the stack is a 4-byte (operand size attribute is 16-bits) or 6-byte
(operand size attribute is 32-bits) long pointer, stored on the stack in 8 BEES.
pops the offset first, followed by the selector.

The assembler distinguishes betws@&hRandFARRETS via thePROC-ENDP
context of the instruction. RETis coded in &lEARprocedure, the near form is
used; ifRETIis in aFARprocedure, the far form is used.

Chapter 6 Processor Instructions

RET

In real address modeETloads CS and IP directly. In protected mode, an
intersegmenRET causes the processor to check the descriptor addressed by the
return selector. The access rights (AR) of the descriptor must indicate a code
segment of equal or lesser privilege (equal or greater numeric value) than the
current privilege level. Returns to a lesser privilege level cause the stack from that
level to be restored with parameters removed if an immediate operand is specified.

RETcan zero the DS, ES, FS, and GS segment registers during an interlevel
transfer. If these registers refer to segments that cannot be used by the new
privilege level, they are set to 0 to prevent unauthorized access.

Flags Affected

None
Exceptions by Mode

Protected

#GP, #NP, or #SS, as described in the Operation section; #PF(fault-code) for a page
fault

Real Address

Interrupt 13 if any part of the operand would be outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 385

SAHF

SAHF store AH into Flags

Opcode Instruction Clocks Description
9E SAHF 3 Store AH into flags SF ZF xx AF xx PF xx CF

Operation
(SF):(ZF):xx:(AF):xx:(PF):xx:(CF) := (AH);

Discussion

SAHFloads bits 7, 6, 4, 2, and 0 from the AH register into the SF, ZF, AF, PF, and
CF flags of thdE)FLAGS register.

Flags Affected
SF, ZF, AF, PF, and CF

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

386 Chapter 6 Processor Instructions

SAL/SAR/SHL/SHR

SAL/SAR/SHL/SHR shitt
Opcode Instruction Clocks
DO /4 SALr/m8,1 3/7
D2 /4 SALI/m8,CL 3/7
CO0 /4ib SAL r/m8,imm8 3/7
D1/4 SALr/m161 3/7
D3 /4 SALr/m16CL 3/7
C1 /4ib SAL r/m16imm8 3/7
D1/4 SALr/m321 3/7
D3 /4 SALr/m32CL 3/7
C1 /4ib SAL r/m32imm8 3/7
DO /7 SARr/m8,1 3/7
D2 /7 SARr/m8,CL 3/7
CO0 /7ib SAR/m8,imm8 3/7
D1/7 SARr/m16,1 3/7
D3 /7 SARr/m16,CL 3/7
C1l/7ib SAR/m16imm8 3/7
D1/7 SARr/m321 3/7
D3 /7 SARr/m32CL 3/7
C1l/7ib SAR/m32imm8 3/7
DO /4 SHLr/m8,1 3/7
D2 /4 SHLr/m8,CL 3/7
CO0 /4ib SHL r/m8,imm8 3/7
D1/4 SHLr/m161 3/7
D3 /4 SHLr/m16CL 3/7

T Rounding is toward negative infinity

ASM386 Assembly Language Reference

Description

Multiply r/m byte by 2, once

Multiply r/m byte by 2, CL times
Multiply r/m byte by 2, imm8 times
Multiply r/m word by 2, once
Multiply r/m word by 2, CL times
Multiply r/m word by 2, imm8 times
Multiply r/m dword by 2, once
Multiply r/m dword by 2, CL times
Multiply r/m dword by 2, imm8 times
Signed dividbr/m byte by 2, once
Signed dividé r/m byte by 2, CL times

Signed divid& r/m byte by 2, imm8
times

Signed dividk r/m word by 2, once
Signed dividé r/m word by 2, CL times

Signed divid& r/m word by 2, imm8
times

Signed dividkr/m dword by 2, once
Signed dividé r/m dword by 2, CL times

Signed divid& r/m dword by 2, imm8
times

Unsigned multiply/m byte by 2, once

Unsigned multiply/m byte by 2, CL
times

Unsigned multiply/m byte by 2, imm8
times

Unsigned multiply/m word by 2, once

Unsigned multiply/m word by 2, CL
times

Chapter 6 387

SAL/SAR/SHL/SHR

Opcode Instruction Clocks Description

Cl/4ib SHL r/m16imm8 3/7 Unsigned multiply/m word by 2, imm8
times

D1 /4 SHLr/m321 3/7 Unsigned multiply/m dword by 2, once

D3 /4 SHLr/m32CL 3/7 Unsigned multiply/m dword by 2, CL times

Cl/4ib SHL r/m32imm8 3/7 Unsigned multiply/m dword by 2, imm8
times

DO /5 SHRr/m8,1 37 Unsigned divideém byte by 2, once

D2 /5 SHRr/m8,CL 3/7 Unsigned divide/m byte by 2, CL times

CO0 /5ib SHRr/m8imm8 3/7 Unsigned divide/m byte by 2, imm8 times

D1/5 SHRr/m16,1 3/7 Unsigned divide/m word by 2, once

D3 /5 SHRr/m16,CL 3/7 Unsigned divide/m word by 2, CL times

C1/5ib SHRr/m16imm8 3/7 Unsigned divide/m word by 2, imm8 times

D1/5 SHRr/m321 3/7 Unsigned divide/m dword by 2, once

D3 /5 SHRr/m32,CL 3/7 Unsigned divide/m dword by 2, CL times

C1/5ib SHRr/m32imm8 3/7 Unsigned divide/m dword by 2, imm8 times

Operation

(*Count is the second operand*)
temp := Count;
WHILE (temp NOT = 0) DO
IF instruction = SAL OR SHL THEN
CF := high-order bit of r/m:;
r/m = r/m *2;
ELSE (*instruction is SAR or SHR¥)
CF := low-order bit of r/’m:;
IF instruction = SAR THEN
r/m = r/m [2; (*signed divide; round toward - 0o%)
ELSE (*instruction is SHR*)
r/m = r/m | 2; (*unsigned divide*);
temp :=temp - 1,
ENDWHILE;
IF Count = 1 THEN (*Determine overflow*)
IF instruction is SAL or SHL THEN
IF high-order bit of r/m NOT = (CF) THEN
OF :=1;

388 Chapter 6 Processor Instructions

SAL/SAR/SHL/SHR

ELSE
OF :=0;
IF instruction is SAR THEN
OF :=0;
IF instruction is SHR THEN
OF := high-order bit of operand;
ELSE (*Count NOT = 1%) OF := UNDEFINED;

Discussion

SAL/SAR/SHL/SHR shift the bits of the register or memory operaBédL/SHL

shift the bits upward, copying the high-order bit into the carry flag and clearing the
low-order bit (0). SAR/SHRshift the bits downward, copying the low-order bit into
the carry flag; the effect is to divide the operand byg2Rperforms a signed

divide by 2 with rounding toward negative infinity (not lik@V); the high-order

bit remains the samesHRperforms an unsigned divide; the high-order bit is
cleared.

The second operand is a shift count in the range 1..31; the operand is either an
immediate number or the contents of CL. For a shift count value greater than 31,
the processor uses only its low-order 5-bits. (The 8086 uses all 8-bits of the shift
count.)

The overflow flag is defined only if the second operand is 1; otherwise, it is
undefined. SAL/SHL clear OF (to 0) if the high bit of the answer is the same as the
result of the carry flag (i.e., the top two bits of the original operand are the same);
OF is set to 1 if they are differen8ARclears OF for all single shiftSHRsets OF

to the high-order bit of the original operand.

Flags Affected

CF and OF for single shifts as indicated in the Discussion section; OF is undefined
for shift counts greater than 1; ZF, PF, and SF as described in Appendix A

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 389

SAL/SAR/SHL/SHR

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

390 Chapter 6 Processor Instructions

SBB

SBB Integer Subtraction with Borrow

Opcode Instruction Clocks Description
1Cib SBB AL,imm8 2 Subtract with borrow immediate byte from AL
1Diw SBB AX,imm16 2 Subtract with borrow immediate word from
AX
1Did SBB EAXjmm32 2 Subtract with borrow immediate dword from
EAX
80 /3ib SBBr/m8imm8 217 Subtract with borrow immediate byte from
r/m byte
81 /3iw SBBr/m16imml6 2/7 Subtract with borrow immediate word from
r/m word
81/3id SBBr/m32imm32 2/7 Subtract with borrow immediate dword from
r/m dword
83 /3ib SBBr/mi16imm8 2/7 Subtract with borrow sign-extended
immediate byte from/m word
83 /3ib SBBr/m32imm8 2/7 Subtract with borrow sign-extended
immediate byte from/m dword
18/r SBBr/m8,r8 2/6 Subtract with borrow byte register frafrm
byte
19/r SBBr/m16r16 2/6 Subtract with borrow word register fraym
word
19/r SBBr/m32r32 2/6 Subtract with borrow dword register fra’m
dword
1A Ir SBBr8,r/m8 217 Subtract with borrow/m byte from byte
register
1B/r SBBr16,r/m16 217 Subtract with borrow/m word from word
register
1B/r SBBr32,r/m32 217 Subtract with borrow/m dword from dword
register
Operation

IF Src is byte AND Dest is word OR dword THEN
Dest = Dest - (SignExtend(Src) + CF);

ELSE
Dest := Dest - (Src + CF);

ASM386 Assembly Language Reference Chapter 6 391

SBB

Discussion

SBBadds the second operand to the carry flag (CF) and subtracts the result from th
first operand. TheBBBcopies the result to the first operand, and sets the flags
accordingly.

WhenSBB subtracts an immediate byte value from a word or dword operand, it
sign-extends the immediate value before the subtraction.

Flags Affected
OF, SF, ZF, AF, PF, and CF as described in Appendix A

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

392 Chapter 6 Processor Instructions

SCAS/SCASB/SCASW\SCASD

SCAS/SCASB/SCASW/SCASD Compare String Data

Opcode Instruction Clocks

AE SCASm8 7 Compare bytes AL - ES:[(E)DI], update (E)DI

AF SCASml1l6 7 Compare words AX - ES:[(E)DI], update (E)DI

AF SCASmM32 7 Compare dwords EAX - ES:[(E)DI], update
(E)DI

AE SCASB 7 Compare bytes AL - ES:[(E)DI], update (E)DI

AF SCASW 7 Compare words AX - ES:[(E)DI], update (E)DI

AF SCASD 7 Compare dwords EAX - ES:[(E)DI], update
(E)DI

Operation

Description

IF AddressSize = 16 THEN
Use DI for DestIndex;
ELSE (*AddressSize = 32*)
Use EDI for DestIndex;
IF byte type of instruction THEN
AL - [DestIndex]; (*compare byte in AL with destination*)
IF DF = 0 THEN IncDec := 1 ELSE IncDec := -1;
ELSE
IF OperandSize = 16 THEN
(*compare word in AX with destination*)
AX - [DestIndex];
IF DF = 0 THEN IncDec := 2 ELSE IncDec := -2,
ELSE (*OperandSize = 32%)
(*compare dword in EAX with destination*)
EAX - [Destindex];
IF DF = 0 THEN IncDec := 4 ELSE IncDec := -4;
Destindex := DestIindex + IncDec;

ASM386 Assembly Language Reference Chapter 6

393

SCAS/SCASB/SCASW\SCASD

Discussion

SCASsubtracts the memory byte, word, or dword at the destination register from
the AL, AX or EAX register.SCASdiscards the result; only the flags are set. The
operand must be addressable from the ES segment; no segment override is possib

If the address size attribute for this instruction is 16-bits, Dl is used as the
destination index register; otherwise, the address size attribute is 32-bits and EDI is
used.

The address of memory data is determined solely by the contents of the destinatior
index register, not by theCASoperand. Load the correct index value into (E)DI
before executingCAS

The SCASoperand validates ES segment addressability and determines the data
type. After the comparison is made, the destination register is automatically
updated. If the direction flag is GKDwas executed), the destination index
register is incremented; if the direction flag isSTPwas executed), it is
decrementedSCASincrements or decrements the destination by 1 if it compares
bytes, by 2 if it compares words, or by 4 if it compares dwords.

SCASB SCASWandSCASDare synonyms for the byte, word and dws@hS
instructions. They are simpler, but they provide no type or segment checking.

SCAScan be preceded by tREPEor REPNEprefix for a block search of (E)CX
bytes, words, or dwords. See &P prefix for details of this operation.

Flags Affected
OF, SF, ZF, AF, PF, and CF as described in Appendix A

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

394 Chapter 6 Processor Instructions

SETcc

SETCC Byte Set on Condition

Opcode
OF 97
OF 93
OF 92
OF 96
OF 92
OF 94
OF 9F
OF 9D
OF 9C
OF 9E
OF 96
OF 92
OF 93
OF 97

OF 93
OF 95
OF 9E
OF 9C

OF 9D
OF 9F

OF 91
OF 9B
OF 99
OF 95
OF 90
OF 9A

Instruction
SETAr/m8
SETAE/m8
SETB/m8
SETBE/M8
SETQ/m8
SETE/m8
SETG/m8
SETGH/m8
SETLr/m8
SETLE/m8
SETNA/m8
SETNAE/M8
SETNB/m8
SETNBE/mM8

SETNG/m8
SETNE/m8
SETNG/m8
SETNGE/M8

SETNLr/m8
SETNLE/M8

SETNQ/m8
SETNR/m8
SETNS/m8
SETNZ/m8
SETQ/m8
SETP/m8

Clocks
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5

4/5
4/5
4/5
4/5

4/5
4/5

4/5
4/5
4/5
4/5
4/5
4/5

Description

Set byte if above (CF=0 and ZF=0)

Set byte if above or equal (CF=0)

Set byte if below (CF=1)

Set byte if below or equal (CF=1 or ZF=1)
Set if carry (CF=1)

Set byte if equal (ZF=1)

Set byte if greater (ZF=0 and SF=0OF)

Set byte if greater or equal (SF=0F)

Set byte if less (SF NOT = OF)

Set byte if less or equal (ZF=1 or SF NOT = OF)
Set byte if not above (CF=1 or ZF = 1)

Set byte if not above and not equal (CF=1)
Set byte if not below (CF=0)

Set byte if not below and not equal (CF=0 and
ZF=0)

Set byte if not carry (CF=0)
Set byte if not equal (ZF=0)
Set byte if not greater (ZF=1 or SF NOT = OF)

Set byte if not greater and not equal (SF NOT =
OF)

Set byte if not less (SF=OF)

Set byte if not less and not equal (ZF=1 and
SF=0F)

Set byte if not overflow (OF=0)
Set byte if not parity (PF=0)
Set byte if not sign (SF=0)

Set byte if not zero (ZF=0)

Set byte if overflow (OF=1)
Set byte if parity (PF=1)

ASM386 Assembly Language Reference Chapter 6 395

SETcc

Opcode Instruction Clocks Description
OF 9A SETPE/m8 4/5 Set byte if parity even (PF=1)
OF 9B SETPQ/m8 4/5 Set byte if parity odd (PF=0)
OF 98 SETS/m8 4/5 Set byte if sign (SF=1)
OF 94 SETZ/m8 4/5 Set byte if zero (ZF=1)
Operation
IF condition THEN
r/m8 =1;
ELSE
r/m8 =0;
Discussion

SETcc stores a byte value at the destination specified by the memory effective
address or registeSETcc stores a 1 if the condition is met; it stores 0 if the
condition is not met.

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) if the result is in a non-writable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086
Same as Real Address Mode; #PF(fault-code) for a page fault

396 Chapter 6 Processor Instructions

SGDT/SIDT

SGDT/SIDT store Global/Interrupt Descriptor Table Register

Opcode Instruction Clocks Description
OF01/0 SGDTm 9 Store GDTR tan
OF01/1 SIDTm 9 Store IDTR tan
Operation

Dest := 48-bit BASE/LIMIT register contents;

Discussion

SGDT/SIDT copies the contents of the descriptor table register to the 6 bytes of
memory specified by the operan8GDT/SIDT assign the limit field of the register
to the low-order word at the effective address.

If the operand size attribute is 32-b&GDT/SIDT assign the 32-bit base field of

the register to the next 4 bytes. If the register was loaded with operand size
attribute of 16-bits, these instructions assign the base field of the register to the next
3 memory bytes and zero to the high-order byte.

The 16-bit forms of th&GDT/SIDT instructions are compatible with the 286
processoSGDT/SIDT if the value in the high-order 8-bits is not referenced.
Flags Affected

None
Exceptions by Mode

Protected

#UD if the destination operand is a register; #GP(0) if the destination is in a
nonwritable segment; #GP(0) for an illegal memory operand effective address in
the CS, DS, ES, FS, or GS segments; #SS(0) for an illegal address in the SS
segment; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 397

SGDT/SIDT

Real Address

Interrupt 6 if the destination operand is a register; Interrupt 13 if any part of the
operand would lie outside the effective address space from 0 to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

398 Chapter 6 Processor Instructions

SGDTW/SGDTD/SIDTW/SIDTD

SGDTW/SGDTD/SIDTW/SIDTD

Store Global/Interrupt Descriptor Table Register with WORD/DWORD Operand

Opcode Instruction Clocks Description
OF01/0 SGDTWnl6é 9 Loadm16into GDTR
OF01/0 SGDTDm32 9 Loadm32into GDTR
OF01/1 SIDTWm16 9 Loadm16into IDTR
OF01/1 SIDTDm32 9 Loadm32into IDTR

Operation

DEST := 48-bit BASE/LIMIT register contents;

Discussion

The SGDTWSGDTDRSIDTW, andSIDTD instructions are variants of tis&DTand
SIDT instructions. They copy the contents of the descriptor table register to the 6
bytes of memory specified by the operand.

These variants allow the 16-bit or 32-bit form of the instructions to be used without

hard-coding address and operand prefixes to overrideSgattribute currently in
effect.

The variants automatically generate any operand or address prefixes that are
necessary as follows:

USE16 USE16 USE32 USE32

Operand Address Operand Address
Instruction Prefix Prefix Prefix Prefix
SGDTW/SIDTW NO NO YES YES
SGDTD/SIDTD YES YES NO NO

See also: SGDT/SIDT instructions for further discussion, flags affected, and
exceptions, in this chapter

ASM386 Assembly Language Reference Chapter 6 399

SHLD

SHLD Double Precision Shift Left

Opcode Instruction Clocks Description

OF Ad/rib SHLD r/m16, 3/7 r/m16gets SHL of/m16 concatenated
r16,imm8 with r16

OF Ad/rib SHLD r/m32 3/7 r/m32gets SHL of/m32 concatenated
r32,imm8 with r32

OF A5/r SHLD r/m16, 3/7 r/m16 gets SHL of/m16 concatenated
r16,CL with r16

OF A5/r SHLD r/m32 3/7 r/m32gets SHL of/m32 concatenated
r32,CL with r32

Operation

(*Count is an unsigned integer corresponding to the last operand of
the instruction, either an immediate byte or the byte in register CL*)

ShiftAmt := Count MOD 32; (*Count = third operand*)
IF ShiftAmt = 0 THEN

NOP;

ELSE

400

IF ShiftAmt >= OperandSize THEN (*bad parameters*)

r/m = UNDEFINED;
Flags := UNDEFINED; (*CF, OF, SF, ZF, AF, and PF*)
ELSE (*do the shift; allow overlapped operands*)
inBits := r16/32 ; (*second operand*)
Base := Dest;
CF := BIT[Base, (OperandSize - ShiftAmt)];
(*last bit shifted out on exit*)
FOR i := (OperandSize - 1) DOWNTO ShiftAmt DO
BIT[Base, i] := BIT[Base,i - ShiftAmt];
ENDFOR;
FOR i := (ShiftAmt - 1) DOWNTO 0 DO
BIT[Base,i] := BIT[inBits,i - ShiftAmt + OperandSize];
ENDFOR,;
(*SF, ZF, PF, OF are set according to the result value*)
Set SF, ZF, PF, (r’m);
IF BIT[Base, OperandSize - 1] NOT = CF THEN
OF =1,
ELSE
OF :=0;
AF := UNDEFINED;

Chapter 6

Processor Instructions

SHLD

Discussion

SHLDshifts the r/m first operand to the left as many bits as specified by the count
(third operand) modulo 32. The second operand (r16 or r32) provides the bits to
shift in from the right, starting with the bit (OperandSize - ShiftAmount). The
result is stored back into the r/m operand. The second operand is unchanged.

The count is either an immediate byte or the contents of the CL register. Its value
is taken modulo 32 to yield a shift amount in the range 0..31. The shift amount
must be less than the operand sizeskirDdoes nothing.

SHLDsets SF, ZF and PF according to the value of the result. It sets CF to the
value of the last bit shifted out and OF to 1 if this bit caused an overflow. AF is
undefined.

Flags Affected
OF, SF, ZF, PF, and CF as described in the Discussion section; AF is undefined

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 401

SHRD

SHRD Dpouble Precision Shift Right

Opcode Instruction Clocks Description

OF AC/rib SHRDr/ml16 3/7 r/m1l6gets SHR of16 concatenated with
r16,imm8 r/m16

OF AC/rib SHRDr/m32 3/7 r/m32gets SHR of32 concatenated with
r32,imm8 r/m32

OF AD/r SHRDr/ml16 3/7 r/m16gets SHR of16 concatenated with
r16,CL r/m16

OF AD/r SHRDr/m32, 3/7 r/m32gets SHR of32 concatenated with
r32,CL r/m32

Operation

(*Count is an unsigned integer corresponding to the last operand of
the instruction, either an immediate byte or the byte in register CL*)

ShiftAmt := Count MOD 32;
IF ShiftAmt = 0 THEN

NOP;

ELSE

IF ShiftAmt >= OperandSize THEN (*bad parameters*)
r/m = UNDEFINED;
Flags := UNDEFINED; (*CF,OF,SF,ZF,AF, and PF*)

ELSE (*do the shift; allow overlapped operands*)

402

inBits := r16/32 ; (*second operand*)
Base := Dest;
CF := BIT[Base, ShiftAmt - 1];
(*last bit shifted out on exit*)
FORi:=0 TO (OperandSize - 1 - ShiftAmt) DO
BIT[Base, i] := BIT[Base, i + ShiftAmt];
ENDFOR,;
FOR i := (OperandSize - ShiftAmt) TO (OperandSize - 1) DO
BIT[Base,i] := BIT[inBits, i + ShiftAmt - OperandSize];
ENDFOR,;
(*SF, ZF, PF, and OF are set according to the result value*)
Set SF, ZF, PF (r’m);

Chapter 6

Processor Instructions

SHRD

IF BIT[Base, OperandSize - 1]
NOT = BIT[Base, OperandSize - 2] THEN

OF =1,
ELSE
OF :=0;

AF := UNDEFINED;

Discussion

SHRDshifts the r/m first operand to the right as many bits as specified by the count
(third operand) modulo 32. The second operand (r16 or r32) provides the bits to
shift in from the left, starting with bit 0. The result is stored back into the r/m
operand. The second operand is unchanged.

The count is either an immediate byte or the contents of the CL register. Its value
is taken modulo 32 to yield a shift amount in the range 0..31. The shift amount
must be less than the operand sizesHRDdoes nothing.

SHRDsets SF, ZF and PF according to the value of the result. It sets CF to the
value of the last bit shifted out and sets OF if the 2 most significant bits differ. AF
is undefined.

Flags Affected
SF, ZF, PF, CF and OF as described in the Discussion section; AF is undefined

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 403

SLDT

SLDT store Local Descriptor Table Register

Opcode Instruction Clocks Description
OF 00 /0 SLDTr/m16 pnE2/2 Store LDTR ta/m16
Operation
r/ml6 =LDTR;
Discussion

SLDT stores the Local Descriptor Table Register (LDTR) in the operand, a 2-byte
register or memory location. The operand size attribute has no effétDals
operation.

LDTR is a selector that points to thBT descriptor in the Global Descriptor Table.

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 6;SLDT s not recognized in Real Address Mode

Virtual 8086

Same as Real Address Mode

404 Chapter 6 Processor Instructions

SMSW

SMSW Store Machine Status Word

Opcode Instruction Clocks Description
OF 01 /4 SMSW/m16 213 pme2/2 Store machine status wordrfm16
Operation
r/mil6 = MSW;
Discussion

SMSVgtores the machine status word of CRO in the 2-byte register or memory
location specified by its operand.

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 405

STC

STC Set Carry Flag

Opcode Instruction Clocks
F9 STC 2
Operation

CF =1,
Discussion

STCsets the carry flag to 1.

Flags Affected
CF=1

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

406 Chapter 6

Description
Set carry flag

Processor Instructions

STD

STD set Direction Flag

Opcode Instruction Clocks Description
FD STD 2 Set direction flag so (E)SI and/or (E)DI decrement

Operation
DF :=1;

Discussion

STDsets the direction flag to 1, causing all subsequent string operations to
decrement the index registers, (E)SI and/or (E)DI.

Flags Affected
DF=1

Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

ASM386 Assembly Language Reference Chapter 6 407

STI

STl set Interrupt Flag

Opcode Instruction Clocks Description

FB STI 3 Set interrupt flag; interrupts enabled at the end of
the next instruction

Operation

IF CPL > IOPL THEN
#GP(0);
ELSE
IF (*interrupt flag*) := 1;
Discussion

STI sets the interrupt flag in t{E)FLAGS register. The processor then responds
to external interrupts after executing the next instruction (if this instruction allows
the interrupt flag to remain enabled). If external interrupts are disabled:

e STI, CLI has no effect except that it uses clocksl clears the interrupt flag
set bySTI; external interrupts are not recognized after this instruction
sequence.

e STI, RET(at the end of a subroutine) alloRETto execute before external
interrupts are recognized.

Flags Affected
IF=1

Exceptions by Mode

Protected
#GP(0) if the current privilege level (CPL) is greater (has less privilege)@rin

Real Address

None

Virtual 8086

#GP(0) to allow emulation

408 Chapter 6 Processor Instructions

STOS/STOSB/STOSW/STOSD

STOS/STOSB/STOSW/STOSD store String Data

Opcode Instruction Clocks Description
AA STOSm8 4 Store AL in byte ES:[(E)DI], update (E)DI
AB STOSm1l6 4 Store AX in word ES:[(E)DI], update (E)DI
AB STOSm32 4 Store EAX in dword ES:[(E)DI], update (E)DI
AA STOSB 4 Store AL in byte ES:[(E)DI], update (E)DI
AB STOSW 4 Store AX in word ES:[(E)DI], update (E)DI
AB STOSD 4 Store EAX in dword ES:[(E)DI], update (E)DI
Operation
IF AddressSize = 16 THEN
Use ES:DI for DestReg;
ELSE (*AddressSize = 32*)
Use ES:EDI for DestReg;
IF byte type of instruction THEN
(ES:DestReg) := AL;
IF DF = 0 THEN IncDec := 1 ELSE IncDec := -1;
ELSE (*word or dword instruction*)
IF OperandSize = 16 THEN
(ES:DestReg) := AX;
IF DF = 0 THEN IncDec := 2 ELSE IncDec := -2;
ELSE (*OperandSize = 32%)
(ES:DestReg) := EAX;
IF DF = 0 THEN IncDec := 4 ELSE IncDec := -4,
DestReg := DestReg + IncDec;
Discussion

STOStransfers the contents of AL, AX, or EAX register to the memory byte, word
or dword accessed by ES:(E)DI. The destination register is DI for an address size
attribute of 16-bits or EDI for an address size attribute of 32-bits. The destination
operand must be addressable from the ES register. No segment override is
possible.

The address of the destination is determined by the contents of (E)DI, not by the
STOSoperand. This operand is used only to validate ES segment addressability
and to determine the data type. Load the correct index value into (E)DI before
executingsToS

ASM386 Assembly Language Reference Chapter 6 409

STOS/STOSB/STOSW/STOSD

STOSB STOSWandSTOSDare synonyms for the byte, word, and dwsT®dS
instructions. They are simpler, but they provide no type or segment checking.

After the transfer is made, (E)DI is automatically updated. If the direction flag is O
(CLD was executed), the destination register is incremented; if the direction flag is
1 (STD was executed), (E)DI is decremented. (E)DI is incremented or
decremented by 1 if a byte is stored, by 2 if a word is stored, or by 4 if a dword is
stored.

STOScan be preceded by tReEPprefix for a block fill of (E)CX bytes, words, or
dwords. See theePreference for details of this operation.

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

410 Chapter 6 Processor Instructions

STR

STR store Task Register

Opcode Instruction Clocks Description
OF 00 /1 STR/m16 pn¥23/27 Store task register inttm word

Operation

r/ml16 :=task register;

Discussion

STRcopies the contents of the task register into the 2-byte register or memory
location specified by the operand.

The operand size attribute has no effect on this instruction.

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 6;STRis not recognized in Real Address Mode

Virtual 8086

Same as Real Address Mode

ASM386 Assembly Language Reference Chapter 6 411

SUB

SUB Integer Subtraction

Opcode Instruction Clocks Description

2Cib SUB AL,imm8 2 Subtract immediate byte from AL

2Diw SUB AX,imml1l6 2 Subtract immediate word from AX

2Did SUB EAXjmm32 2 Subtract immediate dword from EAX

80 /5ib SUBr/m8,imm8 217 Subtract immediate byte fromm byte

81 /5iw SUBr/m16imml6 2/7 Subtract immediate word frorim word

81 /5id SUB1/m32imm32 2/7 Subtract immediate dword frorm dword

83 /5ib SUBr/m16imm8 2/7 Subtract sign-extended immediate byte from
r/m word

83 /5ib SUBr/m32imm8 2/7 Subtract sign-extended immediate byte from
r/m dword

28/r SUBT/m8,r8 2/6 Subtract byte register fronm byte

29/r SUBr/m16r16 2/6 Subtract word register fronm word register
from r/m dword

2Ar SUB8,r/m8 217 Subtract/m byte from byte register

2B /r SUBr16,r/m16 217 Subtract/m word from word register

2B /r SUBr32,r/m32 217 Subtract/m dword from dword register

Operation

IF Src is byte AND Dest is word OR dword THEN
SignExtend(Src);
Dest := Dest - Src;
Discussion

SUBsubtracts the second operand from the first operand, assigns the result to the
first operand (Dest), and sets the flags accordingly.

When an immediate byte value is subtracted from a word or dword operand, the
immediate value is first sign-extended to the size of the destination operand.

Flags Affected
OF, SF, ZF, AF, PF, and CF as described in Appendix A

412 Chapter 6 Processor Instructions

SUB

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 413

TEST

TEST Logical Compare

Opcode Instruction Clocks Description

A8 ib TEST AL,jmm8 2 AND immediate byte with AL

A9 iw TEST AX,jmm16 2 AND immediate word with AX
A9id TEST EAXjmm32 2 AND immediate dword with EAX
F6 /0ib TESTr/m8,imm8 2/5 AND immediate byte with/m byte
F7 /0iw TESTr/m16imml16 2/5 AND immediate word witl/m word
F7 /0id TESTr/m32imm32 2/5 AND immediate dword witlym dword
84/r TESTr/m8r8 2/5 AND byte register with/m byte

85/r TESTr/m16r16 2/5 AND word register withi/m word
85/r TESTr/m32r32 2/5 AND dword register wit/m dword
84/r TESTr8,r/m8 2/5 AND r/m byte with byte register
85/r TESTrl6,r/m16 2/5 AND r/m word with word register
85/r TESTr32,r/m32 2/5 AND r/m dword with dword register
Operation

Dest AND RightSrc;
(*Set SF, ZF, and PF according to AND result*)

CF :=0;
OF :=0;
Discussion

TEST does a bit-wise logicalNDof its two operands. A correspondiayDresult
bit is 1 if both operands' corresponding bits are 1; otherwise, the result bit is 0.

TEST discards th&NDresult; its purpose is to assign values to the ZF, SF, and PF
flags, and to clear CF and OF. For example:

TEST AL,1 ; AND AL bottom bit with 1;
; assign to ZF, SF, PF

JNZ FINISH ; jump to FINISH if AL's
: LSB is set

See thelcc andSETcc instructions for more information about the SF, ZF, and
PF tests.TEST clears CF and OF.

414 Chapter 6 Processor Instructions

TEST

Flags Affected
OF =0, CF = 0; SF, ZF, and PF as described in Appendix A

Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 415

VERR/VERW

VERR/VERW Verify a Segment for Reading or Writing

Opcode Instruction Clocks Description

OF00/4 VERRr/mi16 pn¥l0/11 Set ZF=1 if segment can be read, selector in
r/ml16

OF00/5 VERWIr/m16 pn¥l5/16 Set ZF=1 if segment can be written, selector
in r/m16

Operation

IF segment (*selector at (r/m)*) accessible with CPL
AND ((segment is readable for VERR)
OR (segment is writable for VERW)) THEN
ZF=1;
ELSE
ZF :=0;

Discussion

VERR/VERVg 2-byte register or memory operand contains the value of a selector.
These instructions determine whether the segment denoted by the selector is
accessible from the current privilege level and whether the segment is readable
(VERR or writable YERW. The zero flag is set if the segment is accessible;
otherwise, ZF is clearedVERR/VERWset ZF only if:

* The selector denotes a descriptor within the bounds of the global/local
descriptor tableGDTor LDT). (The selector must be defined.)

* The selector denotes the descriptor of a code or data segment (not that of a tas

state segmentDT, or gate).
e The segment is readable f6ERR or writable forVERW

« If the code segment is readable and conforming, the descriptor privilege level
(DPL) can be any value fafERR Otherwise, th®PL must be greater than or
equal to (have less or the same privilege as) both the current privilege level
(CPL) and the selectorRPL (requesting privilege level).

VERR/VERWerform the same segment validation checks as the
LGS/LDS/LES/LFS instructions. (See the5S/LSS/LDS/LES/LFS Operation
section for details). HowevevERR/VERWever raise a protection exception
because the operand's selector is not loaded into a segment regERBIVERW
validate the segment's accessibility, check its readability/writability, and then set

ZF accordingly. Thus, ZF can be tested before a segment access problem occurs.

416 Chapter 6 Processor Instructions

VERR/VERW

Flags Affected

ZF as described in the Discussion section
Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for a
page fault

Real Address
Interrupt 6;VERRandVERWare not recognized in Real Address Mode

Virtual 8086

Same as Real Address Mode

ASM386 Assembly Language Reference Chapter 6 417

WAIT

WAIT wait until BUSY# Pin is Inactive (HIGH)

Opcode Instruction Clocks Description
9B WAIT min. 6 Wait until BUSY# pin is inactive (HIGH)
Discussion

WAIT suspends execution of processor instructions until the BUSY# pin is inactive
(high). The BUSY# pin is driven by the floating-point coprocessor.

WAIT allows a check to be made for pending unmasked floating-point errors before
the next floating-point coprocessor instruction executes.

See also: FWAIT instruction, Chapter 7

WAIT also synchronizes the processor with an Intel287 coprocessor.

Flags Affected

None
Exceptions by Mode

Protected

#NM if the task-switched flag is set in the machine status word (the lower 16-bits
of register CRO0); #MF if the ERROR# input pin is asserted (i.e., the floating-point
coprocessor has detected an unmasked numeric error)

Real Address

Same as Protected Mode

Virtual 8086

Same as Protected Mode

418 Chapter 6 Processor Instructions

WBINVD

WBINVD write Back And Invalidate Data Cache
(not available on Intel386 or 376 processors)

Opcode Instruction Clocks Description
OF 09 WBINVD — Write back then flush data cache

Operation

FOR ALL CacheEntries DO
WriteBack(CacheEntry);
Bit[CacheEntry,Valid] := 0O;

Discussion

WBINVDwrites back and invalidates (flushes) all entries in the data cache. The
entries are flushed by resetting their valid bits. This instruction takes no operand.

Flags Affected

None
Exceptions by Mode

Protected

None

Real Address

None

Virtual 8086

None

ASM386 Assembly Language Reference Chapter 6 419

XADD

XADD Exchange Add (not available on Intel386 or 376 processors)

Opcode Instruction Clocks Description

OF CO/r XADD r/m8r8 — Exchanges values ofm8 andr8, adds
them, and moves the sum intm8

OF Cl/r XADD r/ml16rl6 — Exchanges values ofim16andrl6, adds
them, and moves the sum intn16

OF Cl/r XADD r/m32r32 — Exchanges values 0fim32andr32, adds
them, and moves the sum intn32

Operation
IF OperandSize = 8 (* r/m8, r8*) THEN
temp := /m8 ;
r/m8 = r8 +temp;
r8 = temp;
IF OperandSize = 16 (* r/ml6 , rl6*) THEN
temp := r/mié6 ;
r/ml6 = rl6 +temp;
r16 :=temp;
IF OperandSize = 32 (* r/m32 , r32*) THEN
temp := /m32 ;
r/m32 = r32 +temp;
r32 :=temp;
Discussion

XADDexchanges the contents of the first operand with the second operand, adds
them, copies their sum into the first operand, and sets the flags accordingly.

TheLOCKprefix is only valid for the forms ofADDwhich involve memory
operands.

Flags Affected
OF, SF, ZF, AF, PF, and CF as described in Appendix A

420 Chapter 6 Processor Instructions

XADD

Exceptions by Mode

Protected

#GP(0) if either operand is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 421

XCHG

XCHG Exchange Register/Memory with Register

Opcode Instruction Clocks Description
90+ XCHG AX,r16 3 Exchange word register with AX
90+ XCHG r16,AX 3 Exchange word register with AX
90+ XCHG EAXr32 3 Exchange dword register with EAX
90+ XCHGr32,EAX 3 Exchange dword register with EAX
86/r XCHG r/m8,r8 3 Exchange/m byte with byte register
86/r XCHG r8,r/m8 3/5 Exchange byte register withn byte
87Ir XCHGr/m16rl6 3 Exchange/m word with word register
87Ir XCHGr16,r/m16 3/5 Exchange word register withm word
87Ir XCHGr/m32r32 3 Exchange/m dword with dword register
87/Ir XCHG r32,r/m32 3/5 Exchange dword register witim dword
Operation

temp := Dest;

Dest := Src;

Src = temp;
Discussion

XCHGswaps two operands. For a memory operand, ©a&#is asserted for the
duration of the exchange, regardless of the presence or absence@CKprefix
or of the value ofOPL.

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) if either operand is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

422 Chapter 6 Processor Instructions

XCHG

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 423

XLAT/XLATB

XLAT/XLATB Table Look-up Translation

Opcode Instruction Clocks Description

D7 XLAT m8 5 Set AL to memory byte DS:[(E)BX + unsigned AL]
D7 XLATB 5 Set AL to memory byte DS:[(E)BX + unsigned AL]
Operation

IF AddressSize = 16 THEN
AL :=[(BX + ZeroExtend(AL))];
ELSE (*AddressSize = 32*)
AL :=[(EBX + ZeroExtend(AL))];
Discussion

XLAT changes the AL register from the table index to the table entry. AL should be
the unsigned index into a table addressed by DS:BX (for an address size attribute c
16-bits) or DS:EBX (for an address size attribute of 32-bits).

XLAT allows a segment overrid&XLAT uses (E)BX even if its contents differ from
the operand's offset. The offset should have been moved into (E)BX by a
preceding instruction.

XLATB can be used only if the (E)BX table always resides in the DS segment.

Flags Affected

None
Exceptions by Mode

Protected

#GP(0) for an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments; #SS(0) for an illegal address in the SS segment; #PF(fault-code) for
page fault

424 Chapter 6 Processor Instructions

XLAT/XLATB

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 425

XOR

XOR Logical Exclusive OR

Opcode Instruction Clocks Description
34ib XOR AL,imm8 2 Exclusive-OR immediate byte to AL
35iw XOR AX,imm16 2 Exclusive-OR immediate word to AX
35id XOR EAX,imm32 2 Exclusive-OR immediate dword to EAX
80 /6ib XOR r/m8,imm8 217 Exclusive-OR immediate byte ton byte
81 /6iw XORr/ml16imml6e 2/7 Exclusive-OR immediate word tom word
81 /6id XOR'/m32imm32 2/7 Exclusive-OR immediate dword tom
dword
83 /6ib XOR r/m16imm8 217 XOR sign-extended immediate byterim
word
83 /6ib XOR r/m32imm8 217 XOR sign-extended immediate byterim
dword
30/r XOR r/m8,r8 2/6 Exclusive-OR byte register thm byte
31/r XORr/m16r16 2/6 Exclusive-OR word register tém word
31/r XOR r/m32r32 2/6 Exclusive-OR dword register ton dword
32/r XOR r8,r/m8 217 Exclusive-OR/m byte to byte register
33/r XORr16,r/m16 217 Exclusive-OR/m word to word register
33/r XORr32,r/m32 217 Exclusive-OR/m dword to dword register
Operation
Dest := LeftSrc XOR RightSrc;
CF :=0;
OF :=0;
Discussion

XORcomputes the exclusiverof the two operands. A corresponding bit of the
result is 1 if the corresponding bits of the operands are different; a bit is 0 if the
corresponding bits are the same. The result replaces the first operand.

Flags Affected
CF =0, OF = 0; SF, ZF, and PF as described in Appendix A; AF is undefined

426 Chapter 6 Processor Instructions

XOR

Exceptions by Mode

Protected

#GP(0) if the result is in a nonwritable segment; #GP(0) for an illegal memory
operand effective address in the CS, DS, ES, FS, or GS segments; #SS(0) for an
illegal address in the SS segment; #PF(fault-code) for a page fault

Real Address

Interrupt 13 if any part of the operand would lie outside the effective address space
from O to OFFFFH

Virtual 8086

Same as Real Address Mode; #PF(fault-code) for a page fault

ASM386 Assembly Language Reference Chapter 6 427

Floating-Point Instructions

This chapter contains four major sections:

* A summary discussion of the floating-point coprocessor architecture. This
discussion applies to the built-in floating-point unit of the Intel486 processor,
as well as the Intel287 and Intel387 floating-point coprocessors.

* A brief description of floating-point coprocessor operation as background in
numeric processing and exception handling.

* An overview of the floating-point coprocessor instructions: their functional
classifications and operands.

* An explanation of the notational conventions used in this chapter, followed by
a detailed reference for each floating-point instruction.

See also: Floating-point coprocessor architecture and coprocessor operation,
and writing exception handlei®)387 Programmer's Reference
IAPX 286 Programmer's Reference

Floating-point Coprocessor Architecture

The programmer-accessible features of the floating-point coprocessor architecture
are:

« Eight floating-point registers organized as a stack

« Environment: the floating-point coprocessor status, control and tag words,
together with instruction and operand pointers

e Seven numeric data types: the word, short, and long integers, pcked
integers, and the single, double, and extended precision reals

ASM386 Assembly Language Reference Chapter 7 429

Floating-point Stack

The floating-point coprocessor stack consists of eight registers divided into the
fields shown in Figure 7-1 and accessed relative to the current stack top element
ST(0). The format of the fields corresponds with the extended precision real data
format used in all stack calculations.

See also: Data Formats, in this chapter

TheTOPfield of the floating-point coprocessor status word identifies the current
stack top register. This floating-point stack element is an implicit or explicit
operand of every floating-point coprocessor instruction; it is addressed as ST(0) or
simply as ST. (In the rest of this chapter, the stack top element is called ST.) Every
other stack element is addressed relative to the current stack top element. ST(1) is
the first element below the current ST, ST(2) is the next element below ST(1), ..,
and ST(7) is the bottom stack element.

But, as Figure 7-1 shows, ST is not necessarily stack_register(0). TiDEfeeld
of the status word indicates that stack_register(3) is ST, then stack_register(4) is
ST(1). In other words, ST(1) corresponds to the stack_register indexed by

TOP + 1.
79 78 64 63 0

Stack-register (3) | S | Exponent Significand ST (0)
Top @) ST (1)

©) ST(2)

(6) ST(3)

@) ST (4)

©) ST (5)

@ ST (6)

2 ST (7)

W-3426

Figure 7-1. Floating-point Coprocessor Stack Fields

A load (push) operation, suchRISDLN2, decrement3OPby 1 and loads a value
(in this case logR) into the new stack top element.

430 Chapter 7 Floating-point Instructions

An operation that pops the floating-point stack increm&oRby 1. For example,
the instructiorFADDPST (), ST adds the contents of the stack top register to the
stack element designated by, tores the result in SiJ(frees the top of stack, and
incrementsTOPby 1. This makes the former ST(1) the new ST.

Elements of the floating-point stack can be addressed either implicitly or explicitly.
As two examples of implicit addressing:

e FST ST(3) stores the contents of ST into the third stack element below ST.

e FADDadds the contents of ST to the contents of ST(1), stores the result in
ST(1), and then pops the stack.

Environment

The floating-point coprocessor environment consists of the control, status, and tag
words, together with the current instruction and operand pointersFSENVvand
FSAVEInstructions store the floating-point coprocessor environment, WhideNV
andFRSTORoad an environment from memory. The size and layout of an
environment depend on thuSEattribute of the code segment in which the
FSTENV/FSAVE/FLDENV/FRSTORNSstruction appears. Figure 7-2 shows the
floating-point coprocessor environments for the processor protected and real
address modes when tb&Eattribute iSUSE16.

ASM386 Assembly Language Reference Chapter 7 431

16-bit Real Address Mode Environment

15 0
+ OH Control Word
+2H Status Word
+4H Tag Word
+ 6H Instruction Pointer (IP) 15 .. 0
+8H IP19..16 ‘ 0 ‘ OPCODE 10..0
+ AH Operand Pointer (OP) 15 .. 0
+CH | OP19..16 ‘ 000000000000

16-bit Protected Mode Environment

15 0
+ OH Control Word
+2H Status Word
+4H Tag Word
+ 6H Instruction Pointer Offset
+ 8H Instruction Pointer CS Selector
+ AH Operand Pointer Offset
+CH Operand Pointer Selector

W-3427

Figure 7-2. 16-bit Environments

Figure 7-3 shows the environments whenuis&attribute iISUSE32
Environments for virtual 8086 mode are identical to those of the real address mode

In all floating-point coprocessor environments, the control word, the status word,
and the tag word have the same meaning. The remaining components (IP and OP’
identify the location of an instruction and its operand (if it has an operand).

432 Chapter 7 Floating-point Instructions

+0H
+4H
+8H
+CH
+10H
+14H
+ 18H

+OH
+4H
+8H
+CH
+ 10H
+14H
+18H

Status Word

32-bit Real Address Mode Environment

31 15 0
Reserved Control Word
Reserved Status Word
Reserved Tag Word
Reserved Instruction Pointer (IP) 15 .. 0
0000 ‘ Instruction Pointer 31 .. 16 ‘ 0 ‘ Opcode 10 ..0
Reserved ‘ Operand Pointer (OP) 15 .. 0
0000‘ Operand Pointer 31 .. 16 ‘ 000000000000

32-bit Protected Mode Environment

31

15

Reserved

Control Word

Reserved

Status Word

Reserved

Tag Word

Instruction Pointer Offset

Opcode ‘

CS Selector

Operand Pointer Offset

Reserved ‘

Operand Selector

Figure 7-3. 32-bit Environments

W-3428

The status word reflects the overall condition of the floating-point co-processor.
The floating-point coprocessor instructidfiSTSWAX/FNSTSW AXtransfer the

status word into the processor AX register. Then, processor code can inspect the
status word information and do conditional branching, pass control to exception
handlers, etc.

The status word is divided into the exception flag fields and the status fields shown
in Figure 7-4.

ASM386 Assembly Language Reference

Chapter 7 433

15

7 0

‘B‘C3‘ Top, ‘CZ‘CI‘CO‘ES‘SF‘PE‘UE‘OE‘ZE‘DE‘IE|

434

Exception Flags (1 =
Exception Has Occurred)
Invalid Operation
Denormalized Operand

Zerodivide
Overflow

Underflow

Precision

Intel3870 Stack Fault
Exception Status
Condition Code

Top Register = ST

Busy

W-3429

Figure 7-4. Status Word Format

The low-order bits of the status word indicate which exceptions have occurred.
Both the Intel287 and Intel387 coprocessors set bits 5..0 for precision (PE),
underflow (UE), overflow (OE), zerodivide (ZE), denormalized (DE), and invalid
(IE) operations.

See also: Exception masks, in the Control Word section of this chapter

The Intel387 coprocessor status word indicates an invalid operation due to stack
overflow or underflow by setting the SF bit (6) along with the IE bit (0). When
both SF and IE are set, the C1 condition code bit (9) indicates whether stack
overflow (C1 = 1) or underflow (C1 = 0) has occurred.

The Intel287 coprocessor status word does not distinguish between invalid
operations caused by stack overflow/underflow and those caused by illegal
arithmetic operations. Bit 6 of the Intel287 coprocessor status word is reserved.

The exception status bit (7) of the floating-point coprocessor status word is set (1)
if any unmasked exception bits are set and is clear (0) otherwise. If ES is set, the
ERROR# signal is asserted.

The condition code bits (14 and 10..8) are set by several floating-point coprocessor
instructions. The condition code is frequently used for conditional branching. For
more information about the interpretation of these bits, see the following
instructions later in this chaptéfCOM/FCOMP/FCOMPP
FUCOM/FUCOMP/FUCOMAFP ST, FXAM andFPREM/FPREM1

Chapter 7 Floating-point Instructions

TheTOPbits (13..11) of the status word indicate which floating-point coprocessor
internal register is the current stack tapDPcan have the following binary values:

000 = stack_register(0) is stack top
001 = stack_register(1)1 is stack top
111 = stack_register(7) is stack top

Pushing the stack withOPequal to 000B sets the status wo@Pbits to 111B;
popping the stack withOPequal to 111B sets the status wo@Pbits to 000B.

The busy bit (15) of the status word:

« Reflects the contents of the Intel387 coprocessor ES bit (7), not the status of
the BUSY# output of the Intel387 coprocessor

e Or, indicates whether the Intel287 coprocessor is idle (B = 0) or is currently
executing an instruction or signaling an exception (B = 1).
Control Word

The floating-point coprocessor control word consists of the exception masks and
control fields as shown in Figure 7-5.

The high-order bits 12..8 of the control word have the following meanings:

PC (9..8) Precision Control specifies the significand lengtiFA@D
FSURR), FMUL, FDIV (R), andSQRToperands as 64-bits, 53-bits, or
24-bits.

ASM386 Assembly Language Reference Chapter 7 435

15 7 0
‘IC‘ RC ‘ PC ‘ ‘ ‘PM‘UM‘OM‘ZM‘DM‘IM'
Exception Masks (1 =
t Exception is Masked)
Invalid Operation
Denormalized Operand
Zerodivide
Overflow
Underflow

Precision
(Reserved)

Control Fields
(Reserved)
Precision Control®
Rounding Control®
Infinity Control®

(Reserved)
'Precision Control:
00 = 24 Bits
01 = (Reserved)
10 = 53 Bits
11 = 64 Bits
2Rounding Control:
00 = Round to Nearest or Even
01 = Round Down (Toward - o)
10 = Round Up (Toward + o)
11 = Chop (Truncate Toward Zero)
*Intel2870 Infinity Control:
0 = Projective
1 = Affine
80387: 0 or 1 = Affine W-3430
Figure 7-5. Control Word Format
RC (11..10) Rounding Control rounds results in one of four directions:

unbiased round to nearest with even preferred, round toward +

round toward <o, or round toward O (chop). This control determines
the rounding method when an exact mathematical result requires more
bits than the destination format has available.

IC (12) Intel287 coprocessor Infinity Control provides two types of
Intel287 coprocessor infinity arithmetic, affine and projective. The
Intel287 coprocessor default is projective. The Intel387 coprocessor
has only affine (in compliance with the IEEE 754 standard).

436 Chapter 7 Floating-point Instructions

The low-order bits 5..0 of the control word mask/unmask exceptions. When a
floating-point coprocessor exception occurs, the corresponding exception flag is set
to 1. If the exception is unmasked, the ES bit in the status word is also set to 1.
The floating-point coprocessor then checks the appropriate mask in the control
word to determine whether it should:

» Process the exception with its on-chip exception handling procedure (mask is
1: the exception is masked from software)

« Pass control to a software exception handler (mask is 0) by asserting the
ERROR# line

During the execution of most instructions, the floating-point coprocessor checks for
six classes of exception conditions:

1. Invalid exceptions are caused by programming errors such as:
e Trying to load onto a floating-point stack element that is not empty,
« Popping an operand from an element that is empty,

e Using operands that cause indeterminate results (0/0, square root of a
negative number, etc.).

2. Denormalized exceptions occur when an instruction attempts to operate on a
denormalized number.

3. Zerodivide exceptions occur when an operation on finite operands will produce
an infinite result.

4. Overflow exceptions occur when the exponent of the rounded result is too
large for the format of the destination.

5. Intel387 coprocessor underflow exceptions depend on the UM value of the
control word:

e 0: If UM is clear (unmasked), underflow exceptions occur when a non-
zero result (rounded as though its exponent range were unbound) would
be too small for the format of the destination.

. 1: If UM is set (masked), underflow exceptions occur when such a
result (rounded to the destination format) is also inexact.

Intel287 coprocessor underflow exceptions occur when the true exponent is too
small for the result format.

6. Precision exceptions occur when the exact mathematical result did not fit in
the result format.

ASM386 Assembly Language Reference Chapter 7 437

Tag Word

438

The tag word, as shown in Figure 7-6, contains tags that classify the contents of the
corresponding stack elements as valid, zero, invalid, or empty.

15 7 0

Tag(7) | Tag(6) | Tag(5) | Tag(4) | Tag(3) | Tag(2) | Tag(1l) | Tag(0)
| | | | | | | |

Tag Values:
00 = Valid (Normal or Unnormal)
01 = Zero (True)
10 = Invalid (or Special)

11 = Empty

W-3431

Figure 7-6. Tag Word Format

The Intel387 coprocessor generates exact values for these tags during execution o
the FSTENVandFSAVEinstructions. For all other instructions, the Intel387
coprocessor updates the tag word only to indicate whether a stack location is empt
or not. After Intel387 coprocesseSTENVor FSAVE the tag values indicate

whether each stack element contained one of the following:

Valid An extended precision real value
Zero +0.0 or -0.0
Invalid (or Special): 40, - 00, pseudoinfinity, NaN (not-a-number), pseudo-

NaN, a denormal, or an unsupported format (including 8087/Intel287
coprocessor unnormals, pseudozeros, and pseudodenormals)

Empty No value

The Intel287 coprocessor tag values indicate that each stack element contains one
of the following:

Valid An extended precision real value or an unnormal

Zero +0.0 or -0.0

Invalid (or Special): 40, - 00, NaN, denormal, or pseudodenormal
Empty No value

Chapter 7 Floating-point Instructions

Operation Locator Formats

The opcode, IP (instruction pointer), and OP (operand pointer) fields of the
floating-point coprocessor environment support programmers who write software
exception handlers. Whenever the processor decodes a floating-point coprocessor
instruction, it saves the opcode and pointer(s) to the instruction and operand (if
any). (The floating-point coprocesgetDENV FSTENV FSAVE andFRSTOR
instructions access this data.)

Figures 7-7 and 7-8 illustrate these parts of the floating-point coprocessor
environment.

16-bit Real Address Mode:

15 0
+ 6H Instruction Pointer (IP) 16 LSB) Instruction
+8H | IP@MSB) |0] Opcode (11 Bits) } Lacation
+AH Operand Pointer (OP) 16 LSB) Operand
+CH OP(4MSB)‘OOOO 0000O0O0O0O }Location

16-bit Protected Mode:

15 0

N

+ 6H Instruction Pointer Offset Instruction
+ 8H Instruction Pointer - CS Selector Location
+AH Operand Pointer Offset } Operand
+CH Operand Pointer Selector) Location

Notes:

LSB = Least Significant Bits
MSB = Most Significant Bits

W-3432

Figure 7-7. 16-bit Opcode, IP, and Op Environment Formats

Exception handlers can be written to store these locations in memory and obtain
information concerning the instruction that caused the error.

In the 32-bit real address (and virtual 8086) mode environment, the instruction
pointer (IP) and operand pointer (OP) are formed by shifting the 16-bit segment left
by four to form a 20-bit quantity, and then adding this quantity to the 32-bit offset.

ASM386 Assembly Language Reference Chapter 7 439

32-bit Real Address Mode:
31 15 0
+CH Reserved ‘ 32-bit Instruction Pointer (16 LSB)

Instruction
Location

+10H | 0000 32-bit Instruction Pointer (16 MSB) 0 Opcode (11 Bits)
+ 14H Reserved ‘ 32-bit Operand Pointer (16 LSB)
+18H | 0000 32-bit Operand Pointer (16 MSB) 000000000000

Operand
Location

}
j

32-bit Protected Mode:

31 15 0
N
+ CH Instruction Pointer Offset Instruction
+ 10H Opcode ‘ Instruction Pointer - CS Selector Location
M
+ 14H Operand Pointer Offset Operand
+18H Reserved ‘ Operand Pointer Selector Location
Notes:
LSB = Least Significant Bits
MSB = Most Significant Bits
W-3433

Figure 7-8. 32-bit Opcode, IP, and OP Environment Formats

Floating-point Coprocessor Data Formats

The floating-point coprocessor accesses seven different data formats using all of
the processor addressing modes. Figure 7-9 illustrates how these formats are store
in memory.

|:| Note

Figure 7-9's terms for real formats, like the Intel387 coprocessor,
comply with the IEEE 754 standard. The following Intel387
coprocessor and 8087/Intel287 coprocessor terms are equivalent:

Intel387 Coprocessor 8087/Intel287 Coprocessor

single precision real = short real
double precision real = long real
extended precision real = temporary real

440 Chapter 7 Floating-point Instructions

MSB LSB
F Data | APProX. | prgcigjon
ormats Range 70‘70‘70‘70‘70‘70‘70‘70‘70‘70‘
Two's
Word 4 . (
Integer 10 16 Bits Complement)
15 0
Short . (Two's
Integer 10° 32 Bits Complement)
31 0
Two's
Long 19 . (
Integer 10 64 Bits Complement)
63
Packed 10 18 Didits s| N Magnitude 18 Digits*
BCD 9 [Y O O O D
79 72 0
. Biased | . .
Single 10%38 24 Bits S Exp. Significand
Precision
31 23 W 0
A
Biased R
Dou_blle 10*%08 53 Bits S Exponent Significand
Precision
63 52
T\A
Biased R
Extended +4932 . S Significand
ot |10 64 Bits Exponent | 1|
79 64 63 0
S = Sign bit (0 = positive, 1 = negative)
* = Decimal digit (two per byte)
N = If set, indicates BCD NaN indefinite
A = Position of implicit binary point
I = Integer bit of significand: explicit in extended precision
real, implicit in single and double precision
Exponent Bias (normalized values):
Single: 127 (7FH)
Double: 1023 (3FFH)
Extended Real: 16383 (3FFFH)
Packed BCD: (-1)S (dq;...dg)
Real: (-1)s) (2E-B1As) (significand bits)
W-3434

ASM386 Assembly Language Reference

Figure 7-9. Data Formats

Chapter 7

441

The integer, BCD, single precision real, and double precision real formats exist
only in memory. The floating-point coprocessor converts each memory operand in
one of these formats to extended precision real whenever such an operand is loade
onto the stack.

The three binary integer formats are identical except for length, which governs the
range that can be accommodated in each format. Integers are represented in
standard two's complement notation. The integer 0 is represented with all bits 0.
The floating-point coprocessor word integer format corresponds to the 16-bit
signed integer data type of the processor.

The floating-point coprocessor BCD integer format has two (binary coded) decimal
digits packed into each byte: each nibble holds one decimal digit. Therefore, all
BCD digits must be in the range OH through 9H when the floating-point
coprocessor loads such an operand from memory. Negative BCD integers are not
stored in two's complement; they are distinguished from positive numbers only by
the sign bit.

The floating-point coprocessor real formats resemble scientific notation. These
numbers have a three-field binary format:

1. The number's significant bits are in the significand field.

2. The exponent field locates the binary point within the significand field.
3. The sign field indicates whether the number is positive or negative.
Negative real numbers differ from positive numbers only in their sign bits.
Table 7-1 summarizes the format parameters for real numbers.

Table 7-1. Summary of Real Format Parameters

Real Number Format
Parameter Single Double Extended
Format width in bits 32 64 80
P (bits of precision) 24 53 64
Exponent width in bits 8 11 15
Emax +127 +1023 +16383
Emin -126 -1022 -16382
Exponent bias (normalized) +127 +1023 +16383

442 Chapter 7 Floating-point Instructions

The floating-point coprocessor also recognizes certain special floating-point values,
although they are not within the domain of normal floating-point arithmetic. These
special values are listed here:

Signed zero

Signed infinity

Indefinite values

NaN values (Not-a-Number)

Denormals and pseudodenormals

Intel387 coprocessor unsupported format/Intel287 coprocessor unnormals,
pseudozeros

For more information about these values, consult the Programmer's Reference for
your coprocessor.

Coprocessor Operation

The processor has a section of its opcode space dedicated to floating-point
instructions. When the processor decodes a floating-point opcode, it transmits the
necessary information (opcode and any memory address operands) to the floating-
point coprocessor. The information is transmitted through the reserved I/0 address
800000F8H for instructions and 800000FCH for data. The processor continues
executing while the floating-point coprocessor processes the instruction in parallel.

If the floating-point coprocessor requires access to memory, it makes a request
through a built-in data channel in the processor dedicated to coprocessor usage. |If
such a request violates processor protection rules, a processor exception is
generated. This can happen at any time during processor instruction execution.

If the floating-point coprocessor detects an unmasked numeric exception, it sends a
signal on its dedicated ERROR# line. The processor samples this line when
executingWAIT or before most floating-point instructions and produces an

exception (interrupt) at that time. Floating-point instructions that begin with FN
(exceptFNOB do not test for a pending numeric error.

No error status is transmitted to the processor when an exception is masked.
However, the floating-point coprocessor status word's ES bit remains set until it is
explicitly cleared. This can be done by #CLEX FNSAVE FNSTENVor FNINIT
instructions.

ASM386 Assembly Language Reference Chapter 7 443

Numeric Processing

444

The Intel287 and Intel387 coprocessors have four rounding methods that can be se
in the RC field of the control word. The rounding methods and their corresponding
RC fields are shown in Table 7-2.

Table 7-2. Rounding Methods

RC Field Rounding Method Rounding Action T

00 To nearest with even preferred Closer to b of a or ¢; if equally
close, select even number (with
LSB = 0)

01 Down toward - o a

10 Up toward + oo c

11 Chop toward 0 Smaller in magnitude of a or c.

Taandcare successively representable numbers such that a < b < c where b is not a
representable number.

Rounding occurs in arithmetic and store operations when the format of the
destination cannot exactly represent the true result. Rounding introduces an error
in the result; this error is less than one unit in the last place of the destination
format.

Round to nearest with even preferred is the default method for both coprocessors.
This is suitable for most applications.

See also: Programmer's Referender your coprocessor for more information
about the other rounding methods

The Intel287 and Intel387 coprocessors can calculate the precision of results to 64-
53-, or 24-bits for addition, subtraction, multiplication, division, and square root.
The PC field of the control word specifies the degree of precision. The default PC
setting for both coprocessors is 64-bits. Specifying less precision allows the
floating-point coprocessor to mimic calculations on a floating-point unit with less
precision.

The Intel287 coprocessor's system of real numbers can be closed by either of two
models of infinity. The IC bit in the Intel287 coprocessor control word specifies
either projective or affine closure. The default is projective. Under this closure,
the Intel287 coprocessor treats the special valwesind - as a single, unsigned
infinity.

Chapter 7 Floating-point Instructions

The IEEE 754 system of real numbers is closed by the affine model of infinity.
Although the IC bit of the Intel387 coprocessor control word can be set or cleared,
the Intel387 coprocessor complies with the IEEE standard. For this reason,
Intel287 coprocessor applications that use projective closure may produce
unexpected Intel387 coprocessor results with respect to infinity.

It is important to remember that computer arithmetic on real numbers is inherently
approximate. The floating-point coprocessor produce real arithmetic results that
are as accurate as the destination format allows. The floating-point coprocessors
perform exact arithmetic on their subset of the integers. An operation on two
integers returns an exact integral result, provided that the true result is an integer
and is in range.

The floating-point coprocessor can detect six exceptions. You can use the floating-
point coprocessor on-chip exception-handling capability, or you can write your
own exception handlers.

In either case, consult your coprocessor's Programmer's Reference manual for:

» Detailed information about the on-chip (default) exception handling of your
coprocessor

« Information about how to write an exception handler, because exception
handlers vary widely from one application to the next

See also: Exceptions, Environment section of this chapter

ASM386 Assembly Language Reference Chapter 7 445

Overview of the Floating-point Coprocessor

Instruction Set
This section groups the floating-point coprocessor instructions according to their
general functions. The Intel387 coprocessor executes all of the Intel287
coprocessor instructions. Intel387 coprocessor-only instructions are flagged in the

tables of this section. For details of any particular instruction, see the reference
pages at the end of this chapter.

Data Transfer Instructions

The data transfer instructions move operands between stack elements or between
the stack top and memory. These instructions are summarized in Table 7-3.

Table 7-3. Data Transfer Instructions

FLD Load real

FST Store real

FSTP Store real and pop

FXCH Exchange stack elements

FILD Load integer onto ST

FIST Store integer

FISTP Store integer and pop

FBLD Load packed decimal (BCD) onto ST
FBSTP Store packed decimal and pop

Any of the floating-point coprocessor data formats can be converted to extended
precision real and loaded (pushed) onto the stack in a single operation. They also
can be stored in memory in a single operation. The data transfer instructions
automatically update the floating-point coprocessor tag word to reflect the stack
contents following the instruction.

446 Chapter 7 Floating-point Instructions

Constant Instructions

Each of the instructions shown in Table 7-4 loads (pushes) a commonly used
constant onto the stack.

Table 7-4. Constant Instructions

FLDZ Load +0.0 onto ST
FLD1 Load +1.0 onto ST
FLDPI Load tonto ST
FLDL2T Load log,10 onto ST
FLDL2E Load log,e onto ST
FLDLG2 Load log,,2 onto ST
FLDLN2 Load log 2 onto ST

The values have full extended precision (64-bits) and are accurate to approximately
19 decimal digits. The constant instructions are only 2 bytes long; they save
storage (an extended precision real constant occupies 10 memory bytes) and
improve execution speed.

ASM386 Assembly Language Reference Chapter 7 447

Algebraic Instructions

The floating-point coprocessor algebraic instructions provide many variations on
the basic add, subtract, multiply, and divide operations, and a number of other
useful functions. Table 7-5 gives a summary of these instructions.

Table 7-5. Algebraic Instructions

FADD Add real

FADDP Add real and pop

FIADD Add integer

FSUB Subtract real

FSUBP Subtract real and pop

FSUBR Subtract real reversed

FSUBRP Subtract real reversed and pop

FISUB Subtract integer

FISUBR Subtract integer reversed

FMUL Multiply real

FMULP Multiply real and pop

FIMUL Multiply integer

FDIV Divide real

FDIVP Divide real and pop

FDIVR Divide real reversed

FDIVRP Divide real reversed and pop

FIDIV Divide integer

FIDIVR Divide integer reversed

FSQRT Square root

FSCALE Scale

FPREM Partial remainder

FPREM1 IEEE partial remainder(not available on
Intel287 floating-point coprocessor)

FRNDINT Round to integer

FXTRACT Extract exponent and significand

FABS Absolute value

FCHS Change sign

448 Chapter 7 Floating-point Instructions

The two reversed instructionrsSUBRandFDIVR, make subtraction and division as
symmetrical as addition and multiplication.

The floating-point coprocessor basic arithmetic instructions (addition, subtraction,
multiplication, and division) either operate on two stack elements or on ST and a
memory operand. The two-stack-element forms minimize memory references and
make optimum use of the floating-point stack.

The other algebraic instructions operate on stack elements.
Table 7-6 summarizes the available operation/operand forms provided for basic
arithmetic instructions.

Table 7-6. Basic Arithmetic Instruction and Operand Forms

Mnemonic Operand(s)

Form destination, source ASM386 Example Instruction Form

Fop {ST(2),ST} FADD Classical stack (includes pop)

FopP {ST(2),ST} FADDP Classical stack, extra pop

Fop ST(),ST or ST,ST(j)) FSUB ST,ST(3) Stack element

FopP ST(),ST FMULP ST(2),ST Stack element with pop

Fop {ST,} real FDIV AZIMUTH Memory single or double
precision real

Flop {ST,} integer FIDIV NUM Memory word or short integer

Braces ({}) surround implicit operands that are not coded; they are shown here for
information only. Fop(P) is one of the following arithmetic operations:

op Operation
ADD destination := destination + source
SUB destination := destination - source
SUBR destination := source - destination
MUL destination := destination * source
DIV destination := destination / source
DIVR destination := source / destination

ASM386 Assembly Language Reference Chapter 7 449

These instruction forms can be used across all six operations, as shown in
Table 7-6:

» The classical stack form can be used to make the floating-point coprocessor
operate like a classical stack machine. No operands are coded in this form;
only the instruction mnemonic is coded. The floating-point coprocessor picks
the source operand from the stack top and the destination from the next stack
element. It then performs the operation, pops the stack, and returns the result
to the new stack top.

« Often the stack top value is needed only for one operation. The stack element
and pop form can be used to pick up the stack top as the source operand and
then discard it by popping the floating-point stack. Coding operands ST(1),ST
with a stack element pop mnemonic is equivalent to a classical stack operation
the top is popped and the result is left at the new top.

e The stack element forms are a generalization of the classical stack form:
specify the stack top as one operand and any stack element as the other
operand. Coding the stack top as the destination provides a convenient way to
use a constant held elsewhere in the stack. Coding ST as the source operand
provides a convenient way to add the top into a stack element used as an
accumulator.

* The memory operand forms increase the flexibility of the arithmetic
instructions. A number in memory can be used as a source operand directly
when it is not used frequently enough to justify holding it in the floating-point
stack.

450 Chapter 7 Floating-point Instructions

Comparison Instructions

Each comparison instruction in Table 7-7 analyzes the top stack element, often in
relationship to another operand, and reports the result in the floating-point
coprocessor status word condition code. FRESW(store status word) instruction

can be used following a comparison to transfer the condition code to memory for
later inspection. (See the instruction reference pages at the end of this chapter for
the interpretation of the condition code bits.)

Table 7-7. Comparison Instructions

FCOM Compare real

FCOMP Compare real and pop

FCOMPP Compare real and pop twice

FUCOM Unordered compare real (not available on the Intel287
floating-point coprocessor)

FUCOMP Unordered compare real and pop (not available on the
Intel287 floating-point coprocessor)

FUCOMPP Unordered compare real and pop twice (not available
on the Intel287 floating-point coprocessor)

FICOM Compare integer

FICOMP Compare integer and pop

FTST Test

FXAM Examine

The basic operations are compare, test (compare with 0), and examine (report sign
and classify operand). Special forms of the compare operation optimize algorithms
by comparing ST directly with binary integers and real numbers in memory.

Many non-comparison floating-point coprocessor instructions also update the status
word condition code bits. UsesTSWimmediately after a comparison to be sure
that the status word is not changed unintentionally.

ASM386 Assembly Language Reference Chapter 7 451

Transcendental Instructions

The instructions summarized in Table 7-8 perform the core calculations for all
common trigonometric, inverse trigonometric, logarithmic, and exponential

functions.
Table 7-8. Transcendental Instructions

FSIN Sine (not available on the Intel287 floating-point
coprocessor)

FCOS Cosine (not available on the Intel287 floating-point
coprocessor)

FSINCOS Sine and Cosine (not available on the Intel287
floating-point coprocessor)

FPTAN Partial tangent

FPATAN Partial arctangent

F2XM1 2x-1

FYL2X Y *log,X

FYL2XP1 Y *log,(X + 1)

The transcendentals operate on the top one or two stack elements and they return
their results to the stack. The instruction descriptions at the end of this chapter
specify the operand range for each transcendental.

If a transcendental operand is invalid or out of range, the Intel287 coprocessor may
produce an undefined result without signaling an exception. It is the programmer's
responsibility to ensure that transcendental operands are valid and in range.

Prologue software can be used to reduce arguments to the range accepted by the
transcendental instructions. Epilog software can be used to adjust transcendental
results to correspond to the original argumentsnecessary, floating-point
coprocessoFPREMNDY Intel387 coprocess@BPREMIcan be used to bring an

operand into range for the trigonometric functions.

452 Chapter 7 Floating-point Instructions

Coprocessor Control Instructions

Most instructions shown in Table 7-9 are used in system rather than application
software. These activities include: Intel387/Intel287 coprocessor initialization,
exception handling, and task switching.

Table 7-9. Processor Control Instructions

FINIT/ENINIT Initialize processor
FSTCW/FNSTCW Store control word

FLDCW Load control word
FSTSW/FNSTSW Store status word
FCLEX/FNCLEX Clear exceptions
FSTENV/FNSTENV Store environment

FLDENV Load environment
FSAVE/FNSAVE Store state

FRSTOR Restore state

FINCSTP Increment stack pointer
FDECSTP Decrement stack pointer
FFREE Free (empty) stack top element
FNOP No operation

FSETPM Set Intel286 processor protected mode
FWAIT Alternate processor WAIT

Alternate mnemonics are shown for several processor control instructions in

Table 7-9. The alternates with a second character of N instruct the assembler not to
prefix the instruction with an automatically genera@ivAIT . This no-wait form

is intended for use in critical code regions where a pending and unmasked
exception should not generate an interrupt.

All instructions that provide a no-wait mnemonic are self-synchronizing; they can
be executed back-to-back in any combination without intervegRWgAIT s.

These instructions can be executed by one part of the floating-point coprocessor
while the other part is busy with a previously decoded instruction.

Use the wait forms of these instructions when control should pass to a software
exception handler before these instructions execute.

ASM386 Assembly Language Reference Chapter 7 453

Floating-point Coprocessor Instruction Set
Reference

This section provides a detailed reference for each floating-point instruction
available to the Intel386/Intel387 or Intel386/Intel287 processor/coprocessor
combinations.

How to Read the Instruction Set Reference Pages

For each floating-point coprocessor instruction, a table summarizes the opcode,
instruction syntax, clocks, and description of its operation. Following the table is a
discussion of the instruction and a list of exceptions it may generate. As an
example of an instruction table:

Clocks
Opcode Instruction i387-) NPX 2875 NPX Description
D9 CO+ FLD ST() 14 17-22 Push, ST := old ST
D9 /0 FLDm32r 201 38-56 Push, ST :m32r
DD /0 FLD m64r 251 40-60 Push, ST :m64r
DB /5 FLD m80r 44 53-65 Push, ST :m80r

T Add 5 clocks when loading zero from memory.

The following subsections describe the notation used in each column of these table
and the reference page sections for each instruction.

Opcode Column

The Opcode column lists the object bytes generated for each form of the
instruction. Where possible, the bytes are given in hexadecimal. Code other than
hexadecimal is as follows:

/n This value goes in thREG/OPCODHield of theModRMbyte (see
Figure 6-2). Tables 6-13 and 6-14 show the possible hexadecimal
values for theviodRNMbyte. The column labels show tREG=or
/digit(Opcode) associated with tREGfield. The row labels show the
address form associated with thedRMbyte's other fields. The
bottom eight rows of Tables 6-13 and 6-14 do not apply because
register forms of thodRNMbyte are illegal for floating-point
instructions.

+ This is the index number of the floating-point stack element (0O is the
top element, 1 is the next element, .., 7 is the last elemerg)added
to the preceding hexadecimal value to form a single opcode byte.

454 Chapter 7 Floating-point Instructions

Instruction Column

The instruction column shows the template for each floating-point instruction as it
should appear in the ASM386 source program. Items in italics represent operands
that you must specify, as follows:

ST(i) The letteri stands for a digit from 1 through 7, indicating which
floating-point stack element is the operarnid= 0 is legal but
redundant.

m32r, mé64r , m80r , m16j , m32j , m64j , m80d
Each of these symbols stands for a memory operand. Suffixes
andd represent "real," "integer," and "binary coded decimal,"
respectively;16, 32, 64, and80 represent the length in bits of the

operand.

m2by, m14/28by , m94/108by
The suffixby indicates operand length measured in bytagby
refers to the address of a 2-byte memory location4/28by refers
to the address of a 14- or 28-byte memory location, respectively;
m94/108by refers to the location of a 94- or 108-byte location.

If the operand is 16-, 32-, 64-, or 80-bits in length, the memory operand should be
declared with DW, DD, DQ, or DT, respectively.

See also: Types of memory addressing allowed, Chapter 5

Clocks Columns

The clocks columns give the number of clock cycles each instruction takes to
execute on the Intel287 or Intel387 floating-point coprocessor (NPX). A dash (----)
in the Intel287 coprocessor column indicates a Intel387 coprocessor-only
instruction. Clock count calculations make the following assumptions:

1. The instruction is ready for execution.
2. Bus cycles do not require wait states.

3. There are no floating-point coprocessor data transfers or locHIdLLES
requests delaying processor access to the bus.

4. No exceptions are detected during instruction execution.

Memory operands are aligned.

Description Column

The description column contains a concise definition of the operation performed
for each form of the instruction.

ASM386 Assembly Language Reference Chapter 7 455

Discussion Section

This section describes the instruction's operands, function, and results. It states
whether the instruction is available only for the Intel387 coprocessor. It explains
any differences between how the Intel287 and Intel387 coprocessors handle the
instruction and its operands.

Exceptions Section

This section lists the exceptions that can occur during instruction execution. If the
Intel287 and Intel387 coprocessors generate different exceptions, they are listed
separately by coprocessor.

How to Look Up an Instruction

The floating-point instructions are presented in mnemonic alphabetical order, with
the following exceptions:

* Instructions that reverse the operands of a divigia\R) or subtraction
(FSUBR operation are listed withDIV andFSUB respectively.

« Instructions that pop the stack after a comparison are listed-@divor
FUCOM Those that pop the stack after a basic arithmetic operation are listed
with FADQ FDIV, FMUL andFSUR

« Instructions beginning with FN, except feOR are alternate forms of the
instructions without the N. They are listed with the non-N mnemonics.

e Some instructions beginning wikLD load constants into the floating-point
stack. They are listed together ungebcon, after the othefLD instructions.

Some mnemonics are not included in the instruction pages, even though they are a
part of the floating-point instruction set. They are provided to make 8086/8088
programs compatible with the assembIEENI, FNENI, FDISI , andFNDISI are
interrupt control instructions on the 8087 that are not needed on the floating-point
coprocessor. These instructions are legal, but the assembler generates no floating:
point coprocessor object code for them.

The remainder of this chapter consists of the floating-point coprocessor instructions
accompanied by descriptive text, listed in alphanumeric order.

456 Chapter 7 Floating-point Instructions

F2XM1

F2XM1 computey=%-1

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 FO F2XM1 211-476 310-630 ST2ST-1
Discussion

F2XM1calculates the function Y = 2x - 1. X is taken from the top of the floating-
point stack. X must be in the range:

e -1.0 <=X<=+1.0 for the Intel387 coprocessor.
e 0<=X<=+0.5for the Intel287 coprocessor.
The result Y replaces X at the stack top.

The instruction is designed to produce an accurate exponential even for inputs very
close to 0. The following formulas show how values other than 2 can be raised to a

power of X:
. 10% = 2x*|ongO
. eX = 2x*|ogZe

. YX = 2x*|092Y
Floating-point coprocessor instructions (see FLDcon) are available to load the
constants loglO and loge. TheFYL2X instruction can be used to calculate X *
log,Y.

Exceptions

Intel387 NPX

Invalid, denormalized, underflow, precision

Intel287 NPX

Underflow, precision

ASM386 Assembly Language Reference Chapter 7 457

FABS

FABS Absolute Value

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 E1 FABS 22 10-17 ST = |ST|
Discussion
FABSchanges the element in the top of the stack to its absolute value by making its
sign positive.
Exceptions
Intel387 NPX

Invalid only for stack overflow/underflow

Intel287 NPX

Invalid

458 Chapter 7 Floating-point Instructions

FADD/FADDP

FADD/FADDP Real Addition

Clocks

Opcode Instruction i387 NPX i287 NPX Description

DE C1 FADD 26-34 75-105 ST(1) := ST(1) + ST,
pop old ST

D8 COH+i FADD ST,ST() 23-31 70-100 ST := ST + ST

DC CO# FADD ST(),ST 26-34 70-100 ST():=ST{) + ST

D8 /0 FADDm32r 24-32 90-120 ST := ST m32r

DC /0 FADD m64r 29-37 95-125 ST := ST m64r

DE CO+i FADDP ST(i),ST 26-34 75-105 ST(i):=ST(i) + ST,
pop

Discussion

FADDandFADDPadd two floating-point numbers. The two-operand forms of the
instructions add the second operand to the first operand and replace the first
operand with the sum. The one-operand forms add the operand to the stack top and
replace the stack top with the sum.

The FADDPInstruction returns a result to $T(TheFADDinstruction with no
operands returns a result to ST(1). Both instructions pop the top element (old
ST(0)) from the stack when the operation is complete.

Exceptions

Invalid, denormalized, overflow, underflow, precision

ASM386 Assembly Language Reference Chapter 7 459

FBLD

FBLD BcD Load to Real

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DF /4 FBLD m80d 266-275 290-310 Push, ST : = m80d

Discussion

The BCD load instruction converts the memory operand from packed decimal to an
extended precision real and pushes the result onto the floating-point coprocessor
stack.

FBLDis an exact operation; the floating-point coprocessor loads the BCD operand
with no rounding error. The sign of the source operand is preserved, including the
case when its value is -0.

The packed decimal digits of the operand are assumed to be in the range OH
through 9H. If the source contains invalid digits (A through F hexadecimal), the
result is undefined.

ST(7) must be empty to avoid causing an exception.

Exceptions

Invalid

460 Chapter 7 Floating-point Instructions

FBSTP

FBSTP BcD store and Pop

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DF /6 FBSTP m80d 512-534 520-540 m80d := ST, pop

Discussion

FBSTPconverts the stack top to a packed decimal integer, stores the result in the
memory location indicated by the operand, and pops the stack.

Intel387 coprocess®BSTProunds a non-integral value according to the RC
(rounding control) field of the Intel387 coprocessor control word. (See Figure 7-5
for control word layout.)

The Intel287 coprocessor adds 0.5 to the input value, then chops away the
fractional part to convert such a value to integer. PreEB8&Pwith FRNDINTto
control the method of rounding by the RC field of the Intel287 coprocessor control
word.

Exceptions

Intel387 NPX

Invalid, precision

Intel287 NPX

Invalid

ASM386 Assembly Language Reference Chapter 7 461

FCHS

FCHS Change Sign of Real Number

Clocks
Opcode Instruction i387 NPX i287 NPX
D9 EO FCHS 24-25 10-17

Discussion

FCHSreverses the sign of the stack top element.
Exceptions

Intel387 NPX

Invalid only for stack overflow/underflow

Intel287 NPX
Invalid
462 Chapter 7

Description
ST :=-ST

Floating-point Instructions

FCLEX/FNCLEX

FCLEX/FENCLEX clear Floating-point Coprocessor Exceptions

Clocks
Opcode Instruction i387 NPX i287 NPX Description
9BDBE2 FCLEX 11 2-8f Clear exceptions after
check for pending
unmasked floating-point
error
DB E2 FNCLEX 11 2-8 Clear exceptions

without check for
floating-point error

T Add at least 6 clocks for automatic FWAIT.

Discussion

FCLEXandFNCLEXclear all floating-point coprocessor exception flags and the
busy bit in the status word=CLEX/FNCLEXalso clears the floating-point
coprocessor exception status bit. As a consequence, the ERROR# line goes
inactive.

An assembler-generat®dAIT instruction precedes thCLEX form of this
instruction. It is used when a pending unmasked numeric error should be serviced
before clearing the exceptions.

FNCLEXis used in critical areas of code where a pending unmasked numeric error
cannot be allowed to generate an interrupt.

Exceptions

None

ASM386 Assembly Language Reference Chapter 7 463

FCOM/FCOMP/FCOMPP

FCOM/FCOMP/FCOMPP Compare Real Numbers

Clocks

Opcode Instruction i387 NPX i287 NPX Description

D8 D1 FCOM 24 40-50 Compare ST with ST(1)

D8 DO+ FCOM ST() 24 40-50 Compare ST with ST\

D8 /2 FCOMmM32r 26 60-70 Compare ST witm32r

DC /2 FCOMmMG64r 31 65-75 Compare ST witm64r

D8 D9 FCOMP 26 45-52 Compare ST with
ST(1), pop

D8 D8+ FCOMP ST{() 26 45-52 Compare ST with ST
pop

D8 /3 FCOMPmM32r 26 63-73 Compare ST witim32r,
pop

DC /3 FCOMPmM64r 31 67-77 Compare ST witm64r,
pop

DE D9 FCOMPP 26 45-55 Compare ST with

ST(1), pop twice

Discussion

The FCOMnstructions compare the stack top to the source operand. After making
the comparisorFCOMRops the top element from the stack. After comparing the
top two stack elementsCOMPRoOps both of them.

There are four possible results to the comparison of two real numbers. Three are
greater than, less than, and equals. The fourth, unordered (not comparable) occur:
when one of the compared quantities is a NaN, an unsupported Intel387
coprocessor format, or an Intel287 coprocessor projective infinity.
FCOM/FCOMP/FCOMPBnNores the sign of zero: -0.0 = +0.0.

The flags C3, C2, and CO (bits 14, 10, and 8, respectively) of the floating-point
coprocessor status word indicate the result agf@Mcomparison, as shown in the
Table 7-10.

To test these bits, load them into the processor flags register by follo@Dig
with the following instruction sequence:

FSTSW AX ; store status word in AX
SAHF : bits are now stored in
; zero, parity, and carry flags
JPE UNORDR ; JUMP if the result was unordered

464 Chapter 7 Floating-point Instructions

FCOM/FCOMP/FCOMPP

Table 7-10. Condition Code after FCOM(P/PP)

(ZF) (PF) (CF) Processor
Order C3 Cc2 Co Conditional Branch
ST>Operand O 0 0 JA
ST<Operand O 0 1 JB
ST =Operand 1 0 0 JE
Unordered 1 1 1 JP

Conditional jumps can now be made, using the below (JB), above (JA), and equal
(JE) mnemonics.

Exceptions

Invalid, denormalized

ASM386 Assembly Language Reference Chapter 7 465

FCOS

FCOS Compute Y = Cos(X)

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 FF FCOS 123-772 - ST := cos(ST)

T Add up to 76 clocks when |ST| >= /4.

Discussion

FCOSreplaces the contents of ST witloS(ST). ST must be an angle expressed in
radians and it must lie in the range |[ST{#(*259). Pi is the Intel387
coprocessor's 67-bit approximation to true pi.

If ST is in range, C2 of the Intel387 coprocessor status word is cleared and the
result of the operation is produced. Otherwise, C2 is set to 1 (function incomplete)
and the operand value of ST remains intact.

It is the programmer's responsibility to reduce the operand to an absolute value les:
than (U4 *253%). UseFPREMIor FPREMf it is necessary to bring ST into range.

FCOSis a Intel387 coprocessor instruction; it is not available for a Intel287
COprocessor.

Exceptions

Invalid, denormalized, underflow, precision

466 Chapter 7 Floating-point Instructions

FDECSTP

FDECSTP Decrement Floating-point Stack Pointer

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 F6 FDECSTP 22 6-12 Decrement stack_top
pointer

Discussion

FDECSTPsubtracts 1 from the stack top pointer (TOP) of the floating-point
coprocessor status word. No tags or registers are altered, nor is any data
transferred. ExecutingDECSTPwhen the stack top pointer is 0 changes the
pointer to 7.

The effect ofFDECSTPST is to rotate the stack. Instead of something being
pushed onto the stack, the new stack top contains the contents of the former ST(7).

Exceptions

None

ASM386 Assembly Language Reference Chapter 7 467

FDIV/FDIVP/FDIVR/FDIVRP

FD|V/FD|VP/FD|VR/FD|VRP Real Divide/Real Reverse Divide

Clocks

Opcode Instruction i387 NPX i287 NPX Description

DE F9 FDIV 91 197-207 ST(1) :=ST(1) / ST,
pop old ST

DC F8+i FDIV ST(),ST 91 193-203 ST():=ST{)/ST

D8 FO+ FDIV ST,ST() 88 193-203 ST := ST/ Sir|

D8 /6 FDIV m32r 89 215-225 ST := STh32r

DC /6 FDIV mé64r 94 220-230 ST := STrhé4r

DE F8+ FDIVP ST(),ST 91 197-207 ST(:=ST{) /ST,

pop

DE F1 FDIVR 91 198-208 ST() := ST/ ST(1),
pop old ST

DC FO+ FDIVR ST(),ST 91 194-204 ST() :=ST/ST()

D8 F8+ FDIVR ST,ST() 88 194-204 ST :=ST)/ST

D8 /7 FDIVR m32r 89 216-226 ST :@32r/ ST

DC /7 FDIVR mé4r 94 221-231 ST :@64r/ ST

DE FO+i FDIVRP ST(i),ST 91 198-208 ST(i):=ST/ST(i),
pop

Discussion

FDIV, FDIVP, FDIVR, andFDIVRP divide two floating-point numbers.

The two-operand forms of tHeDIV/FDIVP instructions divide the first operand
(dividend) by the second operand (divisdfpIV/IFDIVP replace the dividend

with the result. The one-operand forms divide the stack top by the operand and
replace the stack top with the result.

The two-operand forms of tlHeDIVR/FDIVRP instructions divide the second
operand by the firstFDIVR/FDIVRP replace the divisor with the result. The one-
operand forms divide the operand by the stack top and replace the stack top with
the result.

TheFDIVP/FDIVRP instructions return a result to $)i(TheFDIV/FDIVR
instructions with no operands return a result to ST(1). These instructions pop the
top element (old ST(0)) from the stack when the operation is complete.

Exceptions

Invalid, denormalized, zerodivide, overflow, underflow, precision

Chapter 7 Floating-point Instructions

FFREE

FFREE Free Floating-point Stack Entry

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DD CO+i FFREE ST(i) 18 9-16 Empty ST(i)
Discussion

FFREEchanges the tag of the operand stack element to empty. The contents of this
stack element are unaffected. The floating-point stack poin@® (s also
unaffected.

Exceptions

None

ASM386 Assembly Language Reference Chapter 7 469

FIADD

FIADD Integer Add to Real

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DE /0 FIADD m16;j 71-85 102-137 ST := ST m16j
DA /O FIADD m32j 57-72 108-143 ST := ST + m32j

Discussion

FIADD adds the integer memory operand into the element on top of the stack. It
replaces the top of the stack with the result.

Exceptions

Intel387 NPX

Invalid, denormalized, overflow, underflow if integer O is added to a denormal
when underflow is unmasked, precision

Intel287 NPX

Invalid, denormalized, overflow, precision

470 Chapter 7 Floating-point Instructions

FICOM/FICOMP

FICOM/FICOMP Integer Compare with Real
Clocks

Opcode Instruction i387 NPX i287 NPX Description

DE /2 FICOMm16j 71-75 72-86 Compare ST with16j

DA /2 FICOM m32j 56-63 78-91 Compare ST with32j

DE /3 FICOMPmM16;j 71-75 74-88 Compare ST with16j
pop

DA /3 FICOMP m32j 56-63 80-93 Compare ST with m32j,
pop

Discussion

FICOMandFICOMPconvert the memory operand (a word or short integer)
internally to extended precision real and compare it with the top of the stack. The
FICOMPIinstruction pops the top stack element after the comparison is made.

There are four possible results to the comparison of two real numbers. Three are
greater than, less than, and equals. The fourth, unordered or not comparable,
occurs when ST is a NaN, an unsupported Intel387 coprocessor format, or an
Intel287 coprocessor projective infinitfEICOM/FICOMP ignores the sign of zero:
-0.0 = +0.0.

The flags C3, C2, and CO (bits 14, 10, and 8, respectively) of the floating-point
coprocessor status word indicate the result agfi@@M/FICOMP comparison, as
shown in Table 7-11.

Table 7-11. Condition Code after FICOM(P)

(ZF) (PF) (CF) Processor
Order C3 Cc2 Co Conditional Branch
ST>Operand O 0 0 JA
ST<Operand O 0 1 JB
ST =Operand 1 0 0 JE
Unordered 1 1 1 JP

ASM386 Assembly Language Reference Chapter 7 471

FICOM/FICOMP

To test these bits, load them into the processor flags register by follewdog
with the following instruction sequence:

FSTSW AX ; store status word in AX
SAHF : bits are now stored in
; zero, parity, and carry flags
JPE UNORDR ; JUMP if the result was unordered

Conditional jumps can now be made, using the below (JB), above (JA), and equal
(JE) mnemonics.

Exceptions

Invalid, denormalized

472 Chapter 7 Floating-point Instructions

FIDIV/FIDIVR

FIDIV/FIDIVR Integer Divide into Real

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DE /6 FIDIV m16j 136-140 224-238 ST := STni16j
DA /6 FIDIV m32j 120-127 230-243 ST := STn32j
DE /7 FIDIVR m16j 137-141 225-239 ST :m16j/ ST
DA /7 FIDIVR m32j 121-128 231-245 ST :=m32j/ST

Discussion

FIDIV divides the top of the stack by the integer memory operand. The answer
replaces the dividend on the top of the stack.

FIDIVR performs the reverse divide: the integer memory operand is divided by the
top of the stack. The answer replaces the divisor on the top of the stack.

Exceptions

Invalid, zerodivide, denormalized;101VR) overflow, underflow, precision

ASM386 Assembly Language Reference Chapter 7 473

FILD

FILD Integer Load into Real

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DF /0 FILD m16;j 61-65 46-64 Push, ST := m16;j
DB /0 FILD m32j 45-52 52-60 Push, ST := m32j
DF /5 FILD m64j 56-67 60-68 Push, ST := m64j

Discussion

FILD converts the integer memory operand from its binary integer format (word,
short, or long) to an extended precision real and pushes the result onto the stack.

ST(7) must be empty to avoid causing an exception.

Exceptions

Invalid

474 Chapter 7 Floating-point Instructions

FIMUL

FIMUL Integer Multiply with Real

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DE /1 FIMUL m16j 76-87 124-138 ST := ST M16j
DA /1 FIMUL m32j 61-82 130-144 ST := ST * m32j

Discussion

FIMUL multiplies the integer memory operand into the top of the stack. The
product replaces the multiplicand on the top of the stack.

Exceptions

Intel387 NPX

Invalid, denormalized, overflow, unmasked underflow, precision

Intel287 NPX

Invalid, denormalized, overflow, precision

ASM386 Assembly Language Reference Chapter 7 475

FINCSTP

FINCSTP increment Floating-point Stack Pointer

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 F7 FINCSTP 21 6-12 Increment stack_top
pointer

Discussion

FINCSTP adds 1 to the stack top point@OP of the floating-point coprocessor
status word. It does not alter any tags or registers, nor does it transfer data.
ExecutingFINCSTP when the stack top pointer is 7 changes it to 0.

FINCSTP rotates the stack, but it is not equivalent to popping the stack. It does not
set the tag of the previous stack top to empty, and the former stack top becomes
ST(7).

Exceptions

None

476 Chapter 7 Floating-point Instructions

FINIT/ENINIT

FINIT/ENINIT initialize Floating-point Coprocessor

Clocks
Opcode Instruction i387 NPX i287 NPX
9B DBE3 FINIT 33 2-gf
DB E3 ENINIT 33 2-8

T Add at least 6 clocks for automatic FWAIT.

Discussion

Description
Initialize floating-point
coprocessor after check
for pending unmasked
floating-point errors

Initialize floating-point
coprocessor without
check for floating-point
errors

FINIT/ENINIT sets the floating-point coprocessor into a known state, unaffected

by any previous activity.

FINIT/ENINIT is not quite the functional equivalent of a hardwRESET

e For the Intel387 coprocess®ESETcauses the IM bit of the control word to
be zeroed and the ES and IE bits of the status word to be set (1) in order to
signal the presence of an Intel387 coprocesBMNIT/FNINIT puts the

opposite values in these 3-bits.

e For the Intel287 coprocess®ESETinitializes the coprocessor in real address
mode. FINIT/FNINIT does not affect the current operating mode (real

address or protected mode).

TheFNINIT form of this instruction aborts the floating-point coprocessor bus
cycles in progress if a preceding memaory-referencing instruction is running.
FNINIT may be necessary to clear the floating-point coprocessor if the processor
detects an interrupt 9 (a processor extension segment overrun exception).

ASM386 Assembly Language Reference

Chapter 7 477

FINIT/ENINIT

Table 7-12 summarizes the effectFdIT/FNINIT for both the Intel387 and
Intel287 coprocessors.

Table 7-12. Floating-point Coprocessor State Following FINIT/FNINIT

Value
Field i387 NPX i287 NPX Interpretation
Control Word:

Infinity T 1 0 387 NPX: Affinet; i287
NPX: Projective

Rounding 00 00 Round to nearest

Precision 11 11 64-bits

Exception Masks 111111 111111 All exceptions masked

Status Word:

Busy 0 0 i387 NPX: Reflects the
Exception Status setting;
i287 NPX: not busy

Condition Code 2?7?77 7?7?77 Indeterminate

Stack Top 000 000 stack_register (0) = TOP

Exception Status 0 0 No exceptions

Stack Flag 0 Tt i387 NPX: -

Exception Flags 000000 000000 No exceptions

Tag Word:

Tags 11 11 Empty

Registers n.c. n.c. Not changed

Exception Pointers:

Instruction Code n.c. n.c. Not changed

Instruction Address n.c. n.c. Not changed

Operand Address n.c. n.c. Not changed

T The Intel387 floating-point coprocessor has IEEE 754 infinity closure. This value is listed to
emphasize that programs written for the Intel287 floating-point coprocessor may not behave
the same on the Intel387 floating-point coprocessor if they depend on this bit.

™ The Intel287 floating-point coprocessor status word does not use this field.

Exceptions

None

478 Chapter 7 Floating-point Instructions

FIST/FISTP

FIST/FISTP Integer Store from Real

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DF /2 FISTmM16j 82-95 80-90 m16j:= ST
DB /2 FISTm32j 79-93 82-92 m32j:= ST
DF /3 FISTPM16j 82-95 82-92 m16j:= ST, pop
DB /3 FISTPmM32j 79-93 84-94 m32j:= ST, pop
DF /7 FISTP m64;j 80-97 94-105 m64j := ST, pop

Discussion

FIST rounds the stack top to an integer according to the RC field of the floating-
point coprocessor control word. It then transfers the result to the memory
destination indicated by the operand.

FISTP is identical toFIST except that the stack top is popped after the operand is
stored.

TheFIST/FISTP operand may define a word or a short integer variable. Only
FISTP stores a long integer. Negative zero is stored in the same encoding as
positive zero: all bits are 0.

Exceptions

Invalid, underflow if ST is empty, precision

ASM386 Assembly Language Reference Chapter 7 479

FISUB/FISUBR

FISUB/FISUBR Integer Subtract from Real

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DE /4 FISUBmM16j 71-83 102-137 ST := STm16j
DA /4 FISUBmM32j 57-82 108-143 ST := STm32j
DE /5 FISUBRmM16j 72-84 103-139 ST :m16j- ST
DA /5 FISUBR m32j 58-83 109-144 ST :=m32j- ST

Discussion

FISUB subtracts the integer memory operand (subtrahend) from the top of the
stack. The answer replaces the minuend on the top of the stack.

FISUBR performs the reverse subtraction: the stack top is subtracted from the
integer memory operand, and the answer replaces the subtrahend on the top of the
stack.

Exceptions

Intel387 NPX

Invalid, denormalized, overflow, unmasked underflow, precision

Intel287 NPX

Invalid, denormalized, overflow, precision

480 Chapter 7 Floating-point Instructions

FLD

FLD

Opcode
D9 CO+
D9 /0
DD /0
DB /5

Load Real
Clocks
Instruction i387 NPX i287 NPX Description
FLD ST() 14 17-22 Push, ST := old ST)
FLD m32r 201 38-56 Push, ST :m32r
FLD m64r 251 40-60 Push, ST :m64r
FLD m80r 44 53-65 Push, ST := m80r

T Add 5 clocks when loading zero from memory.

Discussion

FLD pushes the source operand onto the top of the floating-point stack. This is
done by decrementing the stack pointer by 1 and then copying the value of the
source to the new stack top.

The source can be an element on the stack or any of the real data types in memory.
FLD converts single and double precision real operands to extended precision real
automatically.

FLD ST(0) duplicates the old stack top in the new stack top. ST(7) must be empty
whenever ST is loaded to avoid causing an invalid (stack overflow) exception.

If the denormal exception is masked, the Intel387 coprocessor converts a
denormalized single or double precision real operand to extended precision real. It
raises an invalid exception when loading a signaling NaN.

The Intel287 coprocessor converts a denormal operand to an unnormal. It does not
raise an invalid exception when loading a signaling NaN.

Exceptions

Intel387 NPX

Invalid, unmasked denormalized (except when loading an extended precision real)

Intel287 NPX

Invalid, denormalized (except when loading an extended precision real)

ASM386 Assembly Language Reference Chapter 7 481

FLDCW

FLDCW Load Floating-point Coprocessor Control Word

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 /5 FLDCW m2by 19 7-14 Control_word : = m2by

Discussion

FLDCWreplaces the current floating-point coprocessor control word with the word
defined by the source operand. W&®CWo establish or change the floating-point
coprocessor mode of operation.

If an exception bit in the status word is set, loading a new control word that
unmasks the exception activates the ERROR# output.

When changing the floating-point coprocessor exception masks be careful about
unmasking pending exceptions.

Exceptions

None, except for unmasking an existing exception

482 Chapter 7 Floating-point Instructions

FLDENV

FLDENV Load Floating-point Coprocessor Environment

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 /4 FLDENV m14/28by 71 35-45 Environment := m14by
or m28by

Discussion

FLDENVloads the floating-point coprocessor environment from the 14- or 28-byte
memory area indicated by the operand. UBe&attribute of the current code
segment determines the size of the operand:

* The 14-byte operand applies tW8E16 segment.
* The 28-byte operand applies tW8E32 segment.
This data should have been written to by a prei@RENVinstruction.

The floating-point coprocessor environment consists of the entire state of the
processor, except for the elements of the floating-point stack.

FLDENVwaits for all data transfers to complete before executing the next
instruction. If the environment image contains an unmasked exception, it causes a
numeric exception when the néi WAIT or exception-checking numeric
instruction executes.

Exceptions

None, except for unmasking an existing exception

ASM386 Assembly Language Reference Chapter 7 483

FLDcon

FLDcon Load Real Constant

Clocks

Opcode Instruction i387 NPX i287 NPX Description

D9 E8 FLD1 24 15-21 Push, ST :=+1.0

D9 EA FLDL2E 40 15-21 Push, ST := lgg)

D9 E9 FLDL2T 40 16-22 Push, ST := lsd.0)

D9 EC FLDLG2 41 18-24 Push, ST := lpg(2)

D9 ED FLDLN2 41 17-23 Push, ST := lg@)

D9 EB FLDPI 40 16-22 Push, ST :=p

D9 EE FLDZ 20 11-17 Push, ST := +0.0

Discussion
These instructions push various constant values onto the top of the floating-point
stack. Each constant is an extended precision real.
Use theFLDcon instructions to save storage and improve execution speed. The
same constants in memory require 10 bytes of storage plus access time, while the
FLDcon are 2-byte instructions.
The Intel387 coprocessor stores these constants in a format even more precise tha
extended precision real format (accurate to approximately 19 decimal digits). It
rounds these constants according to the RC field (bits 10 and 11) of the Intel387
coprocessor control word. Set the Intel387 coprocessor RC field to 00 (round to
nearest with even preferred) to obtairDcon values identical to those of the
Intel287 coprocessor.
For the Intel287 coprocessor, the constants 0.0 and 1.0 are exact. All others have
full extended precision and are accurate to approximately 19 decimal digits. The
rounding control is not in effect.

Exceptions
Invalid

484 Chapter 7 Floating-point Instructions

FMUL/FMULP

FMUL/FMULP mutiply Real

Clocks

Opcode Instruction i387 NPX i287 NPX Description

DE C9 FMUL 29-57 95-150 ST(1) := ST(1) * ST,
pop old ST

D8 C8+i FMUL ST,ST() 46-54 90-145 ST := ST * ST}

DC C8+# FMUL ST(),ST 29-57 90-145 ST():=ST{)*ST

D8 /1 FMUL m32r 27-35 110-125 ST := STm32r

DC/1 FMUL m64r 32-57 112-168 ST := ST Mm64r

DE C8+i FMULP ST(i),ST 29-57 95-150 ST(i):=ST(i)* ST,
pop

Discussion

FMULandFMULPmultiply two floating-point numbers. The two-operand forms of
the instructions multiply the second operand into the first operand and replace the
first operand with the result. The one-operand forms multiply the operand into the
stack top and replace the stack top with the result.

The FMULPInstruction returns a result to S)(TheFMULinstruction with no
operands returns a result to ST(1). These instructions pop the top element (old
ST(0)) from the stack when the operation is complete.

Exceptions

Invalid, denormalized, overflow, underflow, precision

ASM386 Assembly Language Reference Chapter 7 485

FNOP

FNOP nNo Operation

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 DO FNOP 12 10-16 No operation
Discussion
In effect,FNOPperforms no operation. The processor instruction pointer is
incremented.
Exceptions
None

486 Chapter 7 Floating-point Instructions

FPATAN

FPATAN Compute R = Partial Arctangent

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 F3 FPATAN 314-487 250-800 ST(1) := arctan(ST(1) /

ST), pop old ST

Discussion

FPATANcomputes the function R = ARCTAN(Y/X). X is the top stack element,
and Y is the next stack element, ST(1). (Y is pushed first.) After the function is
computed, the floating-point stack is popped once and the answer replaces the
former ST(1) on the top of the stack.

For the Intel387 coprocessor, the range of operands is unrestricted. The octant of
the result depends on the relationship between the operands:

Table 7-13. FPATAN Final Result Octant

Atan of Y/X Sign Sign ??
Final Result Y X [Y] < [X]
0 < atan < 174 + + yes

W4 < atan < 172 + + no

T/2< atan < 3*174 + - no
3*4 < atan < Tt + - yes
-Tl4 < atan <0 - + yes
-TW2 < atan < -1/4 - + no
-3*174 < atan < -T02 - - no

-Ti < atan < -3*174 - - yes

For the Intel287 coprocessor, Y and X must satisfy the inequality 0 <Y < %< +
FPATANdoes not check for compliance with the inequality. If this inequality does
not hold, results are undefined.

ASM386 Assembly Language Reference Chapter 7 487

FPATAN

Exceptions

Intel387 NPX

Invalid, denormalized, overflow, underflow, precision

Intel287 NPX

Underflow, precision

488 Chapter 7 Floating-point Instructions

FPREM/FPREM1

FPREM/FPREM 1 Partial Remainder

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 F8 FPREM 74-155 15-190 ST : = remainder

(integer_chop
(ST/ST(1)))

D9 F5 FPREM1 95-185 - ST : = remainder
(integer_round
(ST/ST()))

Discussion

FPREMandFPREM1perform modulo division of ST by ST(1) and leave the result in
ST. The result is always exact; the rounding control has no effect.

If the difference between tlPREM/FPREMDperands' exponents is less than 64,

the function is complete; bit C2 of the floating-point coprocessor status word
condition code is cleared to 0. If the function is incomplete, C2 is set to 1 and the
result in ST is called the partial remainder. (See Figure 7-4 for status word layout.)

Software can inspect C2 by storing the status word following the execution of
FPREM/FPREMENd reexecuting the instruction (using the partial remainder as the
dividend) until C2 is cleared. When this occthiBREM/FPREMI stores the least-
significant 3-bits of the quotient in C3, C1, and CO of the floating-point
coprocessor status word. For Intel287 coprocesBREMtake care that the final
reduction has an operand large enough to generate values in all 3-bits.

FPREMI1is available only for a Intel387 coprocesse®REMSs available for both
the Intel387 and Intel287 coprocessor®REMIdiffers fromFPREMas follows:

e FPREM1is compatible with the IEEE 754 standard.

 The C3, C1, and CO settings of the floating-point coprocessor status word
(low-order 3-bits of the quotient) may differ by 1 in some cases.

* FPREMlyields a remainder R1 such that -|ST(1)|/2 < R1 < +|ST(IBFREM
yields a remainder R such that 0 <= R < |ST(1)| or -|ST(1)| < R < 0, depending
on the sign of the dividend.

ASM386 Assembly Language Reference Chapter 7 489

FPREM/FPREM1

490

When theFPREM/FPREMDbperands differ greatly in magnitude, obtaining an exact
remainder could seriously increase interrupt latency. For this reason,
FPREM/FPREMBre designed to be coded in a software-controlled loop. The
following loop executeEPREM1until the modulus is complete. A context switch
between the instructions in this loop could be forced by an interrupting routine with
higher priority.

REMLOOP:

FPREM1 ; reduce ST modulo ST(1)
FSTSW AX : store the status word in AX
SAHF : C2 bit is now stored

; in the parity flag
JPE REMLOOP ; loop for repeated
; execution if C2is 1

An important use ofFPREM/FPREM{s to reduce trigonometric arguments to
operands in the range permitted by the floating-point coprocessor trigonometric
instructions. BecausePREM/FPREMYProduces an exact result, argument
reduction does not introduce roundoff error even if many iterations are needed to
bring an argument into range.

When theFPREM/FPREMfunction is complete, it stores the least significant 3-bits
of the quotient in C3, C1, CO of the floating-point coprocessor status word, as
shown in Table 7-14. This is also important for trigonometric argument reduction
because it locates the original angle in the correct octant of the unit circle.

Table 7-14. Condition Code after FPREM/FPREM1

Condition Code Interpretation after
Q1) (PF) (Q0) (Q2) i387 NPX FPREM/FPREM1
C3 Cc2 C1 Co and after i287 NPX FPREM
X 1 X X Incomplete reduction; further iteration
needed
X 0 X X Complete reduction; C3, C1, CO contain

low-order bits of quotient (Q1, QO, Q2):
(Quo)MOD 8=0
(Quo)MOD 8=1
(Quo) MOD 8 =2
(Quo) MOD 8 =3
(Quo) MOD 8 =4
(Quo) MOD 8=5
(Quo) MOD 8=6
(Quo) MOD 8 =7

B R, OORPREROO
OO0 00000 Oo
P ORr OFrR ORO
B kR PR OOOO

Chapter 7 Floating-point Instructions

FPREM/FPREM1

Exceptions

Intel387 NPX

Invalid, denormalized, unmasked underflow

Intel287 NPX

Invalid, denormalized, underflow

ASM386 Assembly Language Reference

Chapter 7

491

FPTAN

FPTAN Compute Y = Partial Tan(X)

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 F2 FPTAN 191-49% 30-540 Y / X :=tan(ST),
ST:=Y, push, ST :=X

T Add up to 76 clocks when [ST| >=m/4.

Discussion

FPTANcomputes the function Y / X = tan(ST). The implicit operand ST must be
expressed in radians. The result is a ratio. Y replaces old ST in the stack and X is
pushed, becoming the new stack top.

For the Intel387 coprocessor, ST must be less thvdn*(25%). Whentv4 <= |ST]|
< (T4 * 25%), FPTANreduces ST to a value less th@# using an internally stored

174 divisor with 67 significant bits. For values of STT#4 *269), use
FPREM/FPREM1o0 reduce ST to the range fFTAN

For the Intel287 coprocessor, ST must be in the range 0 <= $ld<4f ST is not
within the correct range or is not normalized, the result is undefiiriNdoes
not issue an exception for out of range input. EBREMand the 64-bit constamt
(seeFLDPI with theFLDcon instructions) to reduce ST to the rang&PTAN

WhenFPTANs argument is within range, it computes Y and X such that Y/X =
tan(ST). Y replaces ST. Then, X is pushed, becoming the new stack top. The
Intel387 coprocessor pushes X = 1, so ST(1) contains the tangent of the original
operand.

Exceptions

Intel387 NPX

Invalid, denormalized, underflow, precision

Intel287 NPX

Invalid, precision

492 Chapter 7 Floating-point Instructions

FRNDINT

FRNDINT Round to Integer

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 FC FRNDINT 66-80 16-50 ST := round(ST)

Discussion

FRNDINT rounds the stack top ST to an integer according to the setting of the RC
field of the floating-point coprocessor control word. The result replaces the input
value on the floating-point stack top.

For example, assume that ST contains the real number 155%RRRINT changes

the value to 155 if the RC field of the control word is set to round down (01) or
chop (11). FRNDINT changes the value to 156 if the RC field is set to round up
(20) or round to nearest with even preferred (00). See Figure 7-5 for control word
layout.

Exceptions

Invalid, precision

ASM386 Assembly Language Reference Chapter 7 493

FRSTOR

FRSTOR Restore Floating-point Coprocessor Machine State

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DD /4 FRSTORmM94/ 308 205-215 Machine_state m94by
108by or m108by

Discussion

FRSTORrestores the entire state of the floating-point coprocessor from the 94- or
108-byte memory location specified by the operand.

This information should have been written by a previegssVEinstruction and not
altered by any subsequent instruction. See Figure 7-10 (witfSiheE
instruction) for illustrations of the floating-point coprocessor machine state
memory layout. See Figures 7-2 through 7-8 for detailed illustrations of the
floating-point coprocessor environments loadedRgTOR

The floating-point coprocessor resets to its new state at the conclusiBSTOR
(F)WAIT is not required afte?P RSTOR If the exception and mask bits in the
memory image so indicate, the floating-point coprocessor generates an exception
when the nex{F)WAIT or exception-checking numeric instruction occurs.

Exceptions

None, except for unmasking an existing exception

494 Chapter 7 Floating-point Instructions

FSAVE/FNSAVE

FSAVE/FNSAVE save Floating-point Coprocessor Machine State

Clocks

Opcode Instruction i387 NPX i287 NPX Description

9B DD /6 FSAVEmM94/108by 375-376 205-215 m94/108by =
machine_state after
check for pending
unmasked floating-point
errors

DD /6 FNSAVE m94/ 375-376 205-215 m94/108by : =

108by machine_state without

check for floating-point
errors

T Add at least 6 clocks for automatic FWAIT.

Discussion

FSAVEwrites the full floating-point coprocessor state (environment plus stack) to
the 94- or 108-byte memory location specified by the operand USEattribute
of the current code segment determines the size of the operand:

* The 94-byte operand applies tW8E16 segment.
* The 108-byte operand applies tdBE32 segment.

FSAVEincludes an assembler-genera@iVAIT instruction. FSAVE/FNSAVE

delays its execution until all floating-point coprocessor activity completes
normally. The saved image reflects the machine state following the completion of
any running instruction.

ASM386 Assembly Language Reference Chapter 7 495

FSAVE/FNSAVE

496

For the Intel387 coprocessor, values stored in the tag word are determined during
the execution oFSAVE/FNSAVE |If the tag in the status register indicates that the
corresponding register is nonempty, the Intel387 coprocessor examines the data in
the register and stores the appropriate tag in memory.

Following the save, the floating-point coprocessor is automatically reinitialized (an
implicit FNINIT is executed). If a program is to read from the 94- or 108-byte
location followingFSAVE it must issue aRWAIT instruction to ensure that the
storage is complete.

Figure 7-10 shows the 94- or 108-byte layout of the floating-point coprocessor
machine state. The layout is composed of the 14- or 28-byte environment and the
eight extended precision stack elements. The tags stored always reflect the actual
contents of the registers.

Typically, FSAVEwill be coded to save this image on the processor stack. See
Figures 7-2 through 7-8 for details of the environment layout.

Chapter 7 Floating-point Instructions

FSAVE/FNSAVE

31 23 15 7 Bytes 15 7 0 Bytes
]]] +0] +0
]]] +4 I +2
. Intel387/intel2870 . | +8 Intel387/Intel287 | +4
32-bit +12 16-bit +6
Environment +16 Environment +8
] +20 +10
+24 +12
Floating Point Stack
Intel387 Stack Memory Layout Intel287 Stack Memory Layout
Bytes Bytes
Top Stack Significand 31-0 +28/16 Significand 15-0 +26/14
Element< [---------oooororm i Significand 31-16 +28/16
ST Significand 63-32 +32/20 Top Stack —
,,,,,,,,,,,,,,, Element Significand 47-32 +30/18
Significand Exponent ST
Teo s =% +36/24 Significand 63-48 | +32/20
Next Stack | [~~~
Element Significand 47-16 +40/28 S| Exponent14-0 | +34/22
ST) | f-rremmmmmm e .
S\ Exponent| Significand +44/32 Significand 15-0 +36/24
14-0 63-48 Significand 31-16 | +38/26
~L — Next Stack —
T T Element Significand 47-32 | +40/28
T A e Sooo ST(1
Significand | (ST(6) Sign | ST(7): @ Significand 63-48 | +42/30
~15-0 | and Exponent) | +98/86
Last Stack S| Exponent 14-0
Element Significand 47-16 +100/88 P rads2
Xponen ignifican
S‘ 14-0 63-48 +104/92 Significand 15-0 | +96/84
ignifi 1-1
Last Stack Significand 31-16 | +98/86
Element Significand 47-32 | +100/88
ST(7)
Significand 63-48 +102/90
S| Exponent 14-0 +104/92
W-3435

Figure 7-10. Floating-point Coprocessor Machine State Layout after FSAVE

ASM386 Assembly Language Reference

Chapter 7

497

FSAVE/FNSAVE

Some uses (fSAVEare:

e An operating system needs to perform a context switch (suspend the task that
has been running and give control to a new task)

* An exception handler needs to use the floating-point coprocessor
* An application task wants to pass a clean floating-point coprocessor to a
subroutine
Exceptions

None

498 Chapter 7 Floating-point Instructions

FSCALE

FSCALE scale Exponent of Real

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 FD FSCALE 67-86 32-38 ST := ST*2ST(1)

Discussion

FSCALEadds the integer part of ST(1) to the exponent of the number in ST.
FSCALEdoes rapid multiplication or division by integral powers of 2.

For the Intel387 coprocessor, there is no limit on the range of the scale term in
ST(1). If the ST(1) value is not integralsCALEchops the value toward zero. |If
the resulting ST(1) integer is zeRSCALEdoes not change the number in ST.

For the Intel287 coprocessor, the scale factor in ST(1) must be in the réhge -2

<= ST(1) < +25 FSCALEproduces definable results for nonintegral values of

ST(1) only if |[ST(1)| > 1. In that case, the integer produced by chopping ST(1)
toward O is used. If the input is invalid, the result is undefined and no exception is
generated. To ensure correct operation, load the scale factor from a word integer.

Exceptions

Intel387 NPX

Invalid, denormalized, overflow, underflow, precision (on masked
underflow/overflow)

Intel287 NPX

Invalid, overflow, underflow

ASM386 Assembly Language Reference Chapter 7 499

FSETPM

FSETPM set Protected Mode

Clocks
Opcode Instruction i387 NPX i287 NPX Description
9BDBE4 FSETPM - 2-8 Set protected mode for
i287 NPX
9B DB E4 FSETPM 12 - NOP in i387 NPX

T Add at least 6 clocks for automatic FWAIT

Discussion

FSETPMputs the Intel287 coprocessor into protected mode. This instruction should
be executed in the power-up initialization routine of the processor, when the
processor is placed into protected mode. GASETPMs executed, the Intel287
coprocessor remains in protected mode until the next hardware RESET#, even afte
execution ofFINIT , FSAVE or FRSTOR

For the Intel387 coprocess®SETPMs handled as BOP(no operation). The
processor handles all addressing and exception pointer information, whether in
protected mode or not.

Exceptions

None

500 Chapter 7 Floating-point Instructions

FSIN

FSIN Compute Y = Sin(X)

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 FE FSIN 122770 ST :=sin(ST)

T Add up to 76 clocks when |ST| >= /4.

Discussion

When completefSIN replaces the contents of ST with sin(ST). ST must be an
angle expressed in radians. It must lie in the range |3T§<Z%9).

If ST is in range, C2 of the Intel387 coprocessor status word is cleared and the
result of the operation is put in ST. Otherwise, C2 is set to 1 (function incomplete)
and the operand value of ST remains intact. (See Figure 7-4 for the status word
format.)

It is the programmer's responsibility to reduce the operand to an absolute value less
than (U4 *253%). UseFPREMIor FPREMf it is necessary to bring ST into range.
For ST in the rang&4 < |ST| < {V4 *269), FSIN automatically reduces ST to a
value less tham/4 using an internally stora@4 divisor with 67 significant bits.

FSIN is a Intel387 coprocessor instruction; it is not available for a Intel287
COprocessor.

Exceptions

Invalid, denormalized, underflow, precision

ASM386 Assembly Language Reference Chapter 7 501

FSINCOS

FSINCOS Compute Y = Sin(X) and Y = Cos(X)

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 FB FSINCOS 194-809 — ST :=sin(ST), push,

ST := cos(ST)

T Add up to 76 clocks when |ST| >= /4.

Discussion

When complete-SINCOSreplaces the contents of ST with cos(ST) after putting
sin(ST) in ST(1). ST must be an angle expressed in radians, and it must lie in the

range |ST| <164 *2%9).

If ST is in range, C2 of the Intel387 coprocessor status word is cleared and the
results of the operation are produced. Otherwise, C2 is set to 1 (function
incomplete) and the operand value of ST remains intact. (See Figure 7-4 for the
status word layout.)

It is the programmer's responsibility to reduce the operand to an absolute value les:
than (U4 *253%). UseFPREMIor FPREMf it is necessary to bring ST into range.

For ST in the rang&/4 < |ST| < (V4 *263), FSINCOSautomatically reduces ST to a
value less tham/4 using an internally stora@4 divisor with 67 significant bits.

FSINCOS:is a Intel387 coprocessor instruction; it is not available for a Intel287
COprocessor.

Exceptions

Invalid (stack overflow if ST(7) is nonempty), denormalized, underflow, precision

502 Chapter 7 Floating-point Instructions

FSQRT

FSQ RT Square Root

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 FA FSQRT 122-129 180-186 ST := square_root(ST)

Discussion

FSQRTreplaces the contents of the top of the stack with its square root.

TheFSQRToOf (ST = -0) is defined to be -0. Otherwis&QRToOf a negative
operand is invalid.

For the Intel387 coprocessor with the denormal exception masked, a denormal
operand produces a correct square root.

For the Intel287 coprocessor, a denormal or unnormal operand generates an invalid
exception.

Exceptions

Intel387 NPX

Invalid, denormalized, underflow for unmasked denormal, precision

Intel287 NPX

Invalid, denormalized, precision

ASM386 Assembly Language Reference Chapter 7 503

FST/FSTP

FST/FSTP store Real/Store Real and Pop

Clocks
Opcode Instruction i387 NPX i287 NPX Description
DD DO+ FST ST{) 11 15-22 ST() := ST
D9 /2 FSTm32r 44 84-90 m32r:= ST
DD /2 FSTmo64r 45 96-104 mo64r:= ST
DD D8+ FSTP ST{() 12 17-24 STi() := ST, pop
D9 /3 FSTPmM32r 44 86-92 m32r:= ST, pop
DD /3 FSTPmM64r 45 98-106 m64r:= ST, pop
DB /7 FSTPm80r 53 52-58 m80r:= ST, pop
Discussion

FST/FSTP copies the stack top ST to the destination indicated by the operand.
FSTP pops the stack after copying ST.

The destination can be a stack element or a single or double precision real memory
operand. If the destination is a single or double precisionA8aIFSTP rounds

ST to the width of the destination according to the RC field of the floating-point
coprocessor control wordEST/FSTP also converts the exponent to the width and
bias of the destination format.

FSTP stores extended precision real (DT) memory variables Wwhiledoes not.
CodingFSTP ST(0) is equivalent to popping the stack with no data transfer.

FST/FSTP does not round ST:

* When the Intel387 coprocessor ST contains an unsupported fGI$TaESTP
stores the QNaN indefinite if the invalid exception is masked.

* When the Intel387 coprocessor ST contains N&N/FSTP sets the leading
fraction bit and truncates the least significant bits of the significand and
exponent to fit the
destination.

e When ST contains an infinity or a Intel287 coprocessor N&Y/FSTP
truncates the least significant bits of the stack top's significand and exponent to
make the value fit the destination.

See also: Programmer's Referender your coprocessor, for more information
about the special values handledAsf/FSTP

Exceptions

504

Invalid; overflow, underflow, precision for single or double precision destination

Chapter 7 Floating-point Instructions

FSTCW/FNSTCW

FSTCW/ENSTCW Store Floating-point Coprocessor Control

Word
Clocks

Opcode Instruction i387 NPX i287 NPX Description

9BD9/7 FSTCWm2by 157 12-18" m2by: = control_word
after check for pending
unmasked floating-point
errors

D9 /7 FNSTCWm2by 15 12-18 m2by: = control_word

without check for
floating-point errors

T Add at least 6 clocks for automatic FWAIT.

Discussion

FSTCWwrites the current floating-point coprocessor control word to the two-byte
memory location defined by the operarBTCWincludes an assembler-generated
(F)WAIT instruction. FNSTCWan be used in code regions that must not be
interrupted by pending unmasked numeric errors. See Figure 7-5 for the control
word format.

Exceptions

None

ASM386 Assembly Language Reference Chapter 7 505

FSTENV/FNSTENV

FSTENV/FNSTENV store Floating-point Coprocessor

Opcode

Environment

Clocks
Instruction i387 NPX i287 NPX Description

9B D9/6 FSTENVM14/28by 103-104 40-50" m14/28by. =

D9 /6

environment after
check for pending
unmasked floating-point
errors

FNSTENVm14/ 103-104 40-50 m14/28by. =

28by environment without
check for floating-point
errors

T Add at least 6 clocks for automatic FWAIT.

Discussion

FSTENVwrites the floating-point coprocessor environment to the 14- or 28-byte
memory location specified by the operand. TUis&attribute of the current code
segment determines the operand size:

* The 14-byte operand applies tW8E16 segment.
* The 28-byte operand applies tW8E32 segment.

The environment consists of the floating-point coprocessor control word, status
word, tag word, and the exception pointers. See Figures 7-2 through 7-8 for
detailed illustrations of the environment layouts.

FSTENVincludes an assembler-generafet T instruction. FNSTENVdoes not, but
the data saved reflects the state of the floating-point coprocessor after any
previously decoded instruction has been executed.

FNSTENMs often used by exception handlers because it provides access to
exception pointers that identify the offending instruction and operaNE8TENV
typically saves the environment on the processor stack. After saving the
environmentFNSTENVsets all exception masks in the floating-point coprocessor
control word. This prevents numeric errors from interrupting the exception
handler.

Exceptions
None
506 Chapter 7 Floating-point Instructions

FSTSW/FNSTSW

FSTSW/FNSTSW store Floating-point Coprocessor Status Word

Clocks

Opcode Instruction i387 NPX i287 NPX Description

9BDFFO FSTSW AX 13 10-16' AX : = status_word
after check for pending
unmasked floating-point
errors

9BDD/7 FSTSWm2by 157 12-18 m2by: = status_word
after check for pending
unmasked floating-point
errors

DF FO FNSTSW AX 13 10-16 AX: = status_word
without check for
floating-point errors

DD /7 FNSTSWm2by 15 12-18 m2by: = status_word
without check for
floating-point errors

T Add at least 6 clocks for automatic FWAIT.

Discussion

FSTSWwrites the current value of the floating-point coprocessor status word to the
operand. The destination is either the AX register or a two-byte memory operand.

FSTSWncludes an assembler-genera@iVAIT instruction. FNSTSWeads the
status word without checking for pending unmasked numeric errors, but it delays
execution until any running numeric instruction is finished.

The primary use afSTSW/FNSTSVis to do conditional branching following a
comparisonFPREM/FPREM;Lor FXAMinstruction.

WhenFNSTSWAX is executed, the processor AX register is updated with the
floating-point coprocessor status word before the processor executes any further
instructions.

Exceptions

None

ASM386 Assembly Language Reference Chapter 7 507

FSUB/FSUBP/FSUBR/FSUBRP

FSU B/FSUBP/FSUBR/FSUBRP Subtract Real

Clocks

Opcode Instruction i387 NPX i287 NPX Description

DE E9 FSUB 26-34 75-105 ST(1) : =ST(1) - ST,
pop

DCE84 FSUB ST{),ST 26-34 70-100 ST):=ST{)-ST

D8 EOH+i FSUB ST,STi() 29-37 70-100 ST :=ST - SiT

D8 /4 FSUBmM32r 24-32 90-120 ST :=STm32r

DC /4 FSUBmM64r 28-36 95-125 ST : = STm64r

DE E8+ FSUBP ST(),ST 26-34 75-105 ST():=ST{) - ST,
pop

DE E1 FSUBR 26-34 75-105 ST(1): = ST - ST(1),
pop

DCEO+4# FSUBR ST{(),ST 26-34 70-100 ST():=ST-ST)

D8 E8+i FSUBR ST,STi() 29-37 70-100 ST:=ST}-ST

D8 /5 FSUBRmM32r 25-33 90-120 ST :mm32r- ST

DC /5 FSUBRmM64r 29-37 95-125 ST : m64r- ST

DE EOH+ FSUBRP STi(),ST 26-34 75-105 ST(:= ST - ST(),
pop

Discussion

FSUB/FSUBP/FSUBR/FSUBRPsubtract floating-point numbers. These instructions
always use ST as one of the operands. The other operand may be another stack
element or a single or double precision real memory operand.

The two-operand forms of tlRSUB/FSUBPiInstructions subtract the second

operand (subtrahend) from the first operand, replacing the first operand (minuend)
with the result. The one-operand forms subtract the operand from the stack top,
replacing the stack top with the result.

FSUBR/FSUBRRPeverse the operands and the destination of the result. The two-
operand forms of these instructions subtract the first operand from the second,
replacing the first operand (subtrahend) with the result.

The FSUBP/FSUBRPInstructions return a result to SY.(TheFSUB/FSUBR
instructions with no operands return a result to ST(1). These instructions pop the
top element (old ST(0)) from the stack when the operation is complete.

Exceptions
Invalid, denormalized, overflow, underflow, precision

508 Chapter 7 Floating-point Instructions

FTST

FTST TestReal (Compare to Zero)

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 E4 FTST 28 38-48 Compare ST to +0.0

Discussion

FTST compares the stack top ST with the value +0.0 and sets the flags C3, C2, and
CO of the floating-point coprocessor status word with the resulting information.
There are four possible results to the comparison of two real numbers. Three are
greater than, equals, and less than. The fourth, unordered, occurs when one of the
compared quantities is a NaN, a Intel387 coprocessor unsupported format, or a
Intel287 coprocessor projective infinity. The flags C3, C2, and CO (bits 14, 10, and
8, respectively of the floating-point coprocessor status word) indicate the result of
anFTST comparison, as shown in Table 7-15.

Table 7-15. Condition Code after FTST

(ZF) (PF) (CF) Processor
Order C3 Cc2 Co Conditional Branch
ST >0.0 0 0 0 JA
ST <0.0 0 0 1 JB
ST=0.0 1 0 0 JE
Unordered 1 1 1 JP

To test these bits, load them into the processor flags register by follBRE8Tg
with the following instruction sequence:

FSTSW AX ; store status word in AX
SAHF : bits are now stored in zero,
; parity, and carry flags
JPE UNORDR ; JUMP if the result was unordered

Conditional jumps can now be made, using the below (JB), above (JA), and equal
(JE) mnemonics.

Exceptions

Invalid, denormalized

ASM386 Assembly Language Reference Chapter 7 509

FUCOM/FUCOMP/FUCOMPP

FUCOM/FUCOMP/FUCOMPP unordered Comparison of

Opcode
DD E1
DD EO+
DD E9

DD E8+

DA E9

Real Numbers

Clocks

Instruction i387 NPX i287 NPX Description

FUCOM 24 e Compare ST with ST(1)

FUCOM ST() 24 e Compare ST with ST}

FUCOMP 26 - Compare ST with
ST(1), pop

FUCOMP ST{() 26 Compare ST with STY,
pop

FUCOMPP 26 - Compare ST with
ST(1), pop twice

Discussion

510

FUCOM/FUCOMP/FUCOMRBmMpare real numbers on the stack. After making the
comparisonFUCOMMops the top element from the stack. After comparing the top
two elementsFUCOMPPoOps both of them.

FUCOMFUCOMPandFUCOMPRre Intel387 coprocessor instructions. These
instructions conform to the IEEE 754 standard for the comparison of real numbers,
differing from FCOM/FCOMP/FCOMPass follows:

¢ FUCOM/FUCOMP/FUCOMEB not cause an invalid operation unless an operand
is a signaling NaN or is empty.

* FUCOM/FUCOMP/FUCOMBBmMpare stack operands only.
FCOM/FCOMP/FCOMP&so compare memory operands to the stack top.

There are four possible results to the comparison of two real numbers as shown in
Table 7-16. Three are greater than, less than, and equals. The fourth, unordered,
(not comparable) occurs when one of the operands is a NaN or an unsupported
Intel387 coprocessor format.

Chapter 7 Floating-point Instructions

FUCOM/FUCOMP/FUCOMPP

Table 7-16. Condition Code after FUCOM(P/PP)

(ZF) (PF) (CF) Processor
Order C3 Cc2 Co Conditional Branch
ST >Operand 0 0 0 JA
ST <Operand 0 0 1 JB
ST = Operand 1 0 0 JE
Unordered 1 1 1 JP

To test these bits, load them into the processor flags register by follewgMm
with the following instruction sequence:

FSTSW AX ; store status word in AX
SAHF : bits are now stored in zero,
; parity, and carry flags
JPE UNORDR ; JUMP if the result was unordered

Conditional jumps can now be made, using the below (JB), above (JA), and equal
(JE) mnemonics FUCOM/FUCOMP/FUCOMRfMores the sign of zero: -0.0 = +0.0.

Exceptions

Invalid, denormalized

ASM386 Assembly Language Reference Chapter 7 511

FWAIT

FWAIT wait for Floating-point Operation Complete

Opcode Instruction Clocks Description
9B FWAIT min. 6 Alternate of WAIT
Discussion

FWAIT is an alternate mnemonic for the proces8aiT instruction.

(F)WAIT allows a check to be made for pending unmasked floating-point errors
before the next floating-point coprocessor instruction modifies a variable used in
the preceding instruction. This transfers control to exception handlers that deal
with such exceptions before the next floating-point coprocessor instruction uses
invalid results as an operand.

FWAIT also synchronizes the processor with the Intel287 coproce™amiT

suspends processor execution until the Intel287 coprocessor completes its current
instruction. FollowFIST with anFWAIT instruction to be sure that the value has
been stored before attempting to examine it.

Exceptions

None; the processor raises the following exceptions: #NM if the task-switched flag
is set in the machine status word (lower 16 bits of CR0); #MF if the ERROR# pin
is asserted

512 Chapter 7 Floating-point Instructions

FXAM

FXAM Examine Floating-point Stack Top

Opcode Instruction
D9 E5 FXAM
Discussion

Clocks
i387 NPX i287 NPX Description
30-38 12-23 Status_word

condition_bits : =
classification of ST

FXAMprovides information about the classification of the floating-point

coprocessor stack top value. The results are reported by the condition codes C3-C0

of the floating-point coprocessor status word, as shown in Table 7-17.

Table 7-17. Condition Code after FXAM

Condition Code
C3 C2 C1

CO

Interpretation of Floating-point
Coprocessors ST value

0 0 0

o o
o o
= O

P PR RPRREPRPRLOOOOO
P PR OOOORIERKRERERIEO

P P OOREFPLOOREREROOLR

[
I

0

o

P OR ORFROROROLROLPR

i387 NPX:
i287 NPX:
+NaN
i387 NPX:
i287 NPX:
-NaN
+Normal
+o00
-Normal
-00

+Zero
Empty
-Zero
Empty

+Denormal

i287 NPX:
-Denormal
i287 NPX:

Unsupported;
+Unnormal

Unsupported;
-Unnormal

Empty

Empty

Although four different encodings can be returned for an empty register, bits C3
and CO are always 1 for empty. Ignore bits C2 and C1 when testing for empty.

Exceptions

None

ASM386 Assembly Language Reference

Chapter 7 513

FXCH

FXCH Exchange Real Numbers in Stack

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 C9 FXCH 18 10-15 Exchange ST and ST(1)
D9 C8+i FXCH ST() 18 10-15 Exchange ST and $7(

Discussion

FXCHswaps the contents of the stack top ST with the stack element given as the
operand. If a stack element is not specified explicitly, ST(1) is used.

Many floating-point coprocessor instructions operate only on the staclexagH
provides an easy way to use these instructions on lower stack elements. For
example, the following sequence takes the square root of the third element from the
top (assuming that ST is nonempty):

FXCH ST(3)
FSQRT
FXCH ST(3)
Exceptions
Invalid

514 Chapter 7 Floating-point Instructions

FXTRACT

FXTRACT Extract Exponent and Significand of Real

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 F4 FXTRACT 70-76 27-55 Push, ST(1) : =
ST_exponent_field,
ST : = ST_significand

Discussion

FXTRACTdecomposes the stack top ST into two numbers that represent the actual
value of the operand's exponent and significand fields. The exponent replaces the

original operand on the stack. TheXTRACTpushes the significand onto the
stack. ST(7) must be empty to avoid an invalid exception.

After FXTRACTonN a valid operand, ST contains the value of the original
significand expressed as a real number:

* lIts sign is the same as the original operand's.
e lIts exponent is zero true (3FFFH biased).

e lIts significand is identical to the original operand's.

After FXTRACTonN a valid operand, ST(1) contains the original operand's exponent.
For example, assume that ST contains a number whose true exponent is +4 (the

exponent field contains 4003H). AftEKTRACT ST(1)'s exponent field will
contain 4001H (+2 true) and its significand field will conta®01.0B (1.0).

As an example with a negative exponent, suppose ST contains an operand whose

true exponent is -7 (the exponent field contains 3FF8H). ARERACT ST(1)'s
exponent field will contain CO01H (-2 true) and its significand field will contain
11100...0B.

ASM386 Assembly Language Reference Chapter 7 515

FXTRACT

The Intel287 and Intel387 coprocesseXd§RACE handle zero, denormal, or
infinity operands differently:

When the operand is a zero, Intel387 coprocessoRACTleaves 0.0 in ST
with the same sign as the operand and leavas ST (1); the Intel387
coprocessor also raises the zerodivide exception. When the operand is a
denormal and the denormal exception is masked, Intel387 coprocessor
FXTRACTleaves a normalized significand in ST and the exponent of the
normalized operand in ST(1). When the operand is an infinity, Intel387
coprocessoEXTRACTIeaves the original operand in ST ared in ST(1), and
the Intel387 coprocessor does not raise an exception.

When the operand is a zero, Intel287 coprocessoRACTIeaves 0's in both

ST and ST(1) with the same sign as the original operand. When the operand is
a denormal, Intel287 coproces$(TRACTIeaves an unnormalized significand

in ST and the operand's exponent in ST(1). When the operand is an infinity,
Intel287 coprocess&XTRACTraises the invalid exception.

Exceptions

Intel387 NPX

Invalid, denormal, zerodivide

Intel287 NPX
Invalid
516 Chapter 7 Floating-point Instructions

FYL2X

FYL2X compute v * logX

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 F1 FYL2X 120-538 900-1100 ST(1) :=ST(1) *
logy(ST), pop old
ST

Discussion

FYL2X calculates ST(1) * logST). FYL2X stores the result in ST(1) and then
pops the stack, leaving the answer in ST.

The ST(1) operand to FYL2X must be in the rarmge ST(1) < #o, and:

e For the Intel387 coprocessor FYL2X, the ST operand must be in the range
0 <= ST < *o.

e For the Intel287 coprocessor FYL2X, the ST operand must be in the range
0 < ST < *o.

FYL2X optimizes the calculation of log to any base other than 2 by providing the

multiplication that is always required:

* logyX =log,2 * log,X
Exceptions

Intel387 NPX

Invalid, denormalized, zerodivide, overflow, underflow, precision

Intel287 NPX

Overflow, underflow, precision

ASM386 Assembly Language Reference Chapter 7 517

FYL2XP1

FYL2XP1 Compute Y * log(X + 1)

Clocks
Opcode Instruction i387 NPX i287 NPX Description
D9 F9 FYL2XP1 257-547 700-1000 ST(1) :=ST(1) *
logy(ST + 1), pop old
ST

Discussion

FYL2XP1 calculates ST(1) * logST + 1.0). FYL2XP1 stores the result in ST(1)
and then pops the stack, leaving the answer in ST.

FYL2XP1 provides improved accuracy oveYL2X when computing the logarithm
of a number very close to 1.

The ST(1) operand tBYL2XP1 must be in the rangeo-< ST(1) < +o, and:

» For Intel387 coprocesseivL2XP1, the ST operand must be in the range
-(1vV2/2) < ST < +(1¥2/2). If either operand is out of range, the result is
undefined.

e For Intel287 coprocesseiYL2XP1, the ST operand must be in the range
0.0 <= |ST| < +(2#2/2). If either operand is out of range;,L2XP1 results are
undefined and no exception is generated.

It is the programmer's responsibility to check that these operands are in range.
Exceptions

Intel387 NPX

Invalid, denormalized, underflow, precision

Intel287 NPX

Underflow, precision

518 Chapter 7 Floating-point Instructions

Textmacros

This chapter describes assembler textmacros. The chapter has three major sections.
« Overview explains what textmacros are and describes the basics of using them.
» Predefined Macro Reference describes the predefined macros in detail.

* Scanning Modes, Delimiters, and Macro Expansions contains more detailed
information about these topics than the Overview section.

Overview

Textmacros are optional, programmer-defined functions that have two major uses
in assembler programs:

« As convenient abbreviations for a sequence of assembler statements that will
be reused

* As away to assemble sections of code conditionally

For example, the following source module fragment defines two meRR®H_ OG
andEPILOG) for reuse with three procedures:

NAME TEXT_SUB
PUBLIC PROC1,PROC2,PROC3

%*DEFINE (PROLOG) (
PUSH EBP
MOV EBP, ESP
)

%*DEFINE (EPILOG) (
POP EBP
RET 8

)

Each macro definition specifies a macro name followed by a macro body
containing assembler instruction stateme®ROC1PROC2 andPROC3perform
similar operations with data on the stack. The source module's code segment
contains macro calls PROLOGNJEPILOG inside each of these procedures.

ASM386 Assembly Language Reference Chapter 8 519

The following fragment shows how tIRROLOGNJEPILOG calls appear within
PROC1

CODE32 SEGMENT ER PUBLIC

PROC1 PROC
%PROLOG
MOV EAX, [EBP+8]
ADD EAX, [EBP+12] ;in PROCL1 only
%EPILOG
PROC1 ENDP

PROC2andPROC3are almost identical tBROC1 except for the commentadD
statement.PROC2usesSUBandPROC3usedMUL on the same operandsRBOC1

In the listing for this source module, tRROC1fragment appears as:
CODE32 SEGMENT ER PUBLIC

PROC1 PROC
PUSH EBP : instead of
MOV EBP,ESP ; PROLOG call
MOV EAX, [EBP+8]
ADD EAX, [EBP+12]
POP EBP : instead of
RET 8 : EPILOG call
PROC1 ENDP

The macro body defined wiPROLOGeplaces eacthPROLO@ the source file
versions 0PROC1PROC2 andPROC3 The macro body defined wigPILOG
replaces eacthEPILOG

See also: Controlling the macro processor and controlling the listing of macros
ASM386 Macro Assembler Operating Instructions

520 Chapter 8 Textmacros

Macro Processing

The macro processor preprocesses assembler source text before it is assembled.
The macro processor scans the source text for macro calls, which are signaled by a
specific metacharacter (%, by default). When it encounters a macro call, the macro
processor:

1. Expands the macro to its return value, which is usually text but is sometimes
the null string

2. Inserts the expanded result into the source file that will be input to the
assembler

3. Updates information in the macro processor symbol table and continues
scanning the source file for another macro call

The macro processor ignores assembler directive, instruction, and codemacro
statements in the source file, passing them on as a sequence of characters to the
assembler. Until it encounters the metacharacter, the macro processor scans the
file as a stream of characters with no semantic content. The macro processor
cannot access the assembler's symbol table because it expands macros prior to
assembly.

After macro processing, the assembler processes the source file's assembly
language statements, including every statement that has been inserted as the result
of a macro call.

Macro Calls and Call Patterns

The term macro call denotes an invocation of a macro identifier recognized by the
macro processor. Such an identifier may be:

e An assembler predefined macro
e A previously defined macro

Each kind of macro call begins with the metacharacter, followed by the call pattern
of the macro. A call pattern is the macro name, followed by a delimited list of
arguments if the call pattern requires arguments.

Each predefined macro has its own call pattern. Some require a parenthesized
expression, macro name, or string argument; some require two or more arguments,
enclosed in parentheses and separated by commas. For exampléB$h®

macro's call pattern is:

%SUBSTRbalanced-text |, exprl , expr2)

ASM386 Assembly Language Reference Chapter 8 521

A call to SUBSTRmust specify three arguments enclosed by parentheses and
separated by two commas, such as:

%SUBSTR(ABCDEFG,3,4)

The first argument is a string of balanced text, the second is an index to the initial
character of the substring, and the third specifies the length of the substring. The
result of this macro call is CDEF.

See also: Macro arguments, in this chapter

Each programmer-defined macro also has its own call pattern. The call pattern is
specified in the macro's definition. Every macro definition must specify a macro
name and a macro body that is expanded when the macro is called. A macro
definition may include formal parameters that must be replaced by arguments each
time the macro is called; it may also inclugeCALsymbols that will be expanded

into assembly time symbols.

A macro definition may contain calls to other macros nested within its macro body.
The macro processor expands a macro body according to its definition every time
the macro is called. The result of a macro call is the fully expanded macro body,
including the fully expanded results of any nested macro calls.

Each macro call must match its defined call pattern exactly. There must be an
argument to match each formal parameter. Argument delimiters must match those
required by the predefined macro or those specified in the macro's definition.

Macro Processor Scanning Modes and Macro Expansions
The macro processor has two scanning modes for processing macros:
1. Normal scanning mode -- expands macro calls, including nested macro calls

2. Literal scanning mode -- does not expand calls nested in the macro body, but
updates the macro processor symbol table

By default, the macro processor scans calls to predefined and programmer-defined
macros in normal scanning mode: it replaces the macro call with an expanded
result and passes the expanded text on to the assembiler.

522 Chapter 8 Textmacros

In normal scanning mode:

* For a predefined macro, the macro processor returns a null string for the macro
name and an expanded text result for the call.

See also: Predefined macros, in this chapter

* For a programmer-defined macro, the macro processor returns a null string for
the macro name and the expanded text result of the processed macro body. If
the definition contains nested macro calls, they are fully expanded when their
containing macro is called.

A macro definition is a result of a call to the predefined mé€EFINE The
asterisk {) following the default metacharacter tells the macro processor to use
literal scanning mode to process the macro definition. In literal scanning mode:

* The macro processor does not attempt to expand formal parametecAir
symbols referenced in the macro body as macro calls.

As a side effect of a literal mode call%DEFINE, the newly defined macro call
pattern (name, formal parameters, and delimiters) enters the macro processor's
symbol table, together with the definitioh®CALsymbols, if any. The macro
processor can recognize a subsequent call to the new macro and expand it fully in
normal scanning mode.

See also: Algorithm for evaluating macro calls, in this chapter
Predefined Macros

The assembler predefined macros are used to create and manipulate macros.
Table 8-1 summarizes these macros by usage categories.

ASM386 Assembly Language Reference Chapter 8 523

Table 8-1. Predefined Macros

Name Used For:
Creating New Macros and Controlling Expansion
DEFINE Defines a macro identifier as callable and a macro body as the result of a
call; a formal parameter list and/or a LOCAL list are optional
Bracket Tells the macro processor to evaluate a parenthesized string in literal
scanning mode
Escape Tells the macro processor to evaluate a specified number of characters
(n = 1..9) in literal scanning mode
Comment Puts a comment into a macro definition; always evaluates to the null
string when scanned
METACHAR Redefines the metacharacter for subsequent macro calls
Evaluating Floating-point Expressions
EVAL Returns a string of hexadecimal digits representing an expression's value
SET Assigns a numeric value to an identifier and stores the identifier in the
macro processor symbol table
Expanding a Macro Conditionally and/or More than Once
IF Expands text if specified expression is true or expands optional ELSE
clause if specified expression is false; otherwise, returns the null string
WHILE Expands text repeatedly as long as expression is true
REPEAT Expands text a specified number of times
EXIT Terminates expansion of the most recently called WHILE,REPEAT, or
programmer-defined macro
Comparing Strings (true = -01H, false = 00H)
EQS Returns -01H for equal strings
NES Returns -01H for unequal strings
LTS Returns -01H if left string less than right string
GTS Returns -01H if left string greater than right string
LES Returns -01H if left string less than or equal to right string
GES

524 Chapter 8

continued

Textmacros

Table 8-1. Predefined Macros (continued)

Name Used For:
Manipulating Strings
LEN Returns the length of a string (0..255 characters)
SUBSTR Extracts substring from a string
MATCH Splits a string at the specified delimiter and specifies an identifier for
each substring
Controlling Console 1/0
IN Inputs (and echoes) a character string from the console
Out Outputs a character string to the console
Cl Inputs a character (no echo) from the console
Cco Outputs a character to the console

Macro Arguments

The following sections describe general rules for macro arguments, including
delimiters in call patterns and identifiers in macro definitions.

Balanced Text

Most arguments to the predefined macros must be balanced text with respect to
parentheses. Macro definitions must also be balanced text. A macro definition
supplies at least two parenthesized argumer&faNE: the macro identifier and
the macro body. If a macro is defined with formal parameters, the corresponding
arguments must be passed as balanced text when the macro is called.

Text is balanced if it conforms to the following rules:

During the left to right scan, the macro processor's count of unliteralized left
parentheses must always be greater than or equal to its count of unliteralized
right parentheses.

After the scan, the macro processor's count of unliteralized left parentheses
must equal its count of unliteralized right parentheses.

An unbalanced parenthesis may be literalized with the predefined Escape macro to
make an argument conform to these rules.

ASM386 Assembly Language Reference Chapter 8 525

Delimiters in Call Patterns

526

The macro processor recognizes two kinds of delimiters used to enclose a list of
arguments to a macro call:

1. Literal delimiters such as balanced parentheses
2. Implied blank delimiters

The macro processor recognizes three kinds of delimiters used to separate
arguments to a macro call:

1. Literal delimiters such as commas
2. Implied blank delimiters such as spaces
3. ID delimiters

The call patterns for the predefined macros require unliteralized left and right
parentheses as enclosing delimiters. Some require the comma as a separating
delimiter. TheDEFINE macro requires the following arguments enclosed in
parentheses: the macro name and the macro body. Such a macro definition has n
formal parameters, and its call pattern consists of the metacharacter followed
immediately by the macro name.

If the macro definition has one formal parameter, it may be enclosed by paired
parentheses, by any literal delimiter(s), or by logical spaces. Such a macro's call
pattern consists of the metacharacter followed immediately by the macro name
followed by an argument that must be enclosed with the same delimiters as the
definition has.

The comma may be used to separate elements in a formal parameter list. If the
definition of a macro uses commas to separate formal parameters, the
corresponding arguments must be separated by commas when the macro is called.
The comma is a literal delimiter.

However, the macro processor recognizes other characters as delimiters in defined
formal parameter and corresponding argument lists. The macro processor can
recognize any single character except the following as a separating literal delimiter:

e The metacharacter

e An unliteralized left or right parenthesis

e The space, tab, carriage return, and linefeed characters
e The at character (@)

e Avalid identifier character (A..Z, a..z, 0..9, the underscore, or the question
mark)

Chapter 8 Textmacros

The space, tab, carriage return, and linefeed characters are logical spaces; they may
be used as implied blank delimiters. The at character (@) followed by one or more
valid identifier characters is an ID delimiter.

See also: Macro delimiters, in this chapter

Identifiers

A macro definition specifies the name by which the macro can be called. A macro
definition may also specify identifiers for formal parametersam@ALsymbols.
The following summarizes the rules for identifiers in macros:

* Anidentifier must begin with an alphabetic character (A...Z or a...z).

* The second and subsequent characters may be alphabetic, a question mark (?),
an underscore (_), or decimal digits (0...9).

« Upper- and lower-case characters are interchangeable in identifiers.
« Anidentifier may not have more than 31 characters.

* An identifier may be terminated by a right parenthesis, a logical space, a null-
string Bracket call (%()), or a null-string Escape call (%0).

* Formal parameter identifiers ah@CALidentifiers have scope exclusive to
their defining macro. A nested macro cannot reference such symbols.

* Aformal parameter drOCALidentifier has precedence over a nested macro
identifier if they are duplicates; the macro processor will not interpret the
duplicated symbol as a nested macro call.

« Most predefined macros have reserved identifiers: they may not be used as
programmer-defined macro, formal parameteit, @CALsymbol identifiers.
Only theSET macro does not have a reserved identifier; it may be redefined.

A macro cannot be called as a forward reference to its identifier. The definition of
a new macro is in effect during macro processing or until the macro identifier is
redefined by another call #6*DEFINE

Expressions

Some predefined macros require arguments with numeric values. The macro
processor interprets certain text string argumeni/&L, SET, IF , WHILE,
REPEAT andSUBSTRas numeric expressions.

ASM386 Assembly Language Reference Chapter 8 527

The macro processor recognizes and evaluates numeric expressions according to
the following guidelines:

e Signed integer values may be represented in binary (B suffix), octal (O or Q
suffix), decimal (no suffix or D suffix), and hexadecimal (H suffix).

e The range of valid integers is -32768..32767 (decimal).
e The valid expression operators are:

Highest Precedence

()
HIGH, LOW

* /,MODSHL, SHR

+, - (unary and binary)
EQ, NE, LE, LT, GE, GT
NOT

AND

OR XOR

O N gD

Lowest Precedence

ThelF andWHILE macros require arguments that are expressions. The macro
processor interprets the result of such expressions as true or false based on whethe
the least significant bit is odd (1 = true) or even (0 = false). The predefined string
comparison macros return -01H for true and O0H for false; these macros are valid
expression arguments for callsifo andWHILE The macro processor always
represents true and false as the character strings -01H and O0H, respectively.

Argument Evaluations

528

The macro processor uses call-by-immediate-value as it scans arguments to macrac
calls. For this reason, it evaluates arguments that are nested macro calls whatever
the current scanning mode.

For example, suppoSTRNGs a defined macro with the valD®GSATSand
MAC1s defined call pattern MACY P1, P2). Even iMAC1is called in literal mode
as follows

%*MACL(%STRNG, mouse)

the macro processor will expand the calB®RNG Use the Bracket macro on the
call toMAC1or the Escape macro on the calBIRNGO postpone the immediate
expansion of such an argument.

See also: Bracket and Escape macros, in this chapter

Chapter 8 Textmacros

Predefined Macro Reference

Table 8-2 summarizes the call pattern syntax for each predefined macro described
in the following sections. Except f8ET, tokens in uppercase letters are reserved;
they may not be used as new macro, formal paramete®@@xLsymbol

identifiers.
Table 8-2. Predefined Macro Call Patterns

Name Call Pattern Syntax
DEFINE %[*|DEFINE (macro-name [param-list]) [LOCAL local-list] (macro-body)
Bracket %(balanced-text)
Escape %n text-n-chars-long
Comment %'text end-line or % 'text'
METACHAR %METACHAR (balanced-text)
EVAL %EVAL (expr)
SET %SET (macro-name, expr)
IF %IF (expr) THEN (balanced-textl) [ELSE (balanced-text2)] Fl
WHILE %WHILE (expr) (balanced-text)
REPEAT %REPEAT (expr) (balanced-text)
EXIT %EXIT
EQS %EQS (argl, arg2)
NES %NES (argl1, arg2)
LTS %LTS (argl, arg2)
GTS %GTS (argl, arg2)
LES %LES (argl, arg2)
GES %GES (argl, arg2)
LEN %LEN (balanced-text)
SUBSTR %SUBSTR (balanced-text, exprl, expr2)
MATCH %MATCH ([ident1] delim ident2 [delim identN]...[delim]) (balanced-text)
IN %IN
ouT %OUT (balanced-text)
Cl %ClI
Cco %CO(char)

ASM386 Assembly Language Reference Chapter 8 529

DEFINE Macro

Syntax
%[*IDEFINE (
Where:
%

*

macro-name

param-list

local-list

macro-body

macro-name [param-list])[LOCAL local-list 1 (macro-body)

represents the current metacharacter.

tells the macro processor to scan the definition in literal mode>* The
(literal character) may be omitted if the definition has andyro-

name andmacro-body arguments; it is required if the definition has
aparam-list and/orlocal-list

The% optional*, andDEFINE may not be separated by spaces.

is a valid identifierynacro-name and the optiongbaram-list ~ must
be enclosed in parentheses.

is an optional list containing one or more valid identifiers separated
by literal, implied blank, or ID delimiters. Each identifier in the list
must be uniqueParam-list must be a balanced text string,
enclosed by paired parentheses or by literal or implied blank
delimiters.

is an optional list containing one or more valid identifiers separated
by logical spaces. At least one space is required betweeaLand
the initial identifier in a list.

is a balanced text string, enclosed in parentheses. It may contain
nested macro calls, but it may not contain a call tDEEINE the
macro-name .

530 Chapter 8 Textmacros

Discussion

The DEFINE macro returns the null string. As a side effect, a cadEBINE
creates a new macro call pattern.

%*DEFINE specifies at least a name for a programmer-defined macro and the result
for a call to the macro. The macro body specifies the return value of the macro
call. It may contain nested macro calls, including a call to itself. The return value
of a nested macro is the fully expanded macro body, including the return value(s)
of its nested macro calls, if any. A macro is expanded each time it is called. After
the definition has been fully scanned, the macro name may be redefined with a
different macro body.

The literal character | suppresses the expansion of nested macro calls when the
macro processor scans the definition of the macro body. Howedegs not
suppress expansion of macro calls that are nested arguments.

Param-list specifies formal parameter identifier(s) to serve as placeholders for
argument(s) passed when the new macro is called. Within the macro body, each
reference to a parameter identifier must be preceded by the metacharacter.
Parameters may be used any number of times and in any order within the macro
body. Do not nest a call to an already defined macro if it has the same name as a
parameter to the new macro. The macro processor interprets the duplicate
identifier as a reference to the parameter.

The macro name and formal parameter list must be enclosed in parentheses. When
the macro is called, the corresponding argument list must match the call pattern of
the definition: its enclosing and separating delimiters must match those of the
definition. Each argument must be balanced text and each may contain nested
macro calls.

Within the macro body, each reference to an identifidvdal-list must be
preceded by the metacharacter. However, there is no corresponding argument list
for local-list when the macro is called. The@CALconstruct allows macro
identifiers to be expanded into unique assembly time symbols every time the new
macro is called.

For every call to a macro withl@CALconstruct, the macro processor increments a
counter. LOCALsymbol references in the macro body are expanded with a 2- to 5-
digit suffix that is the current (hexadecimal) value of the counter. For this reason,
local-list identifiers should be no longer than 26 characters. The suffix is 00
for the first call to a macro withlgOCALconstruct.

ASM386 Assembly Language Reference Chapter 8 531

Examples
1. The following examples show nested macro calls.

%*DEFINE(ASTRING) (PHANT)
%*DEFINE(JUMBO) (ELE%ASTRING)
%*DEFINE(TOADY) (SYCO%ASTRING)

%JUMBO ; expanded to ELEPHANT
%TOADY ; expanded to SYCOPHANT

2. The following example shows two macros defined without parameters or a
LOCALIist.

%*DEFINE (PROLOG) (

PUSH EBP

MOV EBP,ESP

) : need end line after ESP
%*DEFINE(EPILOG) (

POP EBP

RET 8

) : need end line after 8

%PROLOG : macro calls

%EPILOG
The return values of these macro calls are:

PUSH EBP
MOV EBP, ESP
POP EBP

RET 8

3. The following example shows two macros, each defined with a formal
parameter list.

%*DEFINE (PROLOG (VARSIZE)) (

PUSH EBP

MOV EBP,ESP

SUB ESP, %VARSIZE

) : need end line after VARSIZE
%*DEFINE(EPILOG (POPVAL)) (

MOV ESP, EBP

POP EBP

RET %POPVAL

532 Chapter 8 Textmacros

) : need end line after POPVAL
%PROLOG (4) ; macro calls
%EPILOG (8)

%PROLOG (16)

The return values of these macro calls are:

PUSH EBP
MOV EBP, ESP
SUB ESP, 4

MOV ESP, EBP
POP EBP
RET 8

PUSH EBP
MOV EBP, ESP
SUB ESP, 16

4. The following example shows a macro defined witlb@ALsymbol,LABEL.

%*DEFINE (MOVE_ADD_GEN(SOURCE,DEST,COUNT))
LOCAL LABEL (
MOV ECX, %COUNT
MOV ESI, 0
%LABEL: MOV EAX, %SOURCE[ESI]
MOV %DEST[ESI], EAX
ADD ESI, 4
LOOPZ %LABEL
) : need end line after LABEL

ASM386 Assembly Language Reference Chapter 8 533

: 11th call to a macro
; with LOCAL symboil(s)
%MOVE_ADD_GEN(DATA FILE,67)

The return value of this macro call is:

MOV ECX, 67
MOV ESI, 0

LABELOA: MOV EAX, DATA[ESI]
MOV FILE[ESI], EAX
ADD ESI, 4
LOOPZ LABELOA

Bracket Macro

Syntax

%(balanced-text)

Where:

% represents the current metacharacter.
Discussion

The macro processor scans the argument to the Bracket in literal scanning mode.
The Bracket macro may not be called with the literal charatjer (

The Bracket prevents the macro processor from expandirtgaidreced-text
string, except for the following cases:

e The macro processor always expands calls to the Escape and Comment
macros.

« The macro processor expands arguments that are nested macro calls (see
Example 1 in this section).

See also: Macro arguments, in this chapter

The Bracket prevents the macro processor from evaluating macro calls that are
nested in théalanced-text ~ argument, including calls to Bracket.

534 Chapter 8 Textmacros

Examples
1.

The following examples illustrate how the macro processor evaluates nested
macro calls inside the Bracket.

%*DEFINE(STRNG) (DOGS,CATS)
%*DEFINE(NULLMAC (P1, P2)) ()
%(%NULLMAC(%STRNG, MOUSE))

%(%NULLMAC(%(%STRNG), MOUSE))

During its scan of these calls to the Bracket macro, the macro processor
expands théalanced-text ~ arguments to:

%NULLMAC(%STRNG, MOUSE)

%NULLMAC(%(%STRNG), MOUSE)

The following macro adds DW statements to the source file. When it is called,
the Bracket macro is used to literalize the argument(s) that correspond to the
formal parameterIST . Without the Bracket, the first comma in this

argument list would be interpreted as the delimiter separating the two %DW
arguments.

%*DEFINE(DW (LIST,NAME)) (

%NAME DW %LIST

) : need end line after LIST
%DW (%(1, 2, 3), NUMS)

The return value of this call is:

NUMS DW 1,2,3

Escape Macro

Syntax
%n text
Where:
% represents the current metacharacter.
n is a decimal digit from O to 9.
text is n characters long.

ASM386 Assembly Language Reference Chapter 8 535

Discussion

The Escape macro interrupts the macro processor in its normal scanning of text.
The metacharacter and the decimal diggtre not evaluated, but the macro
processor scans the nextharacters as literals. The Escape macro may not be
called with the literal character)(

Use the Escape to insert a metacharacter as text, to add a comma as part of an
argument, or to place a single parenthesis into a character string that requires
balanced parentheses.

Examples

536

Several examples of the Escape follow the definitiotNGMTS

%*DEFINE(INCMTS(ARG1,ARG2,ARG3))
(

. %ARG1

. %ARG2

. %ARG3

)

; COMPUTE 10%1% OF SUM
%INCMTS(JAN23%1,86,MAR15%1,86,APR9%1,86)

%INCMTS(1%1) +INPUT,2%1) -20%1%,3%1) GET NEXT)
The expanded text for this fragment is:

; COMPUTE 10% OF SUM
; JAN23,86

; MAR15,86

; APR9,86

;1) +INPUT

:2) -20%
. 3) GET NEXT

Chapter 8 Textmacros

Comment Macro

Syntax
%' text end-line
or
%' text '
Where:
% represents the current metacharacter
text is a character string that may include any character except the
apostrophe (') or linefeed; the metacharacter should be literalized
within text .
end-line is the linefeed character (ASCIl 0AH) or the carriage return/linefeed
combination (ASCIlI ODOAH).
Discussion

The Comment macro always evaluates to the null string, including the terminating
delimiter fortext . The macro processor recognizes two terminating characters:
the linefeed and the apostrophe.

The first form of the call spreads macro comments over several lines without
inserting extra end line characters into the processed text. The Comment macro
may not be called with the literal charactey. (

Example

The following example of a commented macro definition causes an assembly-time
error after the macro is called. The macro processor removes the linefeed
delimiter as it expands the first comment line in the macro body.

%*DEFINE(MOVE_ADD_GEN(SOURCE, DEST, COUNT))
LOCAL LABEL

(

MOV ECX,%COUNT %'COUNT should be constant

MOV ESI,0

%LABEL %' %1%LABEL will get hex suffix

:MOV EAX, %SOURCE[ESI] %'SOURCE is address'

MOV %DEST[ESI],EAX %'DEST is address'

ADD ESI.4

LOOPZ %LABEL %'gets same hex suffix

%'as the %1%LABEL above'

ASM386 Assembly Language Reference Chapter 8 537

)

%MOVE_ADD_GEN(DATA, STOR, 20H)
The return value of this call is:

MOV ECX,20H MOV ESI,0
LABELO7:MOV EAX,DATA[ESI]
MOV STOR[ESI],EAX

ADD ESI,4

LOOPZ LABELO7

After macro processing, the first line has two instructions, which causes an
assembler error. The first call to the Comment macro should be terminated with an
apostrophe to avoid this error. However, when the comment has been processed i
the%LABEIed line, the colon is raised to the same lin&BABEL making it a

valid ASM386 instruction.

METACHAR Macro

Syntax

%METACHAR falanced-text)

Where:

% represents the current metacharacter.
Discussion

The METACHARnacro redefines the metacharacter. The initial and default
metacharacter & The leftmost character within the parentheses is interpreted as
the new metacharacter. The old metacharacter loses its function after a call to
METACHARa previously defined macro with nested calls might return its
unexpanded macro body as a text string.

The initial character in the argumentM&TACHARNay be any ASCII character
except a logical space (space, tab, linefeed, carriage return), a left or right
parenthesis, an identifier character, an asterisk, or a control character (any
character with an ASCII value less than 20H).

538 Chapter 8 Textmacros

Examples
1. The following example changes the metacharacter to !.
%METACHAR(!)

2. After the following call tatMETACHARhe backslash becomes the new
metacharacter because it is the first character after the left parenthesis.

IMETACHAR(\&)
EVAL Macro
Syntax
%EVAL (expr)
Where:
% represents the current metacharacter.
expr is a valid expression.
Discussion

The EVAL macro returns its argument's value in hexadecimal digits. A dc&llAd
returns a value with at least three characters, even if the argument evaluates to a
single digit. The leading character is either a minus sign (-) or a decimal digit
(0..9); the remaining digits can be any hexadecimal digit (0...F). The last character
is the hexadecimal suffix (H).

Examples
These examples show five callsB@AL followed by the return values.

MOV EAX, %EVAL(L + 1)

COUNT EQU %EVAL(33H + 15H + OF00H)
ADD EAX,%EVAL(LOH - ((13+6) *2) + 7
MOV EAX,%EVAL(%NUM1 LE %NUM2)
MOV AL,%EVAL (1111B EQ OFH)

MOV EAX, 02H ; expanded results
COUNT EQU 0F48H

ADD EAX,OFFF1H

MOV EAX,00H : O0H = false
MOV AL,-01H :-01H = true

ASM386 Assembly Language Reference Chapter 8 539

SET Macro

Syntax
%SET (macro-name , expr)
Where:
% represents the current metacharacter.
macro-name is a valid identifier.
expr is a valid expression.
Discussion

The SET macro assigns the value of an expression to an identifier and stores the
named value in the macro processor symbol table. A subsequent macro call to the
identifier returns the value.

SET affects only the macro processor symbol table. When a &#iTtes scanned,
the macro processor replaces it with the null string in the source file. Symbols
defined bySET can be redefined by a subsequent cafii® or toDEFINE. SETIis
not a reserved macro identifier and it may be redefined; its previous function is
then lost.

Examples

The macro processor inserts no text into the source file for a GH#HTMOSET
assigns a value to a callable identifier in the macro processor's symbol table.

%SET(COUNT,0) ; null string result into source
%SET(OFFSET,16) ; null string result into source
MOV EAX,%COUNT + %OFFSET ; expands to MOV EAX,00H +10H

MOV EBX,%COUNT ; expands to MOV EBX,00H

%SET(COUNT,%COUMWOFFSET) ; null string result into source
%SET(OFFSET,%O0FFSET * 2) ; null string result into source

MOV EAX,%COUNT + %OFFSET ; expands to MOV EAX,10H + 20H
MOV EBX,%COUNT ; expands to MOV EBX,10H

540 Chapter 8 Textmacros

IF Macro

Syntax
%IF (expr) THEN (balanced-text1)[ELSE (balanced-text2)]Fl
Where:
% represents the current metacharacter.
expr is a valid expression; its result is interpreted as a logical value.
Discussion

ThelF macro returns expanded results fafanced-text1 if the expression
argument evaluates to true (least significant bit equals 1)ELAE clause is
optional; if it is included, théF macro returngalanced-text2 results if the
expression argument evaluates to falge returns the null string when there is no
ELSE clause and the expression argument evaluates to falsmust terminate the
call.

Use the relational operators (EQ, NE, LE, LT, GT, or GE) or the string comparison
macros (EQS, NES, LES, LTS, GTS, or GES) to specify an expression argument.

IF calls may be nested; when they areERSE clause refers to the immediately
precedingF call that is still open (not terminated by FI).

Examples

1. The following examples illustrate #h call without arELSE clause and alF
call with anELSE clause.

%IF (OFFH GT %VAR) THEN (MOV EAX, %VAR) FI
%IF(%EQS(ADD EAX,%OPERATION))THEN
(ADD EBX,%R1) ELSE (ADD EBX, %R2) FI

2. These examples illustrate nestedcalls. EachF must be terminated by a
matchingFl .

%IF(%EQS(%OPER,ADD))THEN (ADD EAX,DATUM
) ELSE (

%IF(%EQS(%OPER,SUB)) THEN (SUB EAX,DATUM
) ELSE (

%IF(%EQS(%OPER,MUL))THEN(MUL DATUM
) ELSE (DIV DATUM
)FI
)FI

)FI

ASM386 Assembly Language Reference Chapter 8 541

542

The following examples contrast calls and results for two conditional macros.

%*DEFINE (PROLOG (VARSIZE)) (
PUSH EBP

MOV EBP, ESP

%IF (%VARSIZE EQ 0) THEN (
%SET(LEVEL, 0)) ELSE (
%SET(LEVEL, 1) %'used in %1%EPILOG'
SUB ESP, %VARSIZE) FI

)

%*DEFINE(EPILOG (POPVAL)) (
%IF(%EQS(%LEVEL,1) THEN (
MOV ESP, EBP) FI

POP EBP

RET %POPVAL

)

°/c.>P.ROLOG (4) ; call sets LEVEL =1
%épmoe(&

"/c.)P.ROLOG(O) ; call sets LEVEL =0

%EPILOG (8)
The results of these calls BROLOGNAEPILOG are as follows:

PUSH EBP ; 1st %1%PROLOG, LEVEL =1
MOV EBP, ESP
SUB ESP, 4

MOV ESP, EBP ; 1st %1%EPILOG, LEVEL = 1
POP EBP
RET 8

PUSH EBP ; 2nd %1%PROLOG, LEVEL =0
MOV EBP, ESP

POP EBP ; 2nd %1%EPILOG, LEVEL =0
RET 8

Chapter 8 Textmacros

4. The following example demonstrates the usegxfandIF for conditional
assembly.%SET(DEBUGO) would turn off the debug code.

%SET (DEBUG, 1)

%IF (%DEBUG) THEN (
MOV EAX,DEBUG_FLAG
OUT 2,EAX) FI

MOV EBX,OFFSET ARRAY
SUB EBX,1

The following is the expanded result:

MOV EAX,DEBUG_FLAG
OUT 2,EAX

MOV EBX,OFFSET ARRAY
SUB EBX,1

WHILE Macro

Syntax
%WHILE (expr) (balanced-text)
Where:
% represents the current metacharacter.

expr is a valid expression; its result is interpreted as a logical value.

Discussion

TheWHILE macro returns expanded results as long as the expression argument
evaluates to true.

The macro processor first evaluat@sILES expression argument. If its least
significant bit is 1, the balanced text is expanded; otherwise, it is not. Once the
balanced text has been expanded, the logical argument is retested; if the least
significant bit is still 1, the balanced text is expanded again. This process continues
until the logical argument proves false (the least significant bit is 0).

Use the relational operators (EQ, NE, LE, LT, GT, or GE) or the string comparison
macros (EQS, NES, LES, LTS, GTS, or GES) to specify an expression argument.

Unless the value adxpr is modified within the balanced text, theHILE
expansion might never terminate. A call to EX8T macro can be used to
terminate avHILE expansion.

ASM386 Assembly Language Reference Chapter 8 543

Examples
The following examples illustrate calls WeHILE
%SET(COUNTER,5)

%WHILE(%COUNTER GT 0)

(INC EBX
%SET(COUNTER,%COUNTER - 1)

)

%WHILE(%COUNT LT OFFH) (HLT
%SET(COUNT,%COUNT + 1))

REPEAT Macro

Syntax

%REPEAT (expr) (balanced-text)

Where:

% represents the current metacharacter.

expr is a valid expression; its value is interpreted as a non-negative integer.
Discussion

The REPEATmMacro returns expanded resuipr times. The macro processor

first evaluates the expression argument; then, it expands the balanced text argume
the specified number of times. A call to #¢IT macro can be used to terminate a
REPEATexpansion.

Examples

The following examples perform the same text insertion ag/thieE examples.
For correct assembly of the expanded text, a linefeed must be coded immediately
preceding the right parenthesis that closes each macro body.

%REPEAT (5) (INC EBX

)
%REPEAT (OFFH-COUNT) (HLT

)

544 Chapter 8 Textmacros

EXIT Macro

Syntax
%EXIT
Where:

% represents the current metacharacter.

Discussion

TheEXIT macro terminates expansion of the most recently cRIEREAT WHILE,
or programmer-defined macro. The terminaR&PEAT WHILE, or macro returns
the already expanded tex@XIT returns the null string.

UseEXIT to avoid infinite loops such asveHILE expression that never becomes
false or a recursive macro that never termina8T may be specified more than
once in the same macro.

Examples

1. The following example is a simple jump out of a recursive I®PDYis a
macro that modifie€ONDITION so thatCONDITION eventually becomes true.

%*DEFINE(UNTIL (CONDITION,BODY))
(%BODY

%IF (%CONDITION) THEN (%EXIT)

ELSE (%UNTIL(%CONDITION,%BODY)) FI

2. The following example dEXIT terminates a recursive macro when an odd
number of bytes have been added. Wh@&DD_Mnacro adds paired bytes and
stores the results DEST. If there are more than 2 byte pairs to be added,
M_ADD_Malls itself. Expansion continues as lon®@#3ESis greater than 2.
WhenBYTESreaches a value of 1 (odd number of byte pairs), the macro calls
EXIT.

%*DEFINE(M_ADD_M(SRC,DEST,BYTES)) (
MOV AL,%SRC

ADD AL,%DEST

MOV %DEST,AL

IF (%BYTES EQ 1) THEN (%EXIT)FI

MOV AL,%SRC + 1

ADD AL,%DEST + 1

MOV %DEST + 1, AL

IF (%BYTES GT 2) THEN
(%M_ADD_M(%SRC+2,%DEST+2,%BYTES-2))FI
)

ASM386 Assembly Language Reference Chapter 8 545

String Comparison Macros

Syntax

%EQS (argl , arg2)
%NES (argl , arg2)
%LTS (argl, arg2)
%GTS (argl , arg2)
%LES (argl, arg2)
%GES (argl, arg2)

Where:

% represents the default metacharacter.

args are balanced text strings; they may contain nested macro calls.
Discussion

546

These predefined macros compare two strings and return a logical value based on
the comparison. If a string comparison macro evaluates to true, it returns the
character string -01H. If it evaluates to false, it returns OOH.

The macro processor expands both arguments completely before making the
comparison. Then the ASCII value of the first character in the first string is
compared to the ASCII value of the first character in the second string. If they
differ, the character with the higher ASCII value determines which string is
considered greater.

If the characters are identical, the process continues with the second character in
each string, and so on. Only strings of equal length that contain the same
characters in the same order are equal. If one string is a proper initial substring of
the other, it is less than the other.

The following list describes each string comparison macro:

EQS Equal: true if both arguments are identical
NES Not equal: true if arguments are different in any way
LTS Less than: true if first argument precedes second argument in

dictionary ordering

GTS Greater than: true if first argument follows second argument in
dictionary ordering

LES Less than or equal: true if first argument precedes second argument in
dictionary ordering or if both arguments are identical

GES Greater than or equal: true if first argument follows second argument
in dictionary ordering or if both arguments are identical

Chapter 8 Textmacros

Examples

1. These examples illustrate calls to each string comparison macro commented
with results.

%GTS(16D,11H) %' -01H (true: ASCII 6 > 1)’
%EQS(ABC,ABC) %' -01H (true: strings identical)’
%EQS(ABC, ABC) %' 00H (false: space character

%' in second argument)’
%LTS(CBA,cba) %' -01H (true: ASCII C < c)'
%GES(ABCDEF,ABCDEF)

%' O0H (false: additional

%' space in second argument)'

2. Like any other macro, the string comparison macros accept nested macros as
arguments. The result of the following call to EQS is -01H (true).

%*DEFINE(DOG) (CAT)
%*DEFINE(MOUSE) (%DOG)
%EQS(%DOG,%MOUSE)

LEN Macro
Syntax

%LEN (balanced-text)

Where:

% represents the current metacharacter.
Discussion

TheLEN macro returns the length of its balanced text argument in hexadecimal.
The expanded argument may have from 0 to 255 characters.

Examples

These examples illustrate four callss®N commented with results.

%LEN(ABCDEFGHIJKLMNOPQRSTUVWXYZ)
%' 1AH'
%LEN(A,B,C) %' 05H (commas are counted)'
%LEN() %' O0H'
%*DEFINE(CHEESE) (MOUSE)
%*DEFINE(DOG) (CAT)
%LEN(%DOG %CHEESE)
%' 09H (space between expanded
%' %1%DOG %1%CHEESE counted)'

ASM386 Assembly Language Reference Chapter 8 547

SUBSTR Macro

Syntax
%SUBSTR (balanced-text , exprl , expr2)
Where:
% represents the current metacharacter.
exprl is a valid expression; its value is an index to the initial character of the
substring.
expr2 is a valid expression; its value is a count of the number of characters
to be included in the substring.
Discussion

SUBSTRreturns a substring of its balanced text argumerprl specifies the
starting character of the substring angr2 specifies the number of characters to
be included in the substring.

SUBSTRoperates as follows:

e If exprl is O or it is greater than the length of the argument st8ug8STR
returns the null string.

e If expr2 is 0,SUBSTRreturns the null string.
* If expr2 is greater than the remaining length of the string, all characters from
the first character of the substring to the end of the string are included.
Examples
These examples illustrate four callsSIOBSTR commented with results.

%SUBSTR(ABCDEFG,5,1) %' E'
%SUBSTR(ABCDEFG,5,100) %' EFG'
%SUBSTR(123(56)890,4,4) %' (56)'
%SUBSTR(ABCDEFG,8,1) %' null
%SUBSTR(ABCDEFG,3,0) %' null

548 Chapter 8 Textmacros

MATCH Macro

Syntax
%MATCH ([namel]l delim name2[delim nameN...[delim])(balanced-text)
Where:
% represents the current metacharacter.
names are valid identifiers.
delims are delimiters; the initial character of each delim may not be a valid
identifier character.
Discussion

TheMATCHmacro returns the null string. As a side effstTCHadds callable
macro identifiers to the macro symbol table. Each newly defined macro has a
value that is either a substring of the balanced text argument or the null string.

When it encounters a call WATCHthe macro processor discards logical spaces
between the left parenthesis and the initial non-blank character of the balanced text
argument. Then, it searches the balanced text for the leftmost delimitam ot

other argument.

If this delimiter is found, the macro processor assigns the characters to the left of
delim to namel or it discards these charactersdinel is omitted. The macro
processor continues searching the balanced text argument for the next-specified
delimiter and assigns the substring between the precediing and thisdelim to
name2, and so forth.

Whenever a specified delimiter cannot be matched, the macro processor assigns the
remaining balanced text tmmeg(N- 1). It assigns the null string to any remaining
names.

Example

This example illustrates calls MATCHaNdWHILE

%MATCH(NEXT,LIST) (10H,20H,30H)
MOV ESI, VAR_PTR
%WHILE(%LEN(%NEXT)NE 0) (
MOV EBX, %NEXT

MOV EAX, [EBX+ESI]

ADD EAX, 22H

MOV [EBX+ESI], EAX
%MATCH(NEXT,LIST) (%LIST)

)

ASM386 Assembly Language Reference Chapter 8 549

After the call toMATCHthe%WHILEexpands as follows:

MOV EBX,10H : 1st iteration of WHILE
MOV EAX,[EBX+ESI]

ADD EAX,22H

MOV [EBX+ESI],EAX

MOV EBX,20H : 2nd iteration of WHILE
MOV EAX,[EBX,+ESI]

ADD EAX,22H

MOV [EBX+ESI],EAX

MOV EBX,30H : 3rd iteration of WHILE
MOV EAX,[EBX+ESI]

ADD EAX,22H

MOV [EBX+ESI],EAX

Console I/0O Macros

Syntax

%IN

%OUT (balanced-text)
%ClI

%CO (char)

Where:

% represents the current metacharacter.

Discussion

550

ThelN, OUT CI, andCOmacros perform console input and outpiit. andOUTare
line-oriented macrosCl andCOare character-oriented macros.

IN sends the characters as a prompt to the console and returns the next line
typed at the console, including the line termina®@uUTsends a string to the

console; the return value 0lUTis the null string.

Cl returns a single character typed at the conshlereither prompts for input nor
echoes the character typedOsends a single character to the console; the return
value ofCOis the null string. If theeCGargument has more than one character,

only the first character is sent.

Chapter 8

Textmacros

Examples
1. This example illustrates calls ité¢ andOUT

%OUT(HOW MANY PROCESSORS IN SYSTEM?)
%SET(PROC_COUNT, %IN)

%OUT (WHAT'S THIS PROCESSOR'S ADDRESS?)
ADDRESS EQU %IN

%OUT (WHAT'S THE BAUD RATE?)

%SET(BAUD, %IN)

These macro calls return the following results to the console:

HOW MANY PROCESSORS IN SYSTEM?>»esponse
WHAT'S THIS PROCESSOR'S ADDRESS?>> response
WHAT'S THE BAUD RATE>> response

2. This example defines the madtfOMBERS a string of three characters typed at
the console and echoes the characters as they are typed.

%DEFINE(NUMBER) ()
%REPEAT(3) (%DEFINE(A) (%CI) %CO(%A)
%DEFINE(NUMBER) (%NUMBER%A))

ASM386 Assembly Language Reference Chapter 8 551

Scanning Modes, Delimiters, and Macro
Expansions

This section explains scanning modes, delimiters, and macro expansions in greater
detail than the Overview section.

Normal and Literal Scanning Modes

552

In normal mode, the macro processor scans text for the metacharacter. When it
finds one, it begins expanding the macro call. If it encounters a macro definition
containing nested calls, the macro processor expands them in the process of
defining the new macro.

In the definition of a macro body, the metacharacter precedes each reference to a
formal parameter and/@OCALsymbol. In normal mode, the macro processor
attempts to evaluate such references as parameterless macro calls.

When the literal character)(is placed in a call tBEFINE, the macro processor

shifts to literal scanning mode. As it scans%t®EFINE arguments, the macro
processor always expands Escape and Comment calls, whatever the current
scanning mode. It expands Bracket calls that are not nested in other Bracket calls.
The macro processor also expands nested macro calls that are arguments unless
they are literalized with Escape or Bracket.

Whatever the scanning mode for a calb&FINE, the macro processor inserts the
null string into the source file that it passes on to the assembler. The assembler
generates a listing file (by default) and merges in the macro processor's
intermediate listing file if appropriate controls are specified.

See also: Listing fileASM386 Macro Assembler Operating Instructions

The following examples illustrate the differences between how the macro processotr
handles macro definitions and calls in literal and normal scanning modes.

Chapter 8 Textmacros

Compare the definitions of AB and CD:

%SET (CARP,1) ; null string into source
%*DEFINE(AB) (%EVAL(%CARP)) ; literal mode scan
%DEFINE(CD) (%EVAL(%CARP)) ; normal mode scan:

; %1%CD:= 01H

; in macro symbol table,

; null string into source

The macro processor does not evalGsE/A(%CARPIn the body of AB, but it
expands the macro body of CD completely because the litgrahéracter is not
used in the definition. If the value 6ARPchanges, it has no effect on subsequent
calls to CD. However, a new value foARPdoes affect subsequent calls to AB.
For example:

%SET(CARP,2) ; null string into source
%AB ; returns 02H
%CD ; returns 01H (unless CD was redefined)

Macros may be called with the literal character. For example:

%*CD ;returns 01H
%*AB ; returns %EVAL(%CARP)

The literalized call to AB returns the definition of its macro body. Both literal and
normal mode calls to CD return 01H because the macro processor expanded the
original CD definition fully in normal scanning mode.

Macro Delimiters

Only the delimiters used in the definition of a macro can be used in a call to that
macro. When the macro processor scans a definition's formal parameter list, the
delimiters are stored in the macro symbol table as part of that macro's call pattern.
When the macro processor scans the call, it searches for these delimiters to isolate
each argument string for evaluation.

There are three kinds of macro delimiters: literal delimiters, implied blank
delimiters, and identifier (or ID) delimiters.
Literal Delimiters

A literal delimiter may be any single character except the metacharacter. However,
literal delimiters defined with more than one character, or with an unbalanced
parenthesis, a logical space, the at chara@eof an identifier character must be
literalized every time they are used.

ASM386 Assembly Language Reference Chapter 8 553

Literalize the delimiter string with the Bracket or Escape macro if the literal
delimiter includes any of the following:

* More than one character

e Anunbalanced left or right parenthesis

e A..Z a..z,0..9, underbar (), or question mark (?)
* An at character (@)

e A space, tab, carriage return, or linefeed

Following are some examples of definitions and calls using a variety of literal

delimiters:

Before Macro Expansion After Macro Expansion
%*DEFINE(MAC(A,B)) (%A %B) null string into source
%MAC(4,5) 45
%*DEFINE(MOV[A%(@)B]) (MOV[%A],%B) null string into source
%MOV[BX @ DI] MOV[BX],DI
%*DEFINE(ADD(A%(AND)B)) (ADD %A,%B) null string into source
%ADD(AX AND 5) ADD AX,5

%*DEFINE(ADD P1 %(TO) P2 %(AND) P3)
(' null string into source
MOV EAX,%P1
MOV EBX,EAX
ADD EAX,%P2
MOV %P2,EAX
MOV EAX,EBX
ADD EAX,%P3
MOV %P3,EAX
)
%ADD COUNT TO INCR AND FACTOR MOV EAX,COUNT
MOV EBX,EAX
ADD EAX,INCR
MOV INCR,EAX
MOV EAX,EBX
ADD EAX,FACTOR
MOV FACTOR, EAX

554 Chapter 8 Textmacros

Implied Blank Delimiters

An implied blank delimiter is one or more spaces, tabs, or end lines (a carriage
return/linefeed pair or just a linefeed) specified between parameters. To define a
macro only with implied blank delimiters, place one or more spaces, tabs, or end
lines preceding the formal parameter list and between each parameter.

When calling such a macro, match each delimiter with a series of spaces, tabs, or
end lines. Each argument to the call begins with the first nonblank character and
ends at the next logical space.

Consider the following macro definition:

%*DEFINE (SENTENCE SUBJ VERB OBJ) (
THE %SUBJ %VERB %O0BJ.

)

All of the following calls are valid for this macro:

Before Macro Expansion After Macro Expansion
%SENTENCE TIME IS RIPE THE TIME IS RIPE.
%SENTENCE CATS

EAT

MICE THE CATS EAT MICE.
%SENTENCE

PEOPLE
LIKE CATS THE PEOPLE LIKE CATS.

Implied blank delimiters may be used as enclosing and/or separating delimiters,
mixed with other kinds of delimiters. The terminating blank delimiter may be
omitted in the definition of a formal parameter list, but it may not be omitted in the
corresponding argument list when the macro is called.

Identifier Delimiters

Identifier (or ID) delimiters are macro identifiers designated as separating
delimiters. To define an ID delimiter, specify the at character (@) followed
immediately by the delimiter character(s). Separate each ID delimiter from the
formal parameter identifiers with logical spaces. When calling a macro with 1D
delimiters, substitute an implied blank delimiter for the @ and specify only the
identifier characters of each ID delimiter. Separate each ID delimiter from the
arguments with logical spaces.

ASM386 Assembly Language Reference Chapter 8 555

Consider the following macro definition:

%*DEFINE(ADD P1 @TO P2 @AND P3) (
MOV EAX, %P1
MOV EBX, EAX
ADD EAX, %P2
MOV %P2, EAX
MOV EAX, EBX
ADD EAX, %P3
MOV %P3, EAX

)
Compare the following calls:

%ADD ATOM TO MOLECULE AND CRYSTAL
%ADD ATOM TO MOLECULE AND CRYSTAL

Both calls are valid. Each returns the following code when expanded

MOV EAX, ATOM

MOV EBX, EAX

ADD EAX, MOLECULE
MOV MOLECULE, EAX
MOV EAX, EBX

ADD EAX, CRYSTAL
MOV CRYSTAL, EAX

but the second call adds extra logical spaces between some operands.

Algorithm for Evaluating Macro Calls

556

The macro processor uses the following steps to evaluate the source file:
1. Scan the source input stream until the metacharacter is found.
2. Isolate the call pattern (see the following Note).

3. Expand each argument, if any, from left to right before expanding the next; go
back to Step 1 if an argument has a nested macro call.

4. Substitute the expanded arguments for their corresponding formal parameters
in the macro body.

5. Initiate Step 1 on the macro body if the literal character is not used.

6. Enter any newly defined macro identifiers and call pattern(s) into the macro
processor symbol table and/or update already defined symbols.

7. Insert the result into the output stream and go to Step 1.

Chapter 8 Textmacros

|:| Note

When isolating the macro name and the argument(s) in a call
pattern, the macro processor is actually scanning input for the
next specified delimiter. The text between delimiters is
considered to be the macro name or an argument.

The terms input stream and output stream are used because the return value of one
macro can be an argument of another macro. On the first iteration, the input stream
is the source file. On the final iteration, the output stream is passed as source to the
assembler.

Consider the following macro definitions:

%SET(BASS,3)

%*DEFINE(CARP) (%SET(BASS,%BASS - 1)%BASS)
%*DEFINE(PIKE(A,B)) (

DB %A,%B,%A,%B,%A,%B

)

The following macro calls illustrate how the macro processor evaluates nested calls
that are arguments and expands them in their caller's macro body.

Before Macro Expansion After Macro Expansion
%PIKE(%BASS,%CARP) DB 03H,02H,03H,03H,02H
%SET(BASS,3)

%PIKE(%CARP,%BASS) DB 02H,02H,02H,02H,02H,02H
%SET(BASS,3)

%PIKE(%*CARP,%BASS) DB 02H,03H,01H,03H,00H,03H

The first call toPIKE has%BASSas the first argument asdCARRS the second.
The macro processor expands the cathBASSefore it evaluates the second
argument. After the call t®wPIKE has been completely expandBdSShas the
value 02H because its value waSE& during the expansion @CARP

The second call tBIKE reverses the order of the arguments. The macro processor
expand9oCARHirst; thus, it decrementsBASSefore it evaluate®BASSas the
second argument BPIKE Both%PIKEarguments have the same value when the
macro processor substitutes them into the macro body.

The third call toPIKE has a literal call%*CARBP as its first argument; the result of
the literal mode call is the defined macro bodfaRP: %SETBASS %BASS-
1)%BASS The macro processor substitutes this result for &s¢h the macro
body of PIKE.

ASM386 Assembly Language Reference Chapter 8 557

Then, the macro processor evaluates the second argunm@KEtoa call to%BASS
in normal scanning modesBASSs fully expanded to 03H. The macro processor
substitutes this result for ea#$Bin PIKE's macro body.

As the macro processor expamigE's macro body, it evaluateésSET(BASS
%BASS 1)%BASS three times, once for each referenceotin the definition of
PIKE.

558 Chapter 8 Textmacros

Codemacros

This chapter describes the assembler codemacro directives and the function
PROCLEN It has three major sections:

e Overview
Explains what codemacros are, briefly describes their definition and calls, and
includes reference illustrations of the processor instruction encoding formats.

* Codemacro Reference
Explains the codemacro directives, the dot record field shift construct, and the
functionPROCLENN detail.

e Matching Codemacro Calls to Their Definitions
Explains how the assembler determines that a codemacro call matches a
definition and/or matches a particular definition when more than one
codemacro is defined with the same name.

Overview

Codemacros are defined bodies of code that act like assembler instructions and
instruction prefixes when they are called. A codemacro is called when its name is
used as an instruction.

ASM386 Assembly Language Reference Chapter 9 559

Codemacro Definitions and Calls

560

The CODEMACRdirective defines a codemacro. A codemacro definition tells the
assembler how to generate object code for the codemacro when it is called. The
codemacro name, followed by appropriate operands (if any) is the codemacro call.
Thus, codemacro definitions either redefine assembler instructions or create new
instructions. However, you cannot invent new instructions that are not supported
by the processor or by the processor and floating-point coprocessor.

Most directives and values within a codemacro definition are fixed, but a definition
may specify formal parameters as placeholders for operands to be supplied at the
codemacro call. Like many assembler instructions, a codemacro may be called
with various kinds of operands. For example, a codemacro might be called first
with an immediate source operand and an implicit register as the destination. The
same codemacro might be called next with a register source operand and an
explicit memory destination.

Such a codemacro must be defined more than once with the same name but with
different kinds of formal parameters for each definition. Multiple definitions of the
same codemacro name are linked by the assembler. When such a codemacro is
called, the assembler checks each definition for a match of operands and generate:
appropriate object code when it finds a match.

The body of a codemacro is located between the first and last lines of its definition.
For a simple codemacro definition without formal parameters, the body tells the
assembler what opcode to generate when the codemacro is called. For more
complex codemacros, the body tells the assembler how to construct and fill the
processor instruction format fields

See also: Parameter-operand matching, in this chapter
Processor instruction format, in this chapter

Chapter 9 Codemacros

A codemacro body may contain the following directives:

PREFIX66

PREFIX67

SEGFIX

NOSEGFIX

WARNING

DB, DW, DD, and DP, the data initialization directives
The record initialization directive

RELB RELWandRELD the relative displacement directives
MODRM

PREFIX66, PREFIX67, SEGFIX, NOSEGFIX WARNINGRELB RELWRELD and
MODRNMTre valid assembler statements only within codemacro bodies. The DB,
DW, DD, DP, and record initialization directives accept only codemacro
expression arguments within codemacro bodies.

See also: DB, DW, DD, and DP as data storage allocation directives, Chapter 4

The next section of this chapter includes a detailed reference for each directive. It
also explains using the dot record field shift construct and the special expression
functionPROCLENvithin codemacro definitions.

ASM386 Assembly Language Reference Chapter 9 561

Processor Instruction Format

562

Codemacro definitions tell the assembler how to generate object code when the
codemacro is called. The codemacro directives control the generation of processol
instruction encodings.

Figure 9-1 illustrates the general encoding format for processor instructions.

Instruction Address-size Operand-size Segment
Prefix Prefix Prefix Override
Oor1l Oorl Oorl Oorl

Number of Bytes
Opcode ModRM SIB Displacement Immediate
lor2 Oorl Oorl 0,1,2o0r4 0,1,2o0r4
Number of Bytes

W-3436

Figure 9-1. Instruction Encoding Format

Certain codemacro directives control the encoding of particular fields:

CODEMACRG@etermines whether a call generateNS8TRUCTIONPREFIX byte

PREFIX67

PREFIX66

SEGFIX

DBor DW
MODRM

or a full instruction encoding, possibly with operands, for the named
codemacro.

tells the assembler to generateADRESSSIZE PREFIX byte, if
necessary.

tells the assembler to generateGRERANSIZE PREFIX byte, if
necessary.

tells the assembler to generateEBGMENTDVERRIDEprefix byte, if
necessary.

specifies the value for tt@PCODbyte(s).

tells the assembler how to construct any necesdgadiRMandSIB
bytes (see Figure 9-2).

Chapter 9 Codemacros

The data initialization, record initialization, dot-shift constreé&®@OCLENand

relative displacement directives are used in conjunction with formal parameters to
tell the assembler how to generate instruction bytes. COEMACRdirective

may specify a formal parameter whose matching operand requires one or more
displacement bytes; it also may specify a formal parameter whose matching
operand is an immediate value.

Figure 9-2 illustrates the encoding formats of MwelRMandSIB bytes.

ModRM Byte
7 6 5 4 3 2 1 0
Mod Reg/Opcode R/M

SIB (Scale Index Base) Byte

6 5 4 3 2 1 0

SF Index Base

W-3423

Figure 9-2. ModRM and SIB Byte Formats

TheModRMoyte specifies the addressing form for operand(s). Certain encodings of
the ModRMbyte indicate that 8IB (Scale Index Base) byte follows thedRMoyte
to fully specify the addressing form. To summarizeModRMandSIB fields:

MOD

REG

R/M

SF

INDEX

combines with the R/M field to form 32 possible values representing 8
general registers and 24 indexing modes.

specifies either a register number or 3 more biBREODE
information; the firsOPCODMbyte (see Figure 9-1) determines the
meaning of th&EGfield.

specifies an operand location either as a register number or as a
memory address (in combination with terfield).

specifies a scale factor (1, 2, 4, or 8) for an operand with a scaled
indexed address.

specifies the register number of the index register for an operand with
a based indexed or scaled indexed address.

ASM386 Assembly Language Reference Chapter 9 563

BASE specifies the register number of the base register for an operand with a
based, based indexed, or based indexed and scaled address.

The MODRMirective tells the assembler how to genekédedRMandSIB bytes.

See also: Chapter 5 for more information about indirect memory addressing,
including the processor rules about base and index registers for 32-
and 16-bit addressing
Chapter 6 for tables ofiodRMandSIB values for the 16- and 32-bit
addressing forms.

564 Chapter 9 Codemacros

Codemacro Reference

Table 9-1 summarizes the syntax for assembler codemacro directives, the record
field shift construct, and theROCLENunction.

Table 9-1. Codemacro Syntax Summary

CODEMACRO CODEMACRO cmac-name [formal] [, formal]...
cmac-body
ENDM
formal fparam:specifie]{modifier] [(range) |
or CODEMACRO cmac-name PREFX
cmac-body
ENDM
PREFIX67 PREFIX67 fparam
PREFIX66 PREFIX66 [PTR,] fparam
SEGFIX SEGFIX fparam
NOSEGFIX NOSEGFIX Sreg, fparam
WARNING WARNING
MODRM MODRM fp/num, fparam
DB DB cmac-expr
DW DW cmac-expr
DD DD cmac-expr
DP DP cmac-expr
Record rec-name [<cmac-expr [,...]>]
Dot-shift fparam.rec-field
PROCLEN PROCLEN
RELB RELB fparam
RELW RELW fparam
RELD RELD fparam

The following subsections are a detailed reference for each item in Table 9-1.

ASM386 Assembly Language Reference Chapter 9 565

CODEMACRO Directive

Syntax

CODEMACR®@mac-name [formal 1[, formal]...
cmac-body
ENDM

or

CODEMACR®@mac-name PREFX
cmac-body
ENDM

Where:

cmac-name is a valid identifier or an instruction mnemonic. The same name may
be specified for more than o@®DEMACRSatement in the module;
otherwise, it must be unique within the module.

formal is a formal parameter, specified as follows:
fparam : specifier [modifier]1[(range)]

cmac-body contains at least one codemacro directi@amac-body may not
contain a nestedODEMACRdirective or a codemacro call.

See also: Identifiers, Chapter 1
instruction mnemonic keywords, Appendix C

Discussion

566

The CODEMACRStatement defines a codemacro. A codemacro definition begins
with a line specifying its name and an optional list of up to 15 formal parameters.
ENDMmMust terminate the definition. A codemacro definition may cause the
generation of up to 255 bytes per codemacro call.

CODEMACRSstatements may be specified anywhere afteNgi@Estatement in an
assembler source module. However, it is an error to call a codemacro as a forward
reference, to call a codemacro defined in another module, or to call a codemacro
within cmac-body .

A codemacro may have the same name as an assembler instruction or prefix. If a
codemacro has the same name and same kinds of operands as an instruction, the
assembler processes the codemacro instead of the instruction when it encounters
that name.

Chapter 9 Codemacros

If a codemacro is defined with the same name as an instruction but with different
kinds of operands, the assembler processes the codemacro only if the given
operands match those of the codemacro definition; otherwise, it processes the
instruction of that name.

Codemacros with formal parameters must use parameter names that follow the
same rules as other identifiers. Each formal parameter must be followed by a
specifier (A, C,D, E, F, M, R, S, T, or X). A specifier indicates the kind of
operand that matches the corresponding formal parameter when the codemacro is
called. An optionalmodifier (BIT, B, W, D, DN, P, Q, or T) and/or range

specifier impose(s) further requirements on the codemacro operand.

The reserved worBREFXindicates that the codemacro will be used as an
instruction prefix, much asOCKandREPare used. Codemacros defined with
PREFXmay not have formal parameters.

Examples
1. This example defines a new mnemonic for the proc&sgtir instruction.

CODEMACRO SINE
DW OD9FEH ; opcode
ENDM SINE

2. The following examples parallel thre®Dinstructions. Each has two formal
parameterdpSTandSRC Each matches different kinds of destination and
source operands, as indicated by the comments.

CODEMACRO ADD DST:AB, SRC:DB

DB 04H :DST = AL
DB SRC ; SRC = immediate byte value
ENDM ADD

CODEMACRO ADD DST:AW, SRC:DW

DB 0O5H : DST = AX
DW SRC : SRC = immediate word value
ENDM ADD

CODEMACRO ADD DST:AD, SRC:DD

DB O5H ; DST = EAX
DD SRC ; SRC = immediate dword value
ENDM ADD

ASM386 Assembly Language Reference Chapter 9 567

3. This example duplicates the function of tl@CKinstruction prefix.

CODEMACRO LOCK PREFX
DB 11110000B
ENDM

Formal Parameters and Specifiers

Syntax
fparam : specifier [modifier]1[(range)]
Where:
foaram is a valid identifierjfparam must be unique within the codemacro

definition.
specifier is one of the letters A, C, D, E, F, M, R, S, T, or X.

See also: Valid identifiers, Chapter 1

Discussion

568

Every formal parameter must have a specifier letter that indicates which kind of
codemacro operand matches the parameter:

Formal Specifier Matching Operand(s)

Accumulator: EAX, AX, or AL register

Code: label expression only

Data: integer used as an immediate operand

Effective Address: a general register, a bracketed register

expression, or a variable with or without indexing

Floating-point Stack Element: ST or $)Wherei is a

digit from O to 7

M Memory Address: either a bracketed register expression or
a variable with or without indexing

R Register: general register only -- not an address

expression, a bracketed register, or a segment, debug, or

control register

Sreg: CS, DS, ES, FS, GS, or SS segment register

Floating-point Stack Top: ST or ST(0)

Direct Memory Reference: a simple variable name with no

index or base register

mo o>

Tn

X = w0

See also: Operand-specifier matching, in this chapter

Chapter 9 Codemacros

Formal Parameter Modifiers

Syntax
fparam : specifier [modifier]1[(range)]
Where:

modifier is BIT, B, W, D, DN, P, Q, or T; a space between a specifier and
modifier is an error.

Discussion

The optional modifier imposes another requirement on a codemacro operand,

relating either to the size of data being manipulated or to the amount of code
generated for the operand.

The meaning of the modifier depends on the operand, as follows:

« Ifthe operand is an immediate (D specifier), the modifier depends on the range
of acceptable values:

Modifier Value in Range
B -255..255

w -65535..65535
D -(281-1)..(2- 1)

Immediate operands must have values that fit in one of these ranges; the
specifier-modifier pairs DBIT, DP, DQ, and DT are invalid.

« If the operand is a label (C specifier), the modifier depends on the type and
sometimes on the distance jumpedJSEattribute:

Modifier Label of Type

B 8-bit relative displacement on a NEAR label
w NEAR labels in USE16 segments

DN NEAR labels in USE32 segments

D FAR labels in USE16 segments

P FAR labels in USE32 segments

ASM386 Assembly Language Reference Chapter 9 569

Examples
1.

570

If the operand is a variable, the modifier depends on the type:

Modifier Variable of Type
BIT BIT

BYTE

WORD
DWORD
PWORD
QWORD
TBYTE

—|,O'UU§UJ

This codemacro accepts an immediate operand whose value must fit in a byte.
It also redefines the mnemonic for one of BuSHinstructions.

CODEMACRO PUSHBYTE SRC:DB(-128,127)
DB 6AH

DB SRC

ENDM

The following codemacros accept only operands that are assembler procedure:
of typeNEAR The specifier-modifier pairs CW and CDN are matched by an
operand that is BROdabel in the same segment. TRELWandRELD

directives cause a displacement of 16-hitSK16 segment) and 32-bits
(USE32segment), respectively.

CODEMACRO CALL ADDR:CW
DB OE8H

RELW ADDR

ENDM

CODEMACRO CALL ADDR:CDN
DB OE8H

RELD ADDR

ENDM

The following codemacro accepts an operand that is the address of a byte in
memory.

CODEMACRO XLAT TABLE:MB
PREFIX67 TABLE

SEGFIX TABLE

DB 0D7H

ENDM

Chapter 9 Codemacros

Formal Parameter Range Specifiers

Syntax
fparam : specifier [modifier]1[(range)]
Where:
specifier must be A, D, Ror S.
range is either a single expression enclosed in parentheses or two
expressions separated by a comma and enclosed in parentheses.
Discussion

The optional range specifier imposes another requirement on a codemacro operand:
its value must match the specified expression or its value must lie within the
inclusive range of both expressions.

A range expression must evaluate to a register or to a signed integer. Range
specifiers that are register names have the following binary values:

Value For Registers
000 EAX, AX, AL, ES
001 ECX, CX, CL, CS
010 EDX, DX, DL, SS
011 EBX, BX, BL, DS
100 ESP, SP, AH, FS
101 EBP, BP, CH, GS
110 ESI, SI, DH

111 EDI, DI, BH

A range expression may not include a symbolic address.

Example

The following is the first line of a sample codemadkb, that uses a range
specifier. For a call to this codemacro, only DX can be used as the port from which
to input awORD

CODEMACRO IN DST:AW,PORT:RW(DX)

ASM386 Assembly Language Reference Chapter 9 571

PREFIX67 Directive

Syntax

PREFIX67 fparam

Where:

foaram is the name of a formal parameter with a C, E, M, or X specifier.
Discussion

PREFIX67 generates an address size prefix byte (67H) for an operand whose
addressing mode is different from th&Eattribute of the current segment.

Example

This codemacro accepts an operand that is the address of a byte in memory. For &
assembler codemacro call, the assembler always generates a 32- or 16-bit address
PREFIX67 tells the assembler to generate an address size prefix byte (see Figure
9-1) if the codemacro is called from a code segment with a diffeisBattribute

than the operand's defining segment.

CODEMACRO XLAT TABLE:MB
PREFIX67 TABLE

SEGFIX TABLE

DB 0D7H

ENDM

PREFIX66 Directive

Syntax
PREFIX66 [PTR,] fparam
Where:
foaram is the name of a formal parameter with an A, C, E, M, R, or X

specifier and a P (C specifier only), D, or W modifier.

572 Chapter 9 Codemacros

Discussion

ThePREFIX66 directive instructs the assembler to generate an operand size prefix

byte (66H), depending on the operand's ASM386 type and3Battribute USE32

or USE16) of the current segmenkTRtells the assembler to comp@wORENd

PWORDperands against tluSEattribute of the current segment.

If the optionalPTRis omitted, the assembler generates the 66H prefix under the

following conditions:
e The operand is of typ&/OR@RNd the current segmentUSE32
e The operand is of typpWORRNd the segment BSE16.

If PTRis specified, the assembler generates the 66H prefix under the following

conditions:
e The operand is of typeWORRNd the current segmentUSE32
e The operand is of typewOR@RNd the segment BSE16.

Examples

The second and third codemacro definitions tell the assembler to generate an

operand size prefix byte (see Figure 9-1) if the operand matcimaSrRwvas
defined in a segment with a differangEattribute than the current segment.

CODEMACRO CMDIV DVSR:EB
PREFIX67 DVSR

SEGFIX DVSR

DB OF6H

MODRM 6, DVSR

ENDM

CODEMACRO CMDIV DVSR:EW
PREFIX67 DVSR

PREFIX66 DVSR

SEGFIX DVSR

DB OF7H

MODRM 6, DVSR

ENDM

ASM386 Assembly Language Reference Chapter 9

573

CODEMACRO CMDIV DVSR:ED
PREFIX67 DVSR

PREFIX66 DVSR

SEGFIX DVSR

DB OF7H

MODRM 6, DVSR

ENDM

The preceding examples are the functional equivalent dfithénstructions. The
CMDIVcodemacro definitions must be coded as shown (small-to-large operand
ordering) so that the assembler matches a calMbIvVwith the appropriate
definition.

See also: Call-definition matching, in this chapter

SEGFIX Directive

Syntax
SEGFIX fparam
Where:
foaram is the name of a formal parameter with an E, M, or X specifier
(memory address).
Discussion

574

The SEGFIX directive tells the assembler to determine whether a segment override
prefix byte is needed to access a given memory location.

See also: Segment override prefix codes, Chapter 6

In the absence of a segment override prefix byte, the processor hardware uses eith
the DS or SS register, depending on which base register, if any, was used. (E)BP ¢
(E)SP implies SS; every other 32- or 16-bit general register implies DS.

Chapter 9 Codemacros

The operand should be a memory address expression. The assembler examines the
operand's segment attribute as follows:

« For an operand with a symbolic reference, the assembler determines whether
its defining segment has beaBSUMEdnto the hardware-implied segment
register. If so, an override byte is unnecessary and none is generated. If not,
the assembler checks tA8SUME of other segment registers looking for the
name of the symbol's defining segment. If it is found, the assembler generates
the override byte for that segment register; otherwise, the assembler reports an
error.

See also: ASSUMHlirective, Chapter 2

* For an operand without a symbolic reference, the assembler checks whether
the operand has an explicit segment override. If the override is omitted or is
the hardware-implied segment register, the assembler generates no segment
override byte. Otherwise, it generates the specified register's override.

Example

The following codemacro tells the assembler to generate a segment override prefix
byte if the operand's defining segment has #&3$UMH into a non-default

segment register or is an anonymous reference with an explicit, non-default
override.

CODEMACRO CMDIV DVSR:EB
PREFIX67 DVSR

SEGFIX DVSR

DB OF6H

MODRM 6, DVSR

ENDM

NOSEGFIX Directive

Syntax
NOSEGFIX Sreg, fparam
Where:
Sreg is one of the segment registers ES, FS, GS, CS, SS, or DS.
foaram is the name of a formal parameter with an E, M, or X specifier

(memory address).

ASM386 Assembly Language Reference Chapter 9 575

Discussion

The NOSEGFIXdirective tells the assembler to check that an operand's segment
attribute matches the specifiSdeg . Such an operand must either:

« Have an explicit segment override that matcbey

* Or, have the selector for its defining segm&BSUMH into Sreg prior to the
codemacro call.

See also: ASSUMHlirective, Chapter 2

The assembler checks that one of these conditions is met but it generates no objec
code forNOSEGFIX If neither condition is met, the assembler reports an error.

For example, a codemacro for instructions suchMBSshould specifNOSEGFIX
ES,fparam with an E, M, or X specifier for the destinatifpmram . The
destination operand of the procesSmMPSINS, MOVSSCAS andSTOS
instructions must be accessed via the ES segment register.

WARNING Directive

Syntax

WARNING

Discussion

TheWARNINGIirective tells the assembler to flag calls to the codemacro. The
assembler issues a warning message at the end of every segment that includes a
processor privileged instruction or a call to a codemacro containingAR&ING
directive.

The assembler generates no object code fontkRNINGIirective.

Example

576

This codemacro duplicates tBeTS instruction.

CODEMACRO CLTS
WARNING

DW OF06H

ENDM

Chapter 9 Codemacros

MODRM Directive

Syntax
MODRMp/num , fparam
Where:
fo/num is the name of a formal parameter or a number that represents the
value that goes into ttREGfield of theModRMbyte (see Figure 9-2).
foaram is the name of another formal parameter with an A, C, E, M, R, S, or
X specifier.
Discussion

The MODRNMirective tells the assembler to createNtwelRMbyte and optionatiB
byte, which follow theDPCODbyte(s) in many processor instructions.

See also: SIB andOPCODEinstruction encoding bytes, in this chapter

The assembler checks whether the operand is a register, a variable, or an indexed
variable and constructs tiMODandR/M fields that correctly represent the operand,
together with any displacement that is part of the effective address.

If fo/num is a number, that value is used in EhelRMREGfield every time the
codemacro is called. The number is a continuation of the opcode identifying which
instruction the hardware is to execute fofhum is a formal parameter, the
corresponding operand (usually a register) is used each time.

Examples

1. In the following codemacro, the specifier M indicates that this codemacro
matches only when a memory operand is supplied with the call.

CODEMACRO FLDENV MEMOP:M
SEGFIX MEMOP

DB 11011001B

MODRM 100B,MEMOP

ENDM

ASM386 Assembly Language Reference Chapter 9 577

2. The following codemacro specifies that it adds a memory word into a register.
Its MODRMirective constructs lslodRMoyte (see Figure 9-2) from the
destination register operandEGfield) and a source register or memory
operand.

CODEMACRO ADD DST:RW,SRC:EW
PREFIX67 SRC

PREFIX66 SRC

SEGFIX SRC

DB 3

MODRM DST,SRC

ENDM

The following three calls taDDhave DX encoded as 010B in bits 5REG
field), aMODof 10B in bits 7-6, and an R/M of 000B in thledRMbyte. The
comments show the generated object code:

ADD DX,[BX] [S]] ; 00000011 10010000B
ADD DX,MEMWORDI[BX] [SI] ;00000011 10010000B followed
; by offset of MEMWORD (low-order byte first)

ADD DX,[DI] ; 00000011 10010101B

See also: Dot Operator example, in this chapter, for another codemacro with a
MODRMirective

Data Initialization Directives

Syntax

DB cmac-expr
DW cmac-expr
DD cmac-expr

or
DP cmac-expr
Where:

cmac-expr is an expression (without forward references) that evaluates to a
number, a formal parameter name, or a shifted formal parameter with
the DB, DW, and DD directives. For the DP directiw@ac-expr is
a formal parameter with a C specifier (label expression only).

578 Chapter 9 Codemacros

Discussion

The codemacro data initialization directives are similar to the DB, DW, DD, and
DP storage allocation directives, but they requinac-expr arguments.

For the DB, DW, and DD directives, a number indicates that the same value is to
be assembled every time the codemacro is called. A formal parameter indicates
that the corresponding operand is to be assembled. A dot record field shift
construct indicates that the operand is to be shifted and then plugged in.

For the DP directive, the formal parameter indicatesrilabel in aUSE32
segment.

TheDBIT, DQ andDT directives are not allowed inside codemacro definitions.

Record Initialization Directive

Syntax
rec-name [< cmac-expr [,...]>]
Where:
rec-name is the name of a previously defined record template.

cmac-expr is a number, a formal parameter, a shifted formal parameter or null.
A cmac-expr list is optional only ifrec-name was defined with
default initial values for its fields; a null list element is valid only if
the corresponding field abc-name was initialized.

See also: RECORMirective, Chapter 4

Discussion

The record initialization directive controls bit fields smaller than 1 byte in
codemacro definitions. Use the record template name to initialize bit fields in
codemacro definitions; you need not allocate storage for a named variable of the
template type.

If an expression value does not fit in the field, the least significant bits are used and
no error is reported.

ASM386 Assembly Language Reference Chapter 9 579

Using the Dot Operator to Shift Parameters

Syntax

fparam.rec-field
Where:
foaram is the name of a formal parameter whose corresponding operand is a

number.

rec-field is the name of a previously defined record template field.

Discussion

The shifted formal parameter is a special construct allowed as a DB, DW, or DD
operand or as an element of the operand of a record initialization.

The assembler evaluates this expression when the codemacro is called by right-
shifting the operand and using the record field's bit offset from the least significant
bit as a shift count.

Example

580

The dot-shift can be used in a codemacro that duplicatesStbteature of the
instruction set. The opcodes for every floating-point instruction begin wigtsan
ESCopens communication with other devices using the same bus. This enables
execution of commands from an external device both with or without an associated
operand (address operand only). These commands are repres&g€asn

numbers between 0 and 63 inclusive. The external device interprets the number.

R53 RECORD RF1:5,RF2:3

R233 RECORD RF6:2,MID3:3,RF7:3
CODEMACRO ESC INDX:DB(0,63),ADDR:E
SEGFIX ADDR

R53 <11011B,INDX.MID3>

MODRM INDX,ADDR

ENDM

The R53 line in the body of the codemacro generates 8-bits. The high-order 5-bits
are 11011B. The low-order 3-bits are filled with the low-order 3-bits of the
operand that correspondsIMDX after it has been shifted right by the shift count of
MID3 (bit offset of 3 in R233).

The following example calls the codema&®Cwith an operandifIDX) of 39 on a
16-bit addressADDR of MEMWORhose offset is 477H from ES, indexed by DI:

ESC 39, ES:MEMWORDIDI]

Chapter 9 Codemacros

The assembler generates the following 5 bytes of object code for this call:

0010 0110B ; 26H: the ES override in byte 1
1101 1100B ; INDX =39 =0010 0111B
; INDX.MID3 =
; (000)00100B, so R53<11011B,INDX.MID3>
; becomes 11011 100B for [DI],
: MOD = 10B,R/M = 101B
1011 1101B ; ModRM byte with fields:
; MOD = 10B, OPCODE =111B
:RIM =101B
0111 0111B ; offset of MEMWORD
0000 0100B ; in these 2 bytes

The high-order 5-bits dSCs firstOPCODbyte (see Figure 9-1) are always
11011B. The remaining opcode bits are split between the low-order 3-bits of this
OPCODMbyte and bits 5-3 of thidodRMbyte (see Figure 9-2).

PROCLEN Function

Syntax
PROCLEN

Discussion

The PROCLENunction returns O0H if the current procedure is tMEAR and
OFFH if it is typeFAR Code outside dPROC..ENDPblocks is consideredEAR

Example

TheRETcodemacro uséaROCLENoO create the correct machine instructions to
return from a call to AEARor FARprocedure.

R413 RECORD RF:8:4, RF9:1, RF10:3
CODEMACRO RET

R413 <OCH,PROCLEN,3>

ENDM

The field RF8 is set to OCH (1100B), and RF10 is set to 3 (011B). Field RF9,
which becomes bit 3 of the allocated record byte, is 0 if the current procedure (in
whichRETappears) is typNEAR or it is 1 if the procedure is tyf@R PROCLEN
returns all Os or all 1s, but R413 uses only the low-order bit.

ASM386 Assembly Language Reference Chapter 9 581

Relative Displacement Directives

Syntax

RELB fparam
RELW fparam
or

RELD fparam
Where:

foaram is the name of a formal parameter with a C (code) specifier letter.

Discussion

The relative displacement directives instruct the assembler to generate the
displacement between the end of an instruction and a label expression operand as
follows:

RELB 1-byte displacement
RELW 2-byte displacement
RELD 4-byte displacement

The relative displacement directives may occur elsewhere in a codemacro
definition (e.g., a multi-instruction codemacro). However, if a larger formal
parameter is matched with a smaller operand, the assembler generates wasted
bytes. If a smaller formal parameter is matched with a larger operand, the
assembler reports an error.

Examples

582

The following codemacrodMP andJE show the use of relative displacement
directives. These codemacros are direct jumps to labels in the current code
segment.

1. The following codemacro uses tRELDdirective. The specifier for the formal
parameter calls for REARIabel in the current CS segment. The assembler
computes the distance and provides a dword to follow the @E8EODbYyte
(see Figure 9-1).

CODEMACRO JMP PLACE:CDN
DB OE9H

RELD PLACE

ENDM

Chapter 9 Codemacros

If the target is 513 bytes from the EIP value at the end of the codemacro call,
the assembler generates:

11101001 00000001 00000010 00000000 00000000B

The distance to the target label begins at the end &®EhBdword. The first
byte counted is that following the 5 bytes comprising this jump. A match
occurs only if the target label was assembled under the same assumed CS
register as the jump. Object code is generated only if a match occurs.

2. The JE codemacro defines a jump that is executed only if ZF is 1.

CODEMACRO JE PLACE:CW
DW 0F84H

RELW PLACE

ENDM

If the target is 513 bytes from the IP value at the end of the codemacro call and
ZF equals 1, the assembler generates:

00001111 10000100 00000001 00000010B

ASM386 Assembly Language Reference Chapter 9 583

Matching Codemacro Calls to Their Definitions

584

When you call a codemacro, the assembler matches the call to a particular
codemacro definition as follows:

Step 1

The assembler looks for all codemacro definitions with the same name as the call.
If the assembler cannot find matching call-definition names, it reports an error.

Then, the assembler evaluates any operands. For a codemacro call with a forward
referenced operand, the assembler reserves space for the definition that would
require the most instruction bytes.

If an operand is a register expression without an associated type (e.g., [EBX]), or if
an implicit reference to the accumulator is made (ENgDIV, MEMVAR the other
parameters are checked to see if at least one contains an unambiguous modifier

type.

Numbers matching B, W, or D, explicitly specified registers, and all variable types
suffice to distinguish the modifier type. If no such parameter is found, the
assembler reports an error. However, a single, untyped register expression (as in
FSTENV[EBX]) is allowed.

Step 2

The assembler searches the chain of codemacro definitions for a match, beginning
with the last definition and moving backwards. A match occurs when the number
of operands matches the number of formal parameters in a particular definition and
each operand matches the corresponding formal in specifier, modifier (if any), and
range (if any).

Chapter 9 Codemacros

The following is a list of operand-formal matches:

Specifiers EAX, AX and AL match A, E, R.
Labels match C.
Numbers match D.
Nonindexed variables match E, M, X.
Indexed variables and register expressions match E, M.
Registers (except segment registers) match E, R.
Segment registers CS, DS, ES, FS, GS and SS match S.
Floating-point stack elements (ST, ST(0)...ST(7)) match F.
The floating-point stack top (ST,ST(0)) matches T.

Modifiers Modifier-matching is dependent upon the kind of specifier used:

D Numbers between -255 and 255 match B only.

D Numbers between -65535 and -255, or +255 and
+65535 match W only.

D Numbers between -§2- 1) and -65535, or +65535 and
(231 - 1) match D only.

D Other numbers cause an overflow error.

C NEAR labels with the same CS-assume that are -128 to
+127 bytes from the end of the codemacro call match
only B.

C OtherNEARIlabels with the same CS-assume match W
in USE16 segments or DN inSE32 segments.

C NEARIabels with a different CS-assume match no
modifier and cause an error.

C FARlabels match D ivSE16 segments and P in
USE32segments.

For all other specifiers:

TypeBIT matches BIT.
TypeBYTEmatches B.

TypeWORDatches W.
TypeDWORIatches D.
Type PWORMDatches P.
Type QWORMatches Q.
TypeTBYTEmatches T.

Index register expressions with no associated type (e.g., [(E)BX]) match B, W, or
D when used with another operand that has a B, W, or D modifier, respectively.
They match no modifier for single-operand instructions and cause an error.

ASM386 Assembly Language Reference Chapter 9 585

586

Ranges Range specifiers are allowed for parameters that are numbers or
registers (specifiers A, D, R, S). If one specifier follows the formal
parameter, the value of the operand must match; if two follow the
formal, the value must fall within the inclusive range of the specifiers.

For this matching, register operands assume the following numeric

values:

Value General and Segment Registers

0 EAX AX AL ES
1 ECX CX CL Cs
2 EDX DX DL SS
3 EBX BX BL DS
4 ESP SP AH FS
5 EBP BP CH GS
6 ESI Sl DH

7 EDI DI BH

The assembler reports an error if no match can be found for the codemacro call. It
pads the generated object code with 90H (NOPs) if a matched definition requires
fewer instruction bytes than the assembler reserved for a forward-referenced
operand in Step 1.

Chapter 9 Codemacros

Processor
Architecture Summary

This appendix is a quick reference for assembler application and system
programmers. Note that this appendix covers the Intel386 processor. Since there
are differences between the Intel386, 376, and Intel486 processors, some of the text
in this appendix does not apply to the 376 processor.

See also: Processor architecti8@386 Programmer's Reference Manual
376 processor, Appendix F
Intel486 processor, Appendix G

This appendix contains four major sections:

e The first section contains illustrations of the formats for the basic data types,
and for the general, segment, status, instruction, and control registers.

e The second section summarizes processor memory organization, including
effective address computation for assembler operands, and illustrates the data
structures that support segmented memory organization.

e The third section illustrates the processor EFLAGS register and describes the
individual flags.

e The fourth section summarizes information about processor exceptions and
interrupts. It illustrates the IDT (interrupt descriptor table) and the formats for
IDT entries (descriptors) and exception error codes.

Application programmers can skip some subsections in this appendix. The
following sections are the most useful for application programmers:

» Data Type Formats

e General, Segment, Status and Instruction Registers

e Processor Memory Organization

« Segment Selection and Effective Address Computation

e Processor Flags

ASM386 Assembly Language Reference Appendix A 587

Basic Processor Formats

This section contains reference illustrations for the basic data types and registers
used by all assembler programs.

Data Type Formats

The byte, word, and dword are the fundamental data types. Figure A-1 illustrates
their storage format.

7 0
Byte Byte
15 7 0
High Byte Low Byte Word
addressn + 1 address n
31 23 15 7 0
T T
High Word Low Word Dword
| |
addressn + 3 ‘ address n + 2 addressn +1 ‘ address n

W-3438

Figure A-1. Fundamental Data Types

Assembler operands represent interpretations of the fundamental data types. Figut
A-2 graphically summarizes the data storage formats supported by the processor.

588 Appendix A Processor Architecture Summary

+N

0

7 0 7 0 7 07 0
Byte Packedm‘ml ‘m‘m‘m‘ml
Integer DT' BCD oo
Sign——L | L L
(Two's Complement) ~ Most ~ Least
Significant Digit Significant Digit
514 g7 0 o *N 7" 0 %0
Word . TTT]TTT TTTTTTT]TTT TTT
meger ||| suing|_ | Jeee| | | | |
Sign——L |
(Two's Complement)
+3 +2 +1 0 -2 Gigabits
31 16 15 0 +2 Gigabits 210
Dword"H‘m‘m‘m‘m‘m‘m‘m Bith H (HHI
Integer String
Sign———'| ‘ Bit 0
(Two's Complement)
7 0 +5 +4 +3 +2 +1 0
Byte 32_bitm‘m‘m‘m‘m‘m‘m‘m‘m‘m‘m‘ml
Ordinal Bit Field
[
ram— < BitField ——>
agniude 110 32 Bits
+1 0 +3 +2 +1
15 0 31 0
Word Near 32-bit m\m‘m‘m‘m‘m‘m‘ml
Ordinal Pointer
L \ |
Magnitude Offset
+3 +2 +1 0 +5 +4 +3 +1 0
31 0 48 0
Dword\H‘\H‘H\‘H\‘\H‘\H‘H\‘\Hl 48|_:€i2H\‘\H‘\H‘H\‘H\‘\H‘\H‘H\‘H\‘H\‘\H‘\Hl
Ordinal Pointer
\ | \ \ |
Magnitude Selector Offset
Binary 7 0 7 o7 0 0
cOdedm‘ml ‘m‘m‘m‘ml
Decimal oo
(BCD) gcp BCD BCD
Digit N Digit1 Digit 0
W-3439
Figure A-2. Processor Data Types and Storage Formats
ASM386 Assembly Language Reference Appendix A

589

590

Depending on the assembler instruction, the processor data types are one of the

following:
Integer

Ordinal

BCD

is a signed numeric value contained in a byte, word, or dword. All
operations assume a two's complement representation. The most
significant bit of each integer type indicates the sign: 0 for non-
negative, 1 for negative. Integer zero is non-negative. The range for
each integer type is:

-128..127 for byte integers
-32,768..32,767 for word integers
=281, (281 - 1) for dword integers

is an unsigned binary numeric value contained in a byte, word, or
dword. The range for each ordinal type is:

0..255 for byte ordinals
0..65,535 for word ordinals
0..(22- 1) for dword ordinals

is a byte (unpacked) representation of an unsigned decimal digit in the
range 0..9; the low-order nibble contains the BCD value.

Hexadecimal values 0..9 are interpreted as decimal numbers; all other
hexadecimal values are invalid. The high-order nibble must be zero
for multiplication and division operations.

Packed BCD

String
Bit String

Bit Field

is a byte representation of 2 decimal digits, each in the range 0..9;
values outside this range are invalid. The most significant digit is in
the high-order nibble. The range of a packed decimal byte is 0..99.

is a contiguous sequence of bytes, words, or dwords. A string can
contain from 1 byte to%2 bytes (4 gigabytes).

is a contiguous sequence of bits. A bit string may begin at any bit
position of any byte and contain up & Bits.

is also a contiguous sequence of bits. A bit field may begin at any bit
position of any byte, but it can contain only up to 32-bits.

Near Pointer

is a 32-bit logical address. Itis an offset within a segment. Near
pointers are used in either a flat or segmented model of memory
organization.

Far Pointer is a 48-bit logical address with 2 components: a 16-bit segment

selector and a 32-bit offset. Far pointers are used by application
programmers only when system designers choose a segmented
memory organization.

Appendix A Processor Architecture Summary

Processor Registers

The processor registers are classified as general, status and instruction, segment,

and system registers. Application programmers need not concern themselves with
the system registers.

General, Segment, Status and Instruction Registers

The processor general registers can be used interchangeably to contain the operands
of logical and arithmetic operations, and for operands of address computations
(except that ESP cannot be used as an index operand). Figure A-3 illustrates the

eight 32-bit general registers, the six 16-bit segment registers, and the status and
instruction registers.

ASM386 Assembly Language Reference Appendix A 591

31 ‘ 23 15 ‘ 7 0
T I T
EAX
| T AH A A
T T T
EDX
pH PX L
T T T
ECX
‘ | CH 9X CL
I T I
EBX
General ‘ | BH B‘X BL
Registers EI‘3P Bp
| |
T T T
ESI S|
; | ;
E‘Dl DI
| |
T T T
E‘SP sp
‘ i
15 7 0
CS (Code Segment)
SS (Stack Segment)
Segment DS (Data} Segment)
Registers ES (Data Segment)
FS (Data Segment)
GS (Data Segment)
T
31 23 15 7 0
Status Register EFLAGS
Instruction Register EIP (Instruction Pointer)

T
W-3440

Figure A-3. General, Segment, Status, and Instruction Registers

The 32-bit general registers are EAX, EDX, ECX, EBX, EBP, ESI, EDI, and ESP.

As Figure A-3 shows, the low-order word of each general register represents a worc
register; each has a distinct name without the E prefix. Each word register can be
used as an operand to contain 16-bit data items. The AX, DX, CX, and BX word
registers contain separately named byte registers to contain 8-bit data items. AH/L
DH/L, CH/L, and BH/L can be used as operands in some assembler instructions.

592 Appendix A Processor Architecture Summary

The segment registers identify up to six segments that are immediately accessible

to an executing program. The CS register addresses the currently executing code
segment. SS addresses the current stack segment. DS, ES, FS, and GS access data
segments; DS is the default data segment register (see Table A-1).

Application programmers can ignore the segment registers - and the instructions
that deal with them - if their operating system uses an unsegmented memory
model. If it doesn't, the 16-bits shown in Figure A-3 represent a selector. Each
segment register also has a cache that holds the descriptor associated with each
selector that is loaded into a segment register.

Stack Segment

31 0
1 ? Bottom of Stack
1 1 1 <— (Initial SS:ESP Value)
Old EBP
Display 1 1 1 EBP
‘ EBP fqr Main ‘
T T T
Dynamic | | | POP
Storage
1 1 1
| | | Top of
\ \ \ ESP Stack
‘ ‘ ‘ PUSH
| | |
T T T

;

W-3441

Figure A-4. Processor Stack with Stack Frame

The EIP register contains the offset address, relative to the start of the current code
segment, for the next instruction to be executed in sequence.

As in the general registers, the low-order word ofRREAGSregister represents a
16-bit register: th&ELAGSregister.

See also: (E)FLAGS, in this appendix

Note that assembler instructions that use the stack depend on the SS, EBP, and ESP
registers. Figure A-4 illustrates the processor stack.

SS addresses the single stack in memory that is directly accessible from the
currently executing code segment.

ASM386 Assembly Language Reference Appendix A 593

EBP is the stack frame base pointer, identifying the base address of the current
stack frame. When EBP is used as the base register in an offset calculation, the
processor calculates the current offset, relative to SS, automatically.

ESP points to the current top of the stack. It is referenced implicitly suBel
POR CALL, RET, INT, andIRET instructions.
System Registers

System control, global descriptor table (GDTR), local descriptor table (LDTR),
interrupt descriptor table (IDTR), test (TR), and debug registers are accessible only
to system programmers via variants of Mh@\instruction.

Figure A-5 illustrates the system control registers.

31 ‘23 ‘15 ‘ 7 0
Page Directory Base Register (PDBR) Reserved CR3
Page Fault Linear Address CR2
Reserved CR1
& Reser\‘/ed Els alb £l cro

W-3442

Figure A-5. System Control Registers

594 Appendix A Processor Architecture Summary

The CRO register contains the following system control flags:

PE (bit 0) is the Protection Enable control flag. Setting PE causes the processor
to execute in protected mode. Clearing PE causes the processor to
execute in real address mode.

MP (bit 1) is the Monitor coProcessor control flag. When MP is set, the
processor tests the TS (task switch) flag at every occurrence/afTa
instruction; it signals Exception 7 (math unit unavailable) if the
floating-point coprocessor is currently executing a floating-point
instruction. If MP is clear, a floating-point coprocessor is not attached
to the processor.

EM (bit 2) is the EMulation control flag. When EM is set, the occurrence of an
ESC (floating-point) instruction raises Exception 7 so the processor
can transfer control from the currently executing program to an
exception handler for floating-point emulation.

TS (bit 4) is the Task Switch control flag. The processor sets TS with every task
switch.

ET (bit 4) is the Extension Type control flag. If ET is set, the processor uses the
32-bit protocol of an Intel387 coprocessor; if ET is clear, the
processor uses the 16-bit protocol of an Intel287 coprocessor.

PG (bit 31) is the PaGing control flag. If PG is set, the processor handles a paged
memory organization. The processor translates logical segment
addresses into linear addresses, maps the linear addresses through a
page directory and page table, and accesses physical addresses in a
page frame.

The CR2 register is used for handling page faults when PG is set. The processor
stores the linear address that triggers the page fault into CR2.

The CR3 register is also used when PG is set. CR3 stores the base address of the
page table directory for the current task.

The CRO flags apply to the system as a whole. EFRé\GSregister contains
additional system flags that control the interaction among system software
components.

The GDTR, LDTR, IDTR, and TR registers locate the data structures that control
segmented memory management. See the Processor Memory Organization and
Processor Exceptions and Interrupts subsections for the formats these registers
handle.

See also: Debug and test regist8@386 Programmer's Reference Manual

ASM386 Assembly Language Reference Appendix A 595

Processor Memory Organization

The physical memory of the processor is organized as a sequence of bytes. Each
byte in a processor segment has a unique address in the rafge D(2
gigabytes). Assembler programs are independent of the physical address space.

System designers determine the model of memory organization seen by applicatior
programmers. The processor architecture gives system designers the freedom to
choose a model for each task.

The choice of models varies between the following extremes:

« Aflat address space maps the logical addresses of an assembler program 1-to-
to the physical address space as elements of a single array. A pointer to this
flat address space is a 32-bit ordinal number in the rang® 012

* A segmented address space consists of a collection of up to 16,383 linear
address spaces, each up to 4 gigabytes in length. Each segment is a sequenci
of contiguous byte addresses. A pointer in a segmented address space consis
of two parts:

— A 16-bit segment selector that identifies a segment.
— A 32-bit offset that is an ordinal index to a byte within a segment.

Assembler programs implicitly use a segmented logical address space; the CS, SS,
DS, ES, FS, and GS segment registers contain selectors to the program's code, da
and stack segments. Figure A-6 illustrates this implicit model.

Module A Module A
Code |< CS (Code) Data

SS (Stack)
DS (Data)

Data
Stack < 4,—>
ES (Data) Structure 1
FS (Data)
Data (_,7 —
Structure 2 GS (Data) Structure 3

W-3443

\ 4

\ 4

Figure A-6. Memory Segmentation Model for ASM386 Programs

For an assembler application programmer, it is immaterial how this model is
mapped to the processor physical address space.

596 Appendix A Processor Architecture Summary

Segment Selection and Effective Address Computation

If system designers have chosen a flat model of memory organization, the segment
registers point to the same segment and the processor rules for choosing them are
hidden from application programmers. Nevertheless, the rules remain in effect.

For other models of memory organization, there is a close connection between the
kinds of memory reference made in an assembler program and the segments in
which instructions and operands reside.

Table A-1 summarizes the processor default segment register selection rules.

Table A-1. Default Segment Register Selection Rules

ASM386 Memory Segment
Segment Reference Register

Type Needed Used Processor Implicit Segment Selection

Code Instruction CS Automatic with instruction prefetch.

Stack Stack SS All stack pushes and pops; any memory
reference that uses ESP or EBP as a base
pointer.

Data Local Data DS All data references except relative to stack

or string destination.

Strings ES Destination of string instructions.

Most assembler instructions allow programmers to use a segment override prefix to
specify an explicit segment register selection. However, a segment override prefix
cannot alter the segment selection rules in the following three cases:

e ES must be used for destination strings with the string instructions.
eSS must be used for stack instructions.

* CS must be used for instruction fetches.

ASM386 Assembly Language Reference Appendix A 597

598

The CS, SS, DS, ES, FS, and GS segment registers contain a selector to a logical
segment address. Every assembler instruction accesses the logical addresses of
code, stack, and data indirectly through a segment register. For instructions
encoded with a ModRM byte, the offset within a segment is calculated by taking
the sum of up to three components:

A displacement element in the instruction
A base register

An index register, which can be automatically multiplied by a scaling factor of
1,2,4,0r8

Figure A-7 illustrates this address calculation.

Segment + Base + (Index * Scale) + Displacement
) EAX | EAX | L)
CS ECX ECX
SS EDX EDX 2 No Displacement
DS\ 4/ EBX + < EBX % + 8-bit_ Di_splacement
ES ESP --- 4 16-bit Displacement
FS EBP EBP 32-bit Displacement
GS ESI ESI 8
EDI EDI

W-3444

Figure A-7. Effective Address Calculation

The segment offset that results from adding these components to the segment
register address is called an effective address:

The Base and Index components both use the same general registers to addre:
dynamically allocated data, such as procedure parameters and local variables
in the stack, or the beginning of one record in an array of records.

The Scaling Factor allows efficient indexing into an array when its elements
are 2, 4, or 8 bytes wide.

The Displacement component is encoded in the instruction; it is used for
addressing fixed data, such as the location of a simple scalar operand. The
displacement alone indicates the offset of an operand. An 8-, 16-, or 32-bit
displacement can be used.

Appendix A Processor Architecture Summary

Segmented Memory Management

The processor transforms logical addresses (i.e., addresses as viewed by assembler
programmers) into physical addresses in one or two steps:

1. Segment translation, in which a logical address consisting of a segment
selector and segment offset are converted to a linear address. The linear
address can be mapped directly to a physical address if system designers
choose not to implement paging.

2. Page translation, in which a linear address is converted to a physical address if
system designers choose a paged memory model.

Figure A-8 sketches the segment and optional page translation of logical addresses
to physical addresses.

15 0 31 0
Logical ‘
Address Selector \L Offset
Segment
Translation

Paging
Disabled
Paging
31 Enabled 0
Linear :
Address Dir Page Offset
\4
Page
Translation
<
31 Y 0
Physical
Address

W-3445

Figure A-8. Processor Address Translation Overview

ASM386 Assembly Language Reference Appendix A 599

The processor uses the following data structures and registers to translate a logical
address into a linear address:

« Descriptors

e Segment registers (see Figure A-3)

« GDT (global descriptor table) and LDT (local descriptor table) registers
* Selectors

In a paged memory system, the processor also uses the control register CR3
illustrated in Figure A-5.

Figure A-9 illustrates segment to linear address translation, together with linear to
physical address translation in a paged system, in more detail.

15 0 31 0

Logical
Address

Selector Offset

Descriptor Table \L

Segment Descriptor »‘ + |(—

Y
Linear :
Address Dir Page Offset
Page Frame
Page Directory Page Table
Physical
> Address
> PG TBL Entry —
DIR Entry —
A
A A

W-3446

Figure A-9. Segment Address Translation in a Paged System

600 Appendix A Processor Architecture Summary

Segment Descriptors

The processor uses a descriptor in a segment register's cache to map a logical
address to a linear address. In addition, descriptors contain protection parameter
fields that apply to segment translation. The protection field values determine how
the processor does the following:

e Type checking

e Limit checking

e Restriction of addressable domain

e Restriction of procedure entry points

« Restriction of the assembler instruction set

Figure A-10 illustrates the general segment descriptor formats for application and
system segments.

Creation and maintenance of descriptors is the responsibility of system software.

Descriptors Used for

Applications Code and Data Segments AR Byte
P
31 23 15 7 0
A Limit
Base 31 ..24 G|B|O \If 19 .16 |P|DPL|1| Type |A| Base23..16 4
Segment Base 15 .. 0 Segment Limit 15 .. 0 0
L L
Descriptors Used for
Special System Segments AR Byte
R —
31 23 15 7 0
A Limit
Base 31 .. 24 G|B|O \If 19 .. 16 P|DPL|O| Type Base 23 .. 16 4
Segment Base 15 .. 0 Segment Limit 15 .. 0 0
L L

A - Accessed

AVL - Available for Use by Systems Programmers
DPL - Descriptor Privilege Level

- Granularity

Segment Present

- Determine ESP/SP

- Determine USE32/USE16

|WhveRu v 0]

W-3447

Figure A-10. General Segment Descriptor Formats

ASM386 Assembly Language Reference Appendix A 601

Descriptor Address Translation Fields

Both application and system segment descriptors contain the following address

translation fields:

Base(32-bits)

Limit (20-bits)

defines the location of a segment within a 4-gigabyte linear
address space.

defines the size of the segment. Depending on the setting of
the Granularity bit (23), the processor interprets the limit

field as units of 1 byte (G = 0) or units of 4 Kilobytes

(G=1).

Descriptor Access Rights (AR)

602

Bits 8-15 of the upper dword in Figure A-10 is the descriptor AR (access rights)
byte. The processor checks the protection parameters in this byte during segment

translation.

These fields in a descriptor's high-address dword are:

Accessedbit 8)

Type (bits 9-12)

DPL (bits 13-14)

Present(bit 15)

is set when the selector for this segment is loaded into a
segment register or used by a selector test instruction.

specifies the intended usage of a segment. It's value
indicates executable/readable code and readable/writable
data segments, or it indicates a system descriptor type, such
as a call gate, task gate, task state segment (TSS), interrupt
gate, etc.

specifies the Descriptor Privilege Level; this field's value
determines whether the segment can be accessed from other
code or system segments in a protected system.

is set if this descriptor is valid for use in address formation.
If P =0, the processor raises an #NP exception when a
selector for this descriptor is loaded into a segment register.

For assembler instructions that transfer control among code segments, the process
checks the validity of a descriptor's AR fields before calculating the segment linear
address — or allowing access to a segment. System designers determine the
restrictions enforced by the processor in the descriptors created by compilers,
linkers, loaders, and by the operating system itself.

Appendix A

Processor Architecture Summary

Descriptor Tables and Selector Format

Segment descriptors are stored in memory as tables: arrays of 8-byte elements. The
processor global descriptor table (GDT) is an array of descriptors for up to 8192
segments, local descriptor tables (LDT), tasks, and/or gates. The first entry of the
GDT (selector INDEX = 0) is not used by the processor. The processor locates the
GDT and the current LDT in memory by means of the GDTR and LDTR registers.
These registers store the memory base addresses of these tables, together with the
segment limits.

The selector portion of any logical address identifies a descriptor. A selector
specifies the global or a local descriptor table and indexes a descriptor in that table.
Figure A-11 illustrates the format of a selector.

15 4 3 0

Index RPL

Tl - Table Indicator
RPL - Requestor's Privilege Level

W-3448

Figure A-11. Selector Format

Segment selectors contain the following fields:

RPL (bits 0-2) is the Requesting Privilege Level field. This represents the
privilege level of a code segment, such as a procedure, that
may request access to a data segment or a control transfer.
For example, an application routine might call an operating
system I/O routine if system designers decide to prohibit
application from using thiN andOUTinstructions.

Tl (bit 3) is the Table Indicator bit. It specifies whether the selector
refers to the GDT (TI = 0) or to the current LDT (Tl = 1).

Index (bits 4-15) selects one of up to 8192 descriptors in the GDT or current
LDT. The processor multiplies the index of the selector by 8
(length in bytes of a descriptor), and adds the result to the
base address of the selected descriptor table.

See also: 10PL field, in the Processor Flags section of this appendix

ASM386 Assembly Language Reference Appendix A 603

The processor segment registers (see Figure A-3) contain the selectors to current
segments; each segment register also has an inaccessible cache that holds the
descriptor associated with the selector. CS contains the selector and descriptor for
the currently executing code segment, SS the selector and descriptor for the curren
stack, etc.

Processor Protection, Gate Descriptors, and Task Switches

604

All processor descriptors store protection parameters in their access rights (AR)
fields. These parameters can be ignored at the discretion of system designers. Or
they can be exploited to verify memory accesses and instruction execution, to
detect and identify bugs, and to restrict damage by runaway applications.

Appendix A Processor Architecture Summary

Protection and Privilege Levels

Both application and system segment descriptors and selectors are designed for
protected systems. Central to processor protection checking is the notion of
privilege levels. By assigning values from 0 to 3 (highest to lowest privilege) to
the descriptors and selectors visible to the processor, system designers use the
processor to protect modules within the operating system. For example, Figure
A-12 illustrates how the processor makes a privilege check for data access.

16-bit
Selector Cached Descriptor
Cs CPL
\
Target Segment Selector > .
Privilege
Index RPL > Check
4,—> by CPU
Data Segment Descriptor
31 23 15 7 0
A Limit Type
Base 31 .. 24 G|B|O|V P|DPL Base 23 .. 16 4
L 19..16 1[0|E|W|A
Segment Base 15 .. 0 Segment Limit 15 .. 0 0
L L

CPL - Current Privelege Level
RPL - Requestor's Privilege Level
DPL - Descriptor Privilege Level

W-3449

Figure A-12. Processor Privilege Check for Data Access

As Figure A-12 shows, three different privilege levels enter into this type of

processor protection check:

1. The segment selector in the CS register contains a protection field (CPL) that
specifies the current privilege level.

2. The selector attempting to access a data segment contains the RPL field

(requesting privilege level).

3. The descriptor of the target data segment's DPL field is also a protection field.

ASM386 Assembly Language Reference

Appendix A 605

The currently executing code segment can access this data only if the DPL of the
target segment is numerically greater (less privileged) or equal to the maximum of
the CPL and the RPL.

Level 0 is the highest privilege level. If CPL equals 0, the currently executing code
segment can access any data segment in the system. (The IOPL field in the
processor flags register is a fourth privilege level that is checked for assembler
instructions that perform I/O.

See also: 10PL field, in the Processor Flags section of this appendix

Protected Control Transfers Use Gate Descriptors

606

The processor uses gate descriptors to provide protection for control transfers
among executable segments at different privilege levels, possibly in a multi-tasking
system. There are 4 kinds of gate descriptors:

e Call gates

e Task gates

e Trap gates

e Interrupt gates

Call gate and task gate descriptors are stored either in the GDT or in an LDT. Note
that call and task gate descriptor access can be restricted either by using the
protection fields in these descriptors or by restricting access to the LDT in which
they are stored.

Task gate descriptors are used in a multi-tasking processor system. Trap and
interrupt gates transfer control to an exception handler; they are stored in the IDT
(interrupt descriptor table).

See also: Processor Exceptions and Interrupts, in this appendix

Appendix A Processor Architecture Summary

Call Gate Descriptor Format

Figure A-13 illustrates the format of a call gate descriptor.

AR Byte
—
31 23 15 7 0
I
Type Dword

Offset 31 .. 16 P|DPL 01100 000 Count 4

Selector Offset 15..0 0
| |

W-3450

Figure A-13. Call Gate Descriptor Format

A processor call gate:
« Defines an entry point of a procedure
» Specifies the privilege level of such an entry point

The selector and offset fields of a call gate descriptor form a pointer to the entry
point of a procedure. In a control transfer that accesses a call gate, only the
selector part of a far pointer operand is used; the far pointer's offset part isn't
needed to access the call gate descriptor.

Task Gate, TSS Descriptor, and TSS Format

Figure A-14 illustrates a task gate descriptor.

AR Byte
e
31 .23 15 7 0
T
(Not Used) PIDPLl 00101 (Not Used) 4
Selector (Not Used) 0
L L

W-3451

Figure A-14. Task Gate Descriptor Format

ASM386 Assembly Language Reference Appendix A 607

A task gate descriptor provides indirect, protected reference to a processor task
state segment (TSS). Any segment with sufficient privilege to access a task gate o
a TSS descriptor can cause a task switch to a new task state segment. As Figure
A-14 shows, a task gate descriptor consists of a AR byte and a selector.

The task gate descriptor can be stored in the GDT, in an LDT, or in the IDT if
system designers choose to make exception handlers separate tasks. Subject to
protection checking, the selector of the task gate descriptor points to a task
descriptor for a task state segment. Figure A-15 illustrates the format of a TSS

descriptor.
AR Byte
-
31 23 15 7 0
A Limit Type
. \% . 4
Base 31..24 G|0|0 v 19 . 16 P|DPL 0‘1‘0‘8‘1 Base 23 .. 16
Base 15..0 Limit15..0 0
L L

W-3452

Figure A-15. TSS Descriptor Format for 32-bit TSS

The B bit (9) of the AR Type field indicates whether a task is already busy. Tasks
are not reentrant; if the B bit equals 1, the processor will not allow a task switch to
occur because the task is already busy.

The selector for the currently executing task state segment is in the task register
(TR). All the information the processor needs to manage a task is stored in the
TSS. Task state segments can reside anywhere in the linear address space. With
these structures the processor can rapidly switch execution from one task to
another, saving the context of the original task to be restarted later.

System designers might choose the TSS structure for exception and interrupt
handlers because the TSS structure provides an easy way of saving an interrupted
task’'s environment.

608 Appendix A Processor Architecture Summary

Figure A-16 shows the format of a processor TSS. Note that a processor TSS is not
identical to an 286 processor TSS.

31 23 15 7 0
1/0 Map Base 000000 OO OO0 0O T |64
0000000000O00O00OO0OOO0OO LDT 60
00000O0O0OOO0OOOOOOOO GS 5C
00000O0O0OOO0OOOOOOOO FS 58
0000O0O0O0O0OOO0O0OOOOOOO DS 54
0000O0O0O0O0O0OOO0OOOOOOOO SS 50
00000O0O0O0OOO0OOOOOOOO CS 4C
000000O0O0O0OO0O0OOOO0OOO0O ES 48
EDI 44
ESI 40
EBP 3C
ESP 38
EBX 34
EDX 30
ECX 2C
EAX 28
EFLAGS 24
Instruction Pointer (EIP) 20
CR3 (PDPR) 1C
0000000000000000 : SS2 18
ESP2 14
0000000000000000 : SS1 10
ESP1 oc
000000000000000O SS0 8
ESPO
00000000000000O0O Back Link to Previous TSS
Note: 0 means Intel reserved. Do not define.
W-3453

Figure A-16. General Segment Descriptor Formats

ASM386 Assembly Language Reference Appendix A 609

The fields of a TSS are either dynamic or static:

1. The processor updates the following fields with each switch from the task:

Segment registers GS, FS, DS, SS, CS, and ES

General registers EDI, ESI, EBP, ESP, EBX, EDX, ECX, and EAX
Flags register EFLAGS

Instruction pointer EIP

Back link selector to previously executing TSS (updated only when a
return is expected)

2. The processor reads but does not change the following fields:

T-bit (debug trap bit); if set, the T-bit causes the processor to raise a debug
exception when a task switch occurs

I/O map base address (see Figure A-17)
Selector of the task's LDT

CR3 (PDBR) register that contains the base address of the task's page
directory (read only if paging enabled)

SS2, ESP2, SS1, ESP1, SSO, and ESPO pointers to the stacks for privileg
levels 0..2

I/O Permission Bit Map

The 1/O map base address stored in a TSS contains an offset to the beginning of th
(memory) I/0 permission bit map for the TSS. Figure A-17 illustrates the I/O
address bit map and permission bit map.

610 Appendix A Processor Architecture Summary

TSS Segment
31 23 15 7 0
|
T

| |
Limit—>

1/0 Permission Bit Map
8K Byte Maximum

y..

Software State (Optional)

| |
T T
1/0O Map Base uuuuuuuuuuuuuuu T | 64

| |
T T

00000000 ‘ 00000000 LE?T 60
T T

00000000 00000000 GS 5C
| | 4

00000000 ‘ 00000000 TSS chk Link 0
T T

W-3454

Figure A-17. 1/O Address Bit Map

Each bit in the map corresponds to an I/O port address. The I/O permission bit
map allows the processor to selectively trap references to specific 1/0 port
addresses. In protected motig, INS, OUT, andOUTSinstructions are subject to
two protection checks:

1. The processor checks that the instruction's CPL (current privilege level) is less
than or equal to the value @PL in theEFLAGSregister.|OPL is the lowest
privilege level at which direct I1/0 can be performed. (O is the highest privilege
level and 3 is the lowest privilege level.)

2. If the current privilege level is insufficient, the processor checks the I/O
permission bit map. Each bit in the map corresponds to an I/O port byte
address. The processor tests 4 bits for a dword 1/O operation, 2 bits for a word
I/O operation, etc. If any tested bit is set, the processor signals a #GP
exception.

Because the I/O permission bit map is in a TSS segment, different tasks can have
different maps; a multi-tasking operating system can allocate I/O ports on a task-
by-task basis by changing the I/O permission map.

ASM386 Assembly Language Reference Appendix A 611

Processor Flags

This appendix section describes the processor flags. Figure A-18 illustrates the
format of theEFLAGSregister.

16-bit Flags Register

31 23 15 7 0
I I

000O0OO0OO0OO0OO0OO0OOOOOOOOO

=<
n

Virtual 8086 Mode
Resume Flag -
Nested Task Flag -
1/O Privilege Level
Overflow -
Direction Flag
Interrupt Enable
Trap Flag

Sign Flag

Zero Flag

nunnononxxXoomxxxXx

Aucxiliary Carry -
Parity Flag
Carry Flag

S = Status Flag C = Control Flag X = System Flag
Note: 0 or 1 indicates Intel reserved. Do not define.

W-3455

Figure A-18. Processor EFLAGS Register

Flag conditions reflect the result of a mathematical operation, the state of operation
of the processor, or the current restrictions placed upon the microprocessor's
operation. There are two categories of flags in the procES&aGSregister:

« The carry, parity, auxiliary, zero, sign, and overflow flags are status flags.

e The direction flag is a control flag; the interrupt, trap, nested task, resume, and
virtual mode flags are system control flags.

612 Appendix A Processor Architecture Summary

ThelOPL field of EFLAGSspecifies the system Input/Output Privilege Level.
Tasks with less privilege (a higher numerical value) tld. cannot perform 1/O
operations unless the 1/0O address bit(s) allow access to an I/O port

See also: I/O Permission Bit Map, In this appendix

The following sections briefly explain the function of each flag and give a general
description of how they are affected by processor instructions. To find out how (or
if) a particular instruction affects the flags, see the instruction's reference page.

See also: Instruction reference pages, Chapter 6

Status Flags

The status flags indicate the results of most assembler arithmetic, logical, or
comparison operations. Figure A-19 illustrates the status flags.

16-bit Flags Register

31 23 15 7 0
I I

OOOOOOOOOOOOOOOOOM

—HZ

Overflow

Sign Flag

Zero Flags
Auxiliary Carry
Parity Flag
Carry Flag

W-3456

Figure A-19. Status Flags Format

The six status flags are set (to 1) or cleared (to 0) by most arithmetic operations to
reflect certain properties of the result:

CF (bit 0) s set if the operation resulted in a carry out of (from addition) or a
borrow into (from subtraction) the high-order bit of the result;
otherwise, CF is cleared.

PF (bit 2) is set if the modulo 2 sum of the low-order 8 bits of the resultis 0
(even parity); otherwise, PF is cleared (odd parity).

ASM386 Assembly Language Reference Appendix A 613

AF (bit 4) is set if the operation resulted in a carry out of (from addition) or
borrow into (from subtraction) the low-order 4 bits of the result;
otherwise, AF is cleared. AF is set according to the carry/borrow out
of bit 3. It is not affected by the size of the operand.

ZF (bit 6) s set if the result of the operation is 0; otherwise, ZF is cleared.

SF(bit 7) is set if the result of the operation is negative; otherwise, SF is
cleared.

OF (bit 11) is set if the signed operation resulted in an overflow; otherwise, OF is
cleared.

A program can test the setting of the carry, parity, zero, sign, and/or overflow flags
in order to transfer control according to the outcome of a previous operation. See
Table 6-8 for a list of instructions that assign definitive values to one or more status
flags.

It is important to know which flags are set by a particular instruction. For example,
assume a program is to test the parity of an input byte and execute one instruction
sequence if parity is even and another if parity is odd. Caiagjump if parity

is even) odPO (jump if parity is odd) immediately following th& (input)

instruction would cause random jumps becaNsdoes not affect the parity flag.

It is necessary to code an instruction that alters the parity flag (suctha®ah0)
between théN instruction and the conditional jump instruction to get meaningful
results in such a program.

Carry Flag

614

As its name implies, the carry flag is used to indicate whether an addition causes a
carry into the next higher-order digit. (HoweveC andDECdo not affect CF.)
The carry flag is also used as a borrow flag in subtractions.

For example, the addition of two 1-byte numbers can produce a carry out of the
high-order bit:

Hex Bit Number:

Value 7654 3210

AEH 1010 1110B

+74H 0111 0100B

122H 0010 0010B 1= 22H

; carry flag = 1.

An addition that causes a carry out of the high-order bit of the destination sets the
flag to 1; an addition that does not cause a carry resets the flag to 0.

Appendix A Processor Architecture Summary

The logicalAND OR andXORinstructions also affect CF. These instructions set or
reset particular bits of their destination (register or memory).

See also: Logic instructions, Chapter 6

The rotate and shift instructions move the contents of the operand (registers or
memory) one or more positions to the left or rigiRCLandRCRtreat the carry

flag as though it were an extra bit of the operaR@LandRORassign an operand
bit to CF. The bit test instructions copy a specified bit into CF.

Parity Flag

Parity is determined by counting the number of 1 bits in the low-order 8 bits of the
destination of the last operation to affect PF. Instructions that affect the parity flag
set the flag to 1 for even parity and reset the flag to O for odd parity.

Auxiliary Carry Flag

The auxiliary carry flag indicates a carry out of bit 3 of the result. This flag cannot
be tested directly in an assembler program. AF allows the decimal adjust
instructions to perform their function; it represents a carry out of or borrow into the
least significant 4-bit digit when performing BCD arithmetic. The auxiliary carry
flag is affected by all add, subtract, increment, decrement, compare, and the logical
AND OR andXORinstructions.

Zero Flag

Many assembler instructions affect the zero flag. ZF = 1 indicates that the last
operation to affect ZF resulted in all Os in the destination (register or memory). If
the result was something other than 0, ZF is reset to 0. A result that has a carry and
a 0 result sets both flags, as shown:

10100111
+01011001

00000000 ;carry flag=1
;zeroflag=1

Sign Flag

The most significant bit of the result of operations on registers or memory can be
interpreted as a sign. Instructions that affect the sign flag set the flag equal to this
bit. A 0 indicates a non-negative value; a 1 indicates a negative value. This value
is duplicated in the sign flag so that conditional jump instructions can test for
positive and negative values.

ASM386 Assembly Language Reference Appendix A 615

Overflow Flag

The overflow flag is set if a signed operation resulted in a carry into the most
significant bit of the result, but not a carry out of this bit or vice versa. Otherwise,
OF is cleared.

Control and System Control Flags

The control and system flags determine how certain processor instructions behave
and are tested during processor protection checking. Figure A-20 illustrates the
control and system control flags.

16-bit Flags Register

31 23 15 7 0
T T
VIR|4|N| 10 |O[D|1|T|S|Z|,|Al4 P|,C
00000000000000000 |¢07 b |FEIEIERIECRIOELIE
L

Virtual 8086 Mode

Resume Flag
Nested Task Flag
1/0 Privilege Level

Direction Flag
Interrupt Enable
Trap Flag

W-3457

Figure A-20. Control Flags and IOPL Format

The following flags can be set/cleared by explicit processor instructions:

IF (bit9) s the Interrupt Flag, used to enable or disable certain kinds of
external interrupts. For example, if IF is set, vectored and external
interrupts are enabled. The instructions STI and CLI set and clear IF,
respectively. IF is a system control flag. In protected mode, CLI and
STI can be executed only if the CPL is less than or equal to IOPL (the
current privilege level has at least as much privilege as the /O
privilege level).

616 Appendix A Processor Architecture Summary

DF (bit 10) is the Direction Flag, used by string instructions to determine whether
to increment or decrement the default string registers (E)SI and (E)DI
during a string operation. The instructions STD and CLD set and
clear DF, respectively. If DF is set, (E)SI and (E)DI are decremented;
if DF is cleared, (E)SI and (E)DI are incremented.

The EFLAGSregister contains other system control flags andape field:

TF (bit 8) is the Trap Flag. It controls the generation of single-step interrupts.
Once TF is set, an internal single-step interrupt will occur after each
instruction is executed.

VM (bit 11) is the Virtual Mode flag. When set, it tells the processor to switch
from protected mode to virtual 8086 mode. The VM flag can be set
by task switches that occur during protected mode execution, or by
thelRET instruction (only at CPL = 0)PUSHFalways clears VM,
even if the processor is executing in virtual 8086 med®Fhas no
effect on VM. However, aBFLAGSimage pushed during interrupt
processing or saved during a task switch will contain a 1 in VM if the
interrupted process was executing in virtual 8086 mode.

NT (bit 14) is the Nested Task flag. It is set to indicate that an executing task is
nested within another task. The NT flag is set or reset by control
transfers through interrupt, trap, and task gates. IRIE€ instruction
tests the NT flag; if NT is QRET returns from an interrupt procedure
without a task switch. If NT is 1, a task switch occurs; NT = 1
indicates that the current task's TSS has a valid back link to the
previous TSS.

IOPL (bits 12-13)
is the 1/0O Privilege Level fieldlOPL specifies the highest privilege
level (0, 1, 2, or 3) from which I/O instructions can be executed
directly. Task switches can change the setting ofdke field, as do
thePOPFandIRET instructions executed at privilege level 0.

ASM386 Assembly Language Reference Appendix A 617

RF (bit 16) is the Resume Flag. It is used to restart program execution after a
debug fault. RF is cleared after the successful execution of the
faulting instruction.

TF, VM, NT, IOPL, and RF values cannot be set and reset by explicit processor
instructions. To alter these values (assuming sufficient privilege in protected
mode):

1. UsePUSHFto copy theEFLAGSregister to the stack.

2. Set/clear these flag values in the stack image with the BTS or BTR
instructions.

3. UsePOPFto return the modified stack top to tBELAGSregister.

NT andIOPL values are irrelevant in real address mode. Only DF and TF are not
subject to protection checking in protected mode.

Processor Exceptions and Interrupts

618

Exceptions and interrupts alter the normal flow of program execution. Exceptions
indicate erroneous conditions detected by the processor itself while it is executing
instructions; interrupts usually indicate asynchronous events external to the
processor.

Exceptions have two sources:
e Errors detected by the processor:

Faults detected before or during an instruction's execution that leave the
machine in a state that permits the instruction to be restarted

Traps reported at the instruction boundary immediately after an
instruction in which an exception was detected

Aborts reporting hardware errors and/or exceptions so severe that there is
no clue about which instruction caused the error; restart of the
program is not possible

e The instructionsNTO, INT 3, INT number, andBOUNCare sometimes called
software interrupts because they can trigger exceptions. The processor detect:
the exceptions triggered by these instructions.

Interrupts also have two sources:
e Signals from the INTR# pin are maskable interrupts.

e Signals from the NMI# pin are non-maskable interrupts.

Appendix A Processor Architecture Summary

Identifying Interrupts

The processor associates an identifying number with each interrupt or exception it
recognizes. These numbers are in the range 0..31. Some of these numbers are
unused but reserved by Intel for future expansion.

Identifiers of the maskable interrupts are determined by external interrupt
controllers (such as Intel's 8259 Programmable Interrupt Controller); they are
communicated to the processor during its interrupt-acknowledge cycle.

Processor exception names are formed from a cross-hatch character (#) followed by
2 letters and an optional error code in parentheses. Table A-2 summarizes the
processor exceptions and interrupts.

ASM386 Assembly Language Reference Appendix A 619

Table A-2. Processor Exceptions and Interrupts

Name Cause Interrupt ASM386 Instruction That May
Number Generate This Interrupt
Divide error 0 DIV, IDIV
Debug exception 1 Any instruction
NMI# signal 2 (non-maskable external interrupt)
1-byte INT opcode 3 INT
2-byte interrupt 32-255 INT number
Interrupt on overflow 4 INTO
Array bounds check 5 BOUND
#UD Invalid opcode 6 Any illegal instruction
#NM No math unit available |7 ESC, WAIT
#DF Double fault 8 Any instruction that can generate an
exception
Coprocessor 9 Any operand to an ESC instruction that
Segment Overrun wraps around the end of a segment
#TS Invalid task state 10 JMP, CALL, any interrupt,
segment (TSS) IRET
#NP Segment/gate 11 Any segment register
not present modifier
#SS Stack fault 12 Any instruction that references memory
through SS
#GP General protection fault | 13 Any memory reference instruction or
code fetch
#PF Page fault 14 Any memory reference instruction or
code fetch
(reserved) 15
#MF Math fault 16 ESC, WAIT

620

Interrupts 15 and 17-31 are reserved by Intel; interrupts 32-255 are available for
external interrupts via the INTR# pin. In real address mode, interrupts 9-12 and

14-15 are reserved.

See also:

Reference Manual

Appendix A

Real address and virtual 8086 interr8p®86 Programmer's

Processor Architecture Summary

Simultaneous Exceptions and Interrupts

The processor services interrupts and exceptions only between the end of one
instruction and the beginning of the next. If more than one exception or interrupt is
pending at an instruction boundary, the processor services them one at atime. The
processor ranks exception/interrupt priority from highest to lowest as follows:

1. Faults except debug faults

Trap instruction$NTO, INT number, INT 3
Debug traps for current instruction
Debug faults for next instruction

NMI# interrupts

INTR# interrupts

o ok~ w DN

Interrupt Descriptor Table

Both exceptions and interrupts have dedicated positions within the Interrupt
Descriptor Table; the IDT is accessed by the processor IDT register, as shown in
Figure A-21.

Interrupt Descriptor Table

I
> ‘ Gate for ‘

‘ InterrEpt #N ‘

Gate for
Interrupt #2
|

] | Gate for]
IDT Register Interrupt #1
15 0 ‘

\
IDT Limit Gate for

IDT Base > ‘ Interr‘upt #0 ‘

31 0
W-3458

Figure A-21. Interrupt Descriptor Table and Register

ASM386 Assembly Language Reference Appendix A 621

622

TheIDT can reside anywhere in physical memory. T, LIDTW, orLIDTD
instructions load théDT register with a 6-byte pseudodescriptor operand that
represents the linear base address and limit valueldfTan

Interrupts located in aT are indexed by thewumber * 8. AnIDT must
contain descriptors only for interrupts that are used to call exception handlers; it
can contain up to 256 descriptors.

The processor can use the interrupt or exception identifier as an indedofd an
with descriptors for task, interrupt, or trap gates. Figure A-22 illustrates the format
for IDT gate descriptors.

Intel386 U
Task Gate AR Byte
—
31 .23 15 7 0
T
(Not Used) PIDPL{ 00101 (Not Used) 4
Selector (Not Used) 0
L L
Intel386
Interrupt Gate AR Byte
/4%
31 .23 15 7 0
T
Offset 31 .. 16 PDPLlO01110|000 (Not 4
Used)
Selector Offset 15.. 0 0
L L
Intel386
Trap Gate AR Byte
/4%
31 23 15 7 0
T
Offset 31 .. 16 PDPL{O01111|000 (Not 4
Used)
Selector Offset 15.. 0 0
L L

W-3459

Figure A-22. IDT Gate Descriptors

Appendix A Processor Architecture Summary

While executing instructions in protected or virtual 8086 mode, the processor
checks all memory references for validity of addressing and of type of access.
Violation of the processor memory protection rules generates exceptions or
interrupts that can transfer program control to an exception handler.

Error Codes for Exceptions

In protected mode, some exceptions cause the processor to pass a 16-bit error code
to supply additional information for an exception handler.

In error code format for protection violations, bit values are as follows:

Bits Meaning

31to 16 Undefined
15to 3 Selector Index
2 TI

1 [

0 EXT

The error code generally contains the selector of the segment that caused the
protection violation. However, the RPL field (requesting privilege level) of the
error code does not contain the privilege level.

The values of bits 0 and 1 are determined as follows:

EXT (bit 0) is 1 if the exception is detected during an interrupt caused by an event
external to the program (i.e., an external interrupt, a single step, a
floating-point coprocessor-not-present exception, or a floating-point
coprocessor segment overrun). If bit O is set, the instruction pointed
to by the saved CS:EIP address is not responsible for the error. Bit 0
is clear if the exception is detected in processing the regular
instruction stream, even if the instruction stream is part of an external
interrupt handling procedure or task.

| (bit 1) is 1 if the selector points to the Interrupt Descriptor Table. In this
case, bit 2 can be ignored, and bits 3 through 15 contain the index into
the IDT. Bit 1 is clear if the selector points to the Global or Local
Descriptor Tables. In this case, bits 2 through 15 have their usual
selector interpretation: Tl (bit 2) selects the table (1 = Local, 0 =
Global) and bits 3 through 15 are the index into the table.

In some cases, the processor passes an error code with no information in it. In
these cases, all 16 bits of the error code are 0. The page fault exception passes an
error code with significant information only for the low-order 3 bits. (See the
descriptions of the individual exceptions following this section for details.)

ASM386 Assembly Language Reference Appendix A 623

The processor pushes the 16-bit error code onto the stack just before it transfers
control to an exception handler. If stacks were switched as a result of the interrupt
(if a privilege level change or task switch occurs), the error code appears on an
exception handler's stack, not on the stack of the interrupted task.

Processor Exception Conditions
This section summarizes the processor errors interrupts, exceptions and exception
error codes, as well as the conditions that cause each error, interrupt, or exception.
Interrupt O -- Divide Error

This fault occurs during BIV or IDIV instruction when the divisor is zero. Note
that a floating-point coprocessor zerodivide error generates the #MF exception, not
an Interrupt O.

Interrupt 1 -- Debug Exceptions

The processor triggers this interrupt; whether the exception is a fault or a trap
depends on the condition:

e Instruction address breakpoint fault
» Data address breakpoint trap
* General detect fault
* Single-step trap
» Task-switch breakpoint trap
The processor does not push an error code for the debug exception.
See also: debugging and the debug regisB®386 Programmer's Reference
Manual
breakpoints, Interrupt 3, in this appendix
Interrupt 2 -- NMI
NMI is a non-maskable interrupt signaled via the NMI# pin. This signal is
inhibited during the execution ®0OPSS orMOVSS in protected mode.
Interrupt 3 -- Breakpoint

TheINT 3 instruction causes this trapNT 3 is a 1-byte instruction so debuggers
can readily substitut?T 3's opcode for another opcode in an executable segment.

624 Appendix A Processor Architecture Summary

Interrupt 4 -- Overflow
The overflow trap occurs when the processor encounterstaninstruction and
the overflow flag (OF irEFLAGS is set.

Interrupt 5 -- Bounds Check

This fault occurs when the processor finds the©&/NDoperand exceeds the
specified limits, i.e. a signed array index exceeds the signed limits defined for it in
a block of memory.

#UD 6 -- Undefined Opcode (No Error Code)

This exception is generated when an invalid opcode is detected in the instruction
stream. Under normal circumstances, the assembler will not produce invalid
opcodes, nor will the processor allow a jump to a data segment; however, bad code
can still be executed, causing the #UD exception, in the following cases:

e The first byte of an instruction is completely invalid (e.g., 64H).

« The first byte indicates a two-byte opcode, and the second byte is invalid (e.g.,
OFH followed by OFFH).

e Aninvalid register is used with an otherwise valid opcode (e.g., MOV CS,AX).

* Aninvalid opcode extension is given in the reg field of the ModRM byte (e.g.,
OF6H /1).

« Aregister operand is given in an instruction that requires a memory operand
(e.g., LGDT AX).

* A LOCK prefix is used with an unlockable instruction.

Because the offending opcode will always be invalid, it cannot be restarted.
However, a #UD handler can be coded to implement an extension of the processor
instruction set. Such a handler can advance the return pointer beyond the extended
instruction and return control to the program after the extended instruction is
emulated; however, the extensions may be incompatible with the processor.

ASM386 Assembly Language Reference Appendix A 625

#NM 7 -- No Math Unit Available (No Error Code)

This exception occurs when the processor encounters a floating-point instruction
and the EM (emulate) bit or the TS (task switched) bit of the machine status word
is 1. Exception 7 also occurs whewalT instruction is encountered and both the
MP (monitor coprocessor) and TS bits of the machine status word are 1.

Depending on the setting of the machine status word bits that caused this exceptiol
an exception handler can emulate the floating-point coprocessor, or it can perform
a context switch of the math processor to prepare the floating-point coprocessor for
use by another task. The instruction that caused #NM can be restarted if the
handler performs a context switch. If the handler emulates the math unit, it should
advance the return pointer beyond the floating-point instruction that caused #NM.

#DF 8 -- Double Fault (Zero Error Code)

This exception is generated when a second exception is detected while the
processor is attempting to transfer control to an exception handler. For example,
#DF is generated if the code segment containing an exception handler is marked
"not present." It is also generated if calling an exception handler causes a stack
overflow.

The saved CS:EIP points to the instruction that was executing when the double
fault occurred. Because the #DF error code is 0, no information on the source of
the exception is available. Restart is not possible.

#DF is never generated during the execution of an exception handler. An exceptiol
detected within the instruction stream of an exception handler causes one of the
regular exceptions.

Interrupt 9 -- Coprocessor Segment Overrun

This exception is raised in processor protected mode if the floating-point
coprocessor overruns a page or segment limit while attempting to read/write the
non-initial byte of an operand.

626 Appendix A Processor Architecture Summary

#TS 10 -- Invalid Task State Segment (Selector Error Code)
This exception is generated when a task state is invalid. This occurs when:
e A task state segment is too small.
« The LDT indicated in a task state segment is invalid or not present.

e The CS, DS, ES, FS, GS, or SS indicated in a task state segment is invalid
(task switch).

* Aprivileged stack in a task state segment is invalid.
* The back link in a task state segment is invalid (inten@gk).

The error code passed to an exception handler contains the selector of the offending
segment, which can either be the task state segment's or another segment's selector
found within the task state segment. The instruction causing #TS can be restarted.
#TS must be handled through a task gate so that an exception handler has a valid
task environment in which to execute.

#TS is not generated when the CS, DS, ES, FS, GS, SS back link or privileged
stack selectors point to a descriptor that is not present but is valid otherwise; in
these cases, #NP or #SS is generated.

#NP 11 -- Not Present (Selector Error Code)

This exception occurs when CS, DS, ES, FS, GS, or the task register (TR) is loaded
with a descriptor that is marked not present but is otherwise valid. #NP can occur
in aLLDT instruction, but not when the processor attempts to load the LDT register
in a task switch (this causes the #TS exception). #NP also occurs when attempting
to use a gate that is marked "not present."

If #NP is detected during the loading of CS, DS, ES, FS, or GS in a task switch, the
exception occurs in the new task, and the IRET from an exception handler jumps
directly to the next instruction in the new task.

The #NP error code is the selector of the descriptor that is marked "not present.”

An #NP exception handler can be used to implement a virtual memory system.

The operating system can swap inactive memory segments to a mass storage device
such as a disk. An application program need not be informed of this. When the
program attempts to access the swapped-out memory segment, the #NP handler can
be invoked, the segment brought back into memory, and the offending instruction
restarted.

ASM386 Assembly Language Reference Appendix A 627

#SS 12 -- Stack Fault (Selector or Zero Error Code)

628

This exception is generated when a limit violation is detected in addressing through
the SS register. It can occur for stack-oriented instructions surRbiStor POR as
well as for other types of memory references using SS, sugb#sAX[EBP+28].

#SS can also occur for @NTERinstruction when there is not enough space on the
stack for the indicated local variable space, even if the stack exception is not
triggered by pushing (E)BP or copying the display stack. Therefore, a stack
exception can indicate a stack overflow, a stack underflow, or a wild offset. The
error code is 0 in these cases.

#SS is also generated during an attempt to load SS with a descriptor that is markec
"not present" but is otherwise valid. This can occur in a task switch, an interlevel
call, an interlevel return, a move to SS, or a pop to SS. The error code is not 0 in
these cases. An interlevel call deals with two stacks; #SS can occur on either one
of them. They are distinguished by the error code. If #SS is caused by a "not
present" condition or by overflow on the new stack in an interlevel call, the error
code contains the selector of the segment that caused the exception. Otherwise, tt
error code is 0.

#SS is never generated when addressing through the DS, ES FS, or GS registers,
even if the offending register points to the same segment as the SS register.

Appendix A Processor Architecture Summary

#GP 13 -- General Protection (Selector or Zero Error Code)

This exception is generated for all protection violations not covered by the other
exceptions in this section.

#GP is generated by an attempt to do any of the following:

Violate the privilege rules. For example, an occurrence of an interrupt or
exception via a trap or interrupt from virtual 8086 mode to a privilege level
other than 0 generates #GP.

Address a memory location using an offset that exceeds the limit for the
segment involved

Jump to a data segment
Write to a read-only segment
Exceed the instruction length limit of 15 bytes

Load SS with a selector for a system segment or a read-only segment when the
selector does not come from a task state segment (#TS occurs if it does come
from a task state segment.)

Load DS, ES, FS, or GS with the descriptor of a system segment or a non-
readable code segment

Access memory via DS, ES, FS, or GS when the segment register contains a
null selector

Switch to a task marked "busy"”

Load CRO with PG =1 and PE = 0 (paging enabled, protection disabled)

If #GP occurred while a descriptor is being loaded, the error code contains the
selector involved. Otherwise, the error code is 0. If the error code is not 0, the
instruction can be restarted if the erroneous condition is corrected. If the error code
is 0, either a limit violation, a write-protect violation, or an attempt to use an

invalid segment register occurred. An invalid segment register contains a value
from O to 3.

ASM386 Assembly Language Reference Appendix A 629

#PF 14 -- Page Fault (Type of Fault)

630

This exception is generated when a page fault occurs. Paging can be enabled
during protected mode or virtual 8086 mode (the PG bit of CRO equals 1).

The program currently executing is faulted in a manner that allows the instruction
to be restarted. When a page fault occurs, the CS and EIP register images point to
the instruction causing the page fault, and the control register CR2 is loaded with
the linear address causing the page fault.

The error code provides the following information in its lower three bits:

» Bit 0 (P) indicates whether a page fault was caused by a page not present
(P=0), or by a page level protection violation (P=1).

e Bit1 (W/R) indicates that the access causing the fault was a read (W/R = 0) or
a write (W/R = 1).

e Bit 2 (U/S) indicates that the fault occurred while at User level (U/S = 1) or at
Supervisor level (U/S = 0).

The remaining bits of the fault code provided by #PF are undefined.

Appendix A Processor Architecture Summary

#MF 16 -- Math Fault (No Error Code)

This exception is generated when the floating-point coprocessor detects an error.
The coprocessor signals an error by the ERROR# input pin leading from the
floating-point coprocessor to the processor. The processor tests ERROR# at the
beginning of most floating-point instructions and when a WAIT instruction is
executed with the EM bit of the machine status word set to O (i.e., no emulation of
the math unit). The floating-point instructions that do not cause the ERROR# pin
to be tested afeNCLEX FNINIT , FNSAVE FNSTCWFNSTSWandFNSTENV

ASM386 Assembly Language Reference Appendix A 631

Sample Program B

This appendix contains:

e The source code for a program that switches from real address mode to
protected mode.

* The listing generated by the ASM386 Macro Assembler for this program.

This example works on an Intel386 processor.

For an example of a program that uses the new instructions, $&®g¢nam
Development Templatesrder number 481894-001.

Sample Source Code

$TITLE('Protected Mode Transition -- 386 initialization')
NAME RESET

; Upon reset the 386 starts executing at address OFFFFFFFOH.
; The upper 12 address bits remain high until a FAR call or
; jump is executed.

; Assume the following:

; -a short jump at address OFFFFFFFOH (placed there by the
; system builder) causes execution to begin at START in
; segment RESET-CODE.

; -segment RESET_CODE is based at physical address OFFFFO000H,
; i.e. at the start of the last 64K in the 4G address space.

; Note that this is the base of the CS register at reset. If

; you locate ROMcode above this address, you will need to

; figure out an adjustment factor to address things within

; this segment.

$EJECT ;@newpage

ASM386 Assembly Language Reference Appendix B 633

; Define addresses to locate GDT and IDT in RAM.

; These addresses are also used in the BLD386 file that defines

; the GDT and IDT. If you change these addresses, make sure you
; change the base addresses specified in the build file.

GDTbase EQU 00001000H ; physical address for GDT base
IDTbase EQU 00000400H ; physical address for IDT base

PUBLIC GDT-EPROM
PUBLIC IDT-EPROM
PUBLIC START

DUMMY segment rw ; ONLY for ASM386 main module stack init
DW 0
DUMMY ends

; Note: RESET_CODE must be USE16 because the 386 initially executes
;inreal mode.

i

RESET_CODE segment er PUBLIC USE16

ASSUME DS:nothing, ES:nothing

; 386 Descriptor template

DESC STRUC

lim_0_15 DWO ; limit bits (0..15)

bas_0_15 DW O ; base bits (0..15)

bas_16_23 DB 0 ; base bits (16..23)

access DBO ; access byte

gran DBO ; granularity byte

bas_24 31 DBO ; base bits (24..31)
DESC ENDS

; The following is the layout of the real GDT created by BLD386.
; Itis located in EPROM and will be copied to RAM.

; GDTI[O] ... NULL

; GDT[1] ... Alias for RAM GDT
; GDT[2] ... Alias for RAM IDT

; GDT[2] ... initial task TSS

; GDT[3] ... initial task TSS alias
; GDT[4] ... initial task LDT

; GDT[5] ... initial task LDT alias

634 Appendix B Sample Program

; define entries in GDT and IDT.

GDT_ENTRIES EQU 8
IDT_ENTRIES EQU 32

; define some constants to index into the real GDT
GDT_ALIAS EQU 1*SIZE DESC

IDT_ALIAS EQU 2*SIZE DESC

INIT_TSS EQU 3*SIZE DESC

INIT_TSS_A EQU 4*SIZE DESC

INIT_LDT EQU 5*SIZE DESC
INIT_LDT_A EQU 6*SIZE DESC

i

; location of alias in INIT_LDT

INIT_LDT_ALIAS EQU 1*SIZE DESC

; access rights byte for DATA and TSS descriptors

DS_ACCESS EQU 10010010B
TSS_ACCESS EQU 10001001B

; This temporary GDT will be used to set up the real GDT in RAM.
Temp_GDT LABEL BYTE ; tag for begin of scratch GDT
NULL_DES DESC <> ; NULL descriptor

; 32-Gigabyte data segment based at 0
FLAT_DES DESC <0FFFFH,0,0,92h,0CFh,0>

GDT_eprom DP ? ; Builder places GDT address and limit
; in this 6 byte area.

IDT_eprom DP ? ; Builder places IDT address and limit
; in this 6 byte area.

ASM386 Assembly Language Reference Appendix B 635

; Prepare operand for loading GDTR and LDTR.

TGDT_pword LABEL PWORD ; for temp GDT
DW end_Temp_GDT-Temp_GDT -1
DD 0

GDT_pword LABEL PWORD ;for GDT in RAM
DW GDT_ENTRIES * SIZE DESC -1
DD GDTbase

IDT_pword LABEL PWORD ; for IDT in RAM
DW IDT_ENTRIES * SIZE DESC -1
DD IDTbase

end_Temp_GDT LABEL BYTE

i

; Define equates for addressing convenience.

GDT_DES_FLAT EQU DS:GDT_ALIAS +GDTbase
IDT_DES_FLAT EQU DS:IDT_ALIAS +GDTbase

INIT_TSS_A_OFFSET EQU DS:INIT_TSS_A
INIT_TSS_OFFSET EQU DS:INIT_TSS

INIT_LDT_A_OFFSET EQU DS:INIT_LDT_A
INIT_LDT_OFFSET EQU DS:INIT_LDT

; define pointer for first task switch

ENTRY_POINTER LABEL DWORD
DW O, INIT_TSS

i

i

; Jump from reset vector to here.

START:
CLI ;disable interrupts
CLD ;clear direction flag

LIDT NULL_des ;force shutdown on errors

636 Appendix B Sample Program

i

; move scratch GDT to RAM at physical 0

XOR DI,DI
MOV ES,DI ;point ES:DI to physical location 0

MOV SI,OFFSET Temp_GDT
MOV CX,end_Temp_GDT-Temp_GDT ;set byte count
INC CX

; move table

REP MOVS BYTE PTR ES:[DI],BYTE PTR CS:[SI]

LGDT tGDT_pword ;load GDTR for Temp. GDT
;(located at 0)

; switch to protected mode

MOV EAX,CRO ;get current CRO
ADD EAX,1 ;set PE bit
MOV CRO,EAX ;begin protected mode

i

; clear prefetch queue

JMP SHORT flush
flush:

; set DS,ES,SS to address flat linear space (0 ... 4GB)
MOV BX,FLAT_DES-Temp_GDT
MOV DS,BX

MOV ES,BX
MOV SS,BX

; initialize stack pointer to some (arbitrary) RAM location

MOV ESP, OFFSET end_Temp_GDT

i

; copy eprom GDT to RAM

MOV ESI,DWORD PTR GDT_eprom +2 ; get base of eprom GDT
; (put here by builder).

MOV EDI,GDTbase ; point ES:EDI to GDT base in RAM.

ASM386 Assembly Language Reference Appendix B 637

638

MOV CX,WORD PTR gdt_eprom +0 ; limit of eprom GDT
INC CX

SHR CX,1 ; easier to move words

CLD

REP MOVS WORD PTR ES:[EDI],WORD PTR DS:[ESI]

copy eprom IDT to RAM

MOV ESI,DWORD PTR IDT_eprom +2 ; get base of eprom IDT
; (put here by builder)

MOV EDI,IDTbase ; point ES:EDI to IDT base in RAM.
MOV CX,WORD PTR idt_eprom +0 ; limit of eprom IDT

INC CX

SHR CX,1

CLD

REP MOVS WORD PTR ES:[EDI],WORD PTR DS:[ESI]
switch to RAM GDT and IDT

LIDT IDT_pword

LGDT GDT_pword

MOV BX,GDT_ALIAS ; point DS to GDT alias
MOV DS,BX

copy eprom TSS to RAM

MOV BX,INIT_TSS_A ; INIT_TSS_A descriptor base
; has RAM location of INIT_TSS.

MOV ES,BX ; ES points to TSS in RAM

MOV BX,INIT_TSS ; get initial task selector

LAR DX,BX ; save access byte

MOV [BX].access,DS_ACCESS ; set access as data segment
MOV FS,BX ; FS points to eprom TSS

XOR SI,SI ; FS:SI points to eprom TSS

XOR DI,DI ; ES:DI points to RAM TSS

MOV CX,[BX].lim_0_15 ; get count to move

INC CX

Appendix B

Sample Program

; move INIT_TSS to RAM.
REP MOVS BYTE PTR ES:[DI],BYTE PTR FS:[SI]

MOV [BX].access,DH ; restore access byte

; change base of INIT_TSS descriptor to point to RAM.

MOV AX,INIT_TSS_A_OFFSET.bas_0_15
MOV INIT_TSS_OFFSET.bas_0_15,AX
MOV AL,INIT_TSS_A_OFFSET.bas_16_23
MOV INIT_TSS_OFFSET.bas_16_23,AL
MOV AL,INIT_TSS_A_OFFSET.bas_24 31
MOV INIT_TSS_OFFSET.bas_24_31,AL

change INIT_TSS_A to form a save area for TSS on first task
; switch. Use RAM at location 0.

MOV BX,INIT_TSS_A

MOV WORD PTR [BX].bas_0_15,0

MOV [BX].bas_16_23,0

MOV [BX].bas_24 31,0

MOV [BX].access, TSS_ACCESS

MOV [BX].gran,0

LTR BX ; defines save area for TSS

copy eprom LDT to RAM

MOV BX,INIT_LDT_A ; INIT_LDT_A descriptor has
; base address in RAM for INIT_LDT.

MOV ES,BX ; ES points LDT location in RAM.

MOV AH,[BX].bas_24 31
MOV AL,[BX].bas_16_23

SHL EAX,16

MOV AX,[BX].bas_0_15 ; save INIT_LDT base (ram) in EAX
MOV BX,INIT_LDT ; get initial LDT selector

LAR DX,BX ; save access rights

MOV [BX].access,DS_ACCESS ; set access as data segment
MOV FS,BX ; FS points to eprom LDT

XOR SI,SI ; FS:SI points to eprom LDT

XOR DI,DI ; ES:DI points to RAM LDT

MOV CX,[BX].lim_0_15 ; get count to move

INC CX

ASM386 Assembly Language Reference Appendix B 639

; move initial LDT to RAM
REP MOVS BYTE PTR ES:[DI],BYTE PTR FS:[SI]

MOV [BX].access,DH ; restore access rights in
; INIT_LDT descriptor

i

; change base of alias (of INIT_LDT) to point to location in RAM.

MOV ES:[INIT_LDT_ALIAS].bas_0_15,AX
SHR EAX,16
MOV ES:[INIT_LDT_ALIAS].bas_16_23 AL
MOV ES:[INIT_LDT_ALIAS].bas_24 31,AH

i

; now set the base value in INIT_LDT descriptor

MOV AX,INIT_LDT_A_OFFSET.bas_0_15
MOV INIT_LDT_OFFSET.bas_0_15AX
MOV AL,INIT_LDT_A_OFFSET.bas_16_23
MOV INIT_LDT_OFFSET.bas_16_23,AL
MOV AL,INIT_LDT_A_OFFSET.bas_24 31
MOV INIT_LDT_OFFSET.bas_24 31,AL

; Now GDT, IDT, initial TSS and initial LDT are all set up.
; Start the first task!

JMP ENTRY_POINTER

RESET_CODE ends
END START, SS:DUMMY,DS:DUMMY

Sample Listing

640

The following pages are a listing of the preceding program.

Appendix B

Sample Program

OS Vx.y (038-N) 80386 MACRO ASSEMBLER Protected Mode Transition -- 386 initialization
09:37:35 11/11/87 PAGE 1

OS Vx.y (038-N) 80386 MACRO ASSEMBLER Xnnn, ASSEMBLY OF MODULE RESET
OBJECT MODULE PLACED IN RESET.OBJ
ASSEMBLER INVOKED BY: C\TSTASM\ASM386.EXE RESET.SRC

LOC OBJ LINE SOURCE
1 +1 $TITLE(Protected Mode Transition -- 386
initialization")
2 NAME RESET

; Upon reset the 386 starts executing at address

; OFFFFFFFOH. The upper 12 address bits remain high

; until a FAR call or jump is executed.

10 ;

11 ; Assume the following:

12 ;

13 ;

14 ; - a short jump at address OFFFFFFFOH (placed there by
15 ; the system builder) causes execution to begin at

16 ; START in segment RESET_CODE.

17 ;

18 ;

19 ; - segment RESET_CODE is based at physical address
20 ; OFFFFOOOOH, i.e. at the start of the last 64K in the 4G
21 ; address space. Note that this is the base of the CS

22 ; register at reset. If you locate ROMcode above this

23 ; address, you will need to figure out an adjustment

24 ; factor to address things within this segment.

25 ;

27 +1 $EJECT ;@newpage

ASM386 Assembly Language Reference Appendix B 641

OS Vx.y (038-N) 80386 MACRO ASSEMBLER Protected Mode Transition -- 386 initialization

09:37:35 11/11/87 PAGE 2

LOC OBJ

1000
0400

LINE SOURCE

28

29

30 ; Define addresses to locate GDT and IDT in RAM.

31 ; These addresses are also used in the BLD386 file that

32 ; defines the GDT and IDT. If you change these

33 ; addresses, make sure you change the base addresses
specified in the build file.

34

35 GDTbase EQU 00001000H ; physical address for GDT base

36 IDTbase EQU 00000400H ; physical address for IDT base

37

38 PUBLIC GDT_EPROM

39 PUBLIC IDT_EPROM

40 PUBLIC START

41

42 DUMMY segment rw ; ONLY for ASM386 main module stack init

00000000 0000 43 DWO

44 DUMMY ends
45
46

0000
0002
0004
0005
0006

642

47 ;
48 ; Note: RESET_CODE must be USE16 because the 386
49 ; initially executes in real mode.
50 ;
51
52 RESET_CODE segment er PUBLIC USE16
53
54 ASSUME DS:nothing, ES:nothing
55
56 ;
57 ; 386 Descriptor template
58 ;
59 DESC STRUC
60 lim_0_15 DWO ; limit bits (0..15)
61 bas_0_15 DWO ; base bits (0..15)
62 bas_16_23DBO0 ; base bits (16..23)
63 access DBO ;access byte
64 gran DBO ;granularity byte

0007 65 bas_24_31DBO ; base bits (24..31)

66 DESC ENDS

67

68 ; The following is the layout of the real GDT created by

69 ; BLD386. Itis located in EPROM and will be copied to
RAM.

Appendix B

Sample Program

70 ;

71 ; GDT[O] ... NULL

72 ; GDT[1] ... Alias for RAM GDT
73 ; GDT[2] ... Alias for RAM IDT
74 ; GDT[2] ... initial task TSS

75 ; GDTI[3] ... initial task TSS alias
76 ; GDT[4] ... initial task LDT

77 ; GDTI[5] ... initial task LDT alias

78
79 ;
80 ; define entries in GDT and IDT.
81
0008 82 GDT_ENTRIES EQU 8

OS Vx.y (038-N) 80386 MACRO ASSEMBLER Protected Mode Transition -- 386 initialization
09:37:35 11/11/87 PAGE 3

LOC OBJ LINE SOURCE

0020 83 IDT_ENTRIES EQU 32
84
85 ; define some constants to index into the real GDT
86

0008 87 GDT_ALIAS EQU 1*SIZE DESC

0010 88 IDT_ALIAS EQU 2*SIZE DESC

0018 89 INIT_TSS EQU 3*SIZE DESC

0020 90 INIT_TSS_A EQU 4*SIZE DESC

0028 91 INIT_LDT EQU 5*SIZE DESC

0030 92 INIT_LDT_A EQU 6*SIZE DESC
93
94 ;
95 ; location of alias in INIT_LDT
96

0008 97 INIT_LDT_ALIAS EQU 1*SIZE DESC
98
99 ;
100 ; access rights byte for DATA and TSS descriptors
101

0092 102 DS_ACCESS EQU 10010010B

0089 103 TSS_ACCESS EQU 10001001B
104
105
106 ;
107 ; This temporary GDT will be used to set up the real GDT

in RAM.

108

0000 109 Temp_GDT LABEL BYTE ; tag for begin of scratch GDT
110

0000 0000 111 NULL_DES DESC <> ; NULL descriptor

ASM386 Assembly Language Reference Appendix B

643

0002 0000

0004 00
0005 00
0006 00
0007 00
112
113 ; 32-Gigabyte data segment based at 0
0008 FFFF 114 FLAT_DES DESC <0FFFFH,0,0,92h,0CFh,0>
000A 0000
000C 00
000D 92
000E CF
000F 00
115
116
0010 ???2??2??2????? 117 GDT_eprom DP ? ; Builder places GDT address and
118 ; limit in this 6 byte area.
119
0016 ???2????2????? 120 IDT_eprom DP ? ; Builder places IDT address and
121 ; limit in this 6 byte area.
122
123 ;
124 ; Prepare operand for loading GDTR and LDTR.
125
001C 126 TGDT_pword LABEL PWORD ; for temp GDT
001C 2D00 127 DW end_Temp_GDT-Temp_GDT -1

OS Vx.y (038-N) 80386 MACRO ASSEMBLER Protected Mode Transition -- 386 initialization
09:37:35 11/11/87 PAGE 4

LOC OBJ LINE SOURCE
001E 00000000 128 DD 0O
129
0022 130 GDT_pword LABEL PWORD ;for GDT in RAM
0022 3F00 131 DW GDT_ENTRIES * SIZE DESC -1
0024 00100000 132 DD GDTbase
133
0028 134 IDT_pword LABEL PWORD ;for IDT in RAM
0028 FFO0 135 DW IDT_ENTRIES * SIZE DESC -1
002A 00040000 136 DD IDTbase
137
002E 138 end_Temp_GDT LABEL BYTE
139
140 ;
141 ; Define equates for addressing convenience.
142
1008: 143 GDT_DES_FLAT EQU DS:GDT_ALIAS +GDTbase
1010: 144 IDT_DES_FLAT EQU DS:IDT_ALIAS +GDTbase
145

644 Appendix B Sample Program

0020 146 INIT_TSS_A_OFFSET EQU DS:INIT_TSS_A

0018: 147 INIT_TSS_OFFSET EQU DS:INIT_TSS
148
0030: 149 INIT_LDT_A_OFFSET EQU DS:INIT_LDT_A
0028: 150 INIT_LDT_OFFSET EQU DS:INIT_LDT
151
152
153 ; define pointer for first task switch
154
002E 155 ENTRY_POINTER LABEL DWORD
002E 0000 156 DW O, INIT_TSS
0030 1800
157
158
159 ;
160 ; Jump from reset vector to here.
161
0032 162 START:
163
0032 FA 164 CLI ;disable interrupts
0033 FC 165 CLD ;clear direction flag
166
0034 2EOF011E0000 R 167 LIDT NULL_des ;force shutdown on errors
168
169 ;
170 ; move scratch GDT to RAM at physical 0
171
003A 31FF 172 XOR DI,DI
003C 8EC7 173 MOV ES,DI ;point ES:DI to physical location 0
174
003E BE0O0OO R 175 MOV SI,OFFSET Temp_GDT
0041 B92EOO 176 MOV CX,end_Temp_GDT-Temp_GDT ;set byte count
0044 41 177 INC CX
178 ;
179 ; move table
180
0045 F32EA4 181 REP MOVS BYTE PTR ES:[DI|,BYTE PTR CS:[SI]

OS Vx.y (038-N) 80386 MACRO ASSEMBLER Protected Mode Transition -- 386 initialization
09:37:35 11/11/87 PAGE 5

LOC OBJ LINE SOURCE
182
0048 2EOF01161C00 R 183 LGDT tGDT_pword ;load GDTR for Temp. GDT
184 ;(located at 0)
185
186 ; switch to protected mode
187
004E 660F20C0O 188 MOV EAX,CRO ;get current CRO
0052 660501000000 189 ADD EAX,1 ;set PE bit

ASM386 Assembly Language Reference Appendix B

645

0058 660F22C0 190 MOV CRO,EAX ;begin protected mode

191 ;
192 ; clear prefetch queue
193
005C EBOO 194 JMP SHORT flush
005E 195 flush:
196
197 ; set DS,ES,SS to address flat linear space (0 ... 4GB)
198
005E BB0800 199 MOV BX,FLAT_DES-Temp_GDT
0061 8EDB 200 MOV DS,BX
0063 8EC3 201 MOV ES,BX
0065 8ED3 202 MOV SS,BX
203 ;
204 ; initialize stack pointer to some (arbitrary) RAM
location
205
0067 66BC2E000000 R 206 MOV ESP, OFFSET end_Temp_GDT
207
208 ;
209 ; copy eprom GDT to RAM
210
006D 662E8B361200 R 211 MOV ESI,DWORD PTR GDT_eprom +2 ; get base of eprom GDT
212 ; (put here by builder).
213
0073 66BF00100000 214 MOV EDI,GDTbase ; point ES:EDI to GDT base in RAM.
215

0079 2E8BOE1000 R 216 MOV CX,WORD PTR gdt_eprom +0 ; limit of eprom GDT
007E 41 217 INC CX

007F D1E9 218 SHR CX,1 ; easier to move words
0081 FC 219 CLD
0082 F367A5 220 REP MOVS WORD PTR ES:[EDI, WORD PTR DS:[ESI]
221
222 ;
223 ; copy eprom IDT to RAM
224 ;
0085 662E8B361800 R 225 MOV ESI,DWORD PTR IDT_eprom +2 ; get base of eprom IDT
226 ; (put here by builder)
227
008B 66BF00040000 228 MOV EDI,IDThase ; point ES:EDI to IDT base in RAM.
229

0091 2E8BOE1600 R 230 MOV CX,WORD PTR idt_eprom +0 ; limit of eprom IDT
0096 41 231 INC CX

0097 D1E9 232 SHRCX,1

0099 FC 233 CLD

009A F367A5 234 REP MOVS WORD PTR ES:[EDI,WORD PTR DS:[ESI]
235

236 ; switch to RAM GDT and IDT

646 Appendix B

Sample Program

OS Vx.y (038-N) 80386 MACRO ASSEMBLER Protected Mode Transition -- 386 initialization
09:37:35 11/11/87 PAGE 6

LOC OBJ LINE SOURCE
237 ;

009D 2EOF011E2800 R 238 LIDT IDT_pword
00A3 2EOF01162200 R 239 LGDT GDT_pword

240
241 ;
00A9 BB0800 242 MOV BX,GDT_ALIAS ; point DS to GDT alias
00AC 8EDB 243 MOV DS,BX
244 ;
245 ; copy eprom TSS to RAM
246 ;
00AE BB2000 247 MOV BX,INIT_TSS_A ; INIT_TSS_A descriptor base
248 ; has RAM location of INIT_TSS.
249
00B1 8EC3 250 MOV ES,BX ; ES points to TSS in RAM
251
00B3 BB1800 252 MOV BX,INIT_TSS ; get initial task selector
00B6 0F02D3 253 LAR DX,BX ; save access byte
00B9 C6470592 254 MOV [BX].access,DS_ACCESS ; set access as data segment
00BD 8EE3 255 MOV FS,BX ; FS points to eprom TSS
256
00BF 31F6 257 XOR SI,SI ; FS:SI points to eprom TSS
00C1 31FF 258 XOR DI,DI ; ES:DI points to RAM TSS
259
00C3 8BOF 260 MOV CX,[BX].lim_0_15 ; get count to move
00C5 41 261 INC CX
262
263 ;
264 ; move INIT_TSS to RAM.
265
00C6 F364A4 266 REP MOVS BYTE PTR ES:[DI],BYTE PTR FS:[SI]
267
00C9 887705 268 MOV [BX].access,DH ; restore access byte
269
270 ;
271 ; change base of INIT-TSS descriptor to point to RAM.
272
00CC A12200 273 MOV AX,INIT_TSS_A_OFFSET.bas_0_15
00CF A31A00 274 MOV INIT_TSS_OFFSET.bas_0_15AX
00D2 A02400 275 MOV AL,INIT_TSS_A_OFFSET.bas_16_23
00D5 A21C00 276 MOV INIT_TSS_OFFSET.bas_16_23,AL
00D8 A02700 277 MOV AL,INIT_TSS_A_OFFSET.bas_24_31
00DB A21F00 278 MOV INIT_TSS_OFFSET.bas_24 31,AL
279
280 ;

281 ; change INIT_TSS_A to form a save area for TSS on
282 ; first task switch. Use RAM at location 0.

ASM386 Assembly Language Reference Appendix B

647

283

00DE BB2000 284 MOV BX,INIT_TSS_A

00E1 C747020000 285 MOV WORD PTR [BX].bas_0_15,0

00E6 C6470400 286 MOV [BX].bas_16_23,0

00EA C6470700 287 MOV [BX].bas_24_31,0

0OEE C6470589 288 MOV [BX].access, TSS_ACCESS

00F2 C6470600 289 MOV [BX].gran,0

00F6 OFO0ODB 290 LTR BX ; defines save area for TSS
291

OS Vx.y (038-N) 80386 MACRO ASSEMBLER Protected Mode Transition -- 386 initialization
09:37:35 11/11/87 PAGE 7

LOC OBJ LINE SOURCE

292 ;
293 ; copy eprom LDT to RAM
294 ;
00F9 BB3000 295 MOV BX,INIT_LDT_A ; INIT_LDT_A descriptor has
296 ; base address in RAM for
; INIT_LDT.
297
00FC 8EC3 298 MOV ES,BX ; ES points LDT location in RAM.
299
0OFE 8A6707 300 MOV AH,[BX].bas_24 31
0101 8A4704 301 MOV AL,[BX].bas_16_23
0104 66C1E010 302 SHL EAX,16
0108 8B4702 303 MOV AX,[BX].bas_0_15 ;save INIT_LDT base (ram) in EAX
304
010B BB2800 305 MOV BX,INIT_LDT ; get initial LDT selector
010E 0OF02D3 306 LAR DX,BX ; save access rights
0111 C6470592 307 MOV [BX].access,DS_ACCESS ; set access as data segment
0115 8EE3 308 MOV FS,BX ; FS points to eprom LDT
309
0117 31F6 310 XOR SI,SI ; FS:SI points to eprom LDT
0119 31FF 311 XOR DI,DI ; ES:DI points to RAM LDT
312
011B 8BOF 313 MOV CX,[BX].im_0_15 ; get count to move
011D 41 314 INC CX
315 ;
316 ; move initial LDT to RAM
317
011E F364A4 318 REP MOVS BYTE PTR ES:[DI,BYTE PTR FS:[SI]
319
0121 887705 320 MOV [BX].access,DH ; restore access rights in
321 ; INIT_LDT descriptor
322
323 ;
324 ; change base of alias (of INIT_LDT) to point to
location in RAM.

648 Appendix B

Sample Program

325
0124 26A30A00 326 MOV ES:[INIT_LDT_ALIAS].bas_0_15AX
0128 66C1E810 327 SHR EAX,16
012C 26A20C00 328 MOV ES:[INIT_LDT_ALIAS].bas_16_23,AL
0130 2688260F00 329 MOV ES:[INIT_LDT_ALIAS].bas_24 31,AH

330 ;

331 ; now set the base value in INIT_LDT descriptor

332
0135 A13200 333 MOV AX,INIT_LDT_A_OFFSET.bas_0_15
0138 A32A00 334 MOV INIT_LDT_OFFSET.bas_0_15,AX
013B A03400 335 MOV AL,INIT_LDT_A_OFFSET.bas_16_23
013E A22C00 336 MOV INIT_LDT_OFFSET.bas_16_23,AL
0141 A03700 337 MOV AL,INIT_LDT_A_OFFSET.bas_24_31
0144 A22F00 338 MOV INIT_LDT_OFFSET.bas_24_31,AL

339

340 ;

341 ; Now GDT, IDT, initial TSS and initial LDT are all

; setup.

342 ;

343 ; Start the first task!

344 ;
0147 2EFF2E2E00 R 345 JMP ENTRY_POINTER

346
OS Vx.y (038-N) 80386 MACRO ASSEMBLER Protected Mode Transition -- 386 initialization
09:37:35 11/11/87 PAGE 8

LOC OBJ LINE SOURCE
-—-- 347 RESET_CODE ends
** WARNING #377 IN 347, (PASS 2) SEGMENT CONTAINS PRIVILEGED INSTRUCTION(S)

348 END START, SS:DUMMY,DS:DUMMY
ASSEMBLY COMPLETE, 1 WARNING, NO ERRORS.

ASM386 Assembly Language Reference Appendix B

649

Keywords And
Reserved Words

This appendix lists assembler keywords and reserved words. Keywords consist of
processor and numerics coprocessor mnemonics. Reserved words consist of all
predefined keywords except the mnemonics.

Programmer-defined mnemonics may be defined as aliases for keywords if (1) the
programmer-defined substitute is equated to the keyword with the EQU directive
and (2) the original keyword is then purged with BuRGHlirective. Programmer-
defined aliases may be substituted for assembler reserved words if they are defined
with EQU. However, reserved words cannot be purged.

See also: PURGHlirective, Chapter 4

Note thatANQ NOT, OR XOR SHR andSHL function as both processor instructions
and assembler operators. As operators, they are considered reserved words that
cannot be purged. As instructions, they may be aliased to an identifier with EQU;
this will not affect the use gfNQ NOT, OR XOR SHR andSHL as operators.

ASM386 Assembly Language Reference Appendix C 651

AAA
AAD
AAM
AAS
ADC
ADD
AND
ARPL
BOUND
BSF
BSR
BSWAP
BT
BTC
BTR
BTS
CALL
CBW
CcDQ
cLC
CLD
cLI
CLTS
cMC
CMP
CMPS
CMPSB
CMPSD
CMPSW
CMPXCHG
CWD
CWDE
DAA
DAS
DIV
ENTER
ESC
F2XM1
FABS
FADD
FADDP
FBLD
FBSTP
FCHS
FCLEX

Appendix C

Table C-1. Assembler Keywords

FCOM
FCOMP
FCOMPP
FCOS
FDECSTP
FDISI
FDIV
FDIVP
FDIVR
FDIVRP
FENI
FFREE
FIADD
FICOM
FICOMP
FIDIV
FIDIVR
FILD
FIMUL
FINCSTP
FINIT
FIST
FISTP
FISUB
FISUBR
FLD
FLD1
FLDCW
FLDENV
FLDL2E
FLDL2T
FLDLG2
FLDLNZ2
FLDPI
FLDZ
FMUL
FMULP
FNCLEX
FNDISI
FNENI
FNINIT
FNOP
FNSAVE
FNSTCW
FNSTENV

FNSTSW JA LIDTD
FPATAN JAE LIDTW
FPREM JB LLDT
FPTAN JBE LMSW
FRNDINT JC LOCK
FRSTOR JCXZ LODS
FSAVE JE LODSB
FSCALE JECXZ LODSD
FSETPM JG LODSW
FSIN JGE LOOP
FSINCOS JL LOOPE
FSQRT JLE LOOPNE
FST JMP LOOPNZ
FSTCW JNA LOOPZ
FSTENV JNAE LSL
FSTP JNB LSS
FSTSW JNBE LTR
FSuB JNC MOV
FSUBR JNE MOVS
FSUBRP ING MOVSB
FTST IJNGE MOVSD
FUCOM JNL MOVSW
FUCOMP JNLE MOVSX
FUCOMPP JNO MOVZX
FWAIT JNP MUL
FXAM JNS NEG
FXCH INZ NI
FXTRACT JO NOP
FYL2X JP NOT
FYL2XP1 JPE OR
HLT JPO ouT
IDIV Js OUTS
IMUL JZ OUTSB
IN LAHF OUTSD
INC LAR ouTSW
INS LDS POP
INSB LEA POPA
INSD LEAVE POPAD
INSW LES POPF
INT LFS POPFD
INTO LGDT PUSH
INVD LGDTD PUSHA
INVLPG LGDTW PUSHAD
IRET LGS PUSHF
IRETD LIDT PUSHFD
Keywords and Reserved Words 652

RCL
RCR
REP
REPE
REPNE
REPNZ
REPZ
RET
ROL
ROR
SAHF
SAL
SAR
SBB
SCAS
SCASB

Table C-1. Assembler Keywords (continued)

SCASD
SCASW
SETA
SETAE
SETB
SETBE
SETC
SETE
SETG
SETGE
SETL
SETLE
SETNA
SETNAE
SETNBE
SETNC

SETNE
SETNGE
SETNL
SETNLE
SETNO
SETNP
SETNS
SETNZ
SETO
SETP
SETPE
SETPO
SETS
SETZ
SGDT
SGDTW

SHL
SHLD
SHR
SHRD
SIDT
SIDTD
SIDTW
SLDT
SMSW
STC
STD
STI
STOS
STOSB
STOSD
STOSW

STR
SuUB
TEST
VERR
VERW
WAIT
WBINVD
XADD
XCHG
XLAT
XLATB
XOR

TNIL is the "empty imperative.” The assembler generates no opcode when NIL is specified.

ASM386 Assembly Language Reference

Appendix C

653

Table C-2. Assembler Reserved Words

ABS DH EO NEAR SHORT
AH DI EQ NOSEGFIX SHR
AL DL EQU NOT Sl
ALIGN DP ER NOTHING SIZE
AND DQ ES OFFSET SP
ASSUME DRO ESI OR SS
AX DR1 ESP ORG ST
BH DR2 EVEN PREFIX66 STACKSEG
BIT DR3 EXTRN PREFIX67 STACKSTART
BITOFFSET DR6 FAR PREFX STRUC
BL DR7 FS PROC TBYTE
BP DS GE PROCLEN THIS
BX DT GS PTR TR3
BYTE DUP GT PUBLIC TR4
CH DW HIGH PURGE TRS
CL DWORD HIGHW PWORD TR6
CODEMACRO DX LABEL QWORD TR7
COMM EAX LE RECORD TYPE
COMMON EBP LENGTH RELB USE16
CRO EBX LOW RELD USE32
CR2 ECX LOWW RELW WARNING
CRS3 EDI LT RO wcC
CS EDX MASK RW WIDTH
CX END MOD SEG WORD
DB ENDM MODRM SEGFIX XOR
DBIT ENDP NAME SEGMENT ?
DD ENDS NE SHL

[N

Appendix C Keywords and Reserved Words 654

ASCII Tables

Table D-1 lists the ASCII character set according to its hexadecimal collating
sequence. Table D-2 summarizes the ASCII non-printable characters and their
respective functions.

Table D-1. ASCII Collating Sequence

Hex ASCII Hex ASCII
Value Character Value Character
00 NUL 17 ETB
01 SOH 18 CAN
02 STX 19 EM
03 ETX 1A SUB
04 EOT 1B ESC
05 ENQ 1C FS
06 ACK 1D GS
07 BEL 1E RS
08 BS 1F us
09 HT 20 Sp

0A LF 21 !
0B VT 22 :
(0]08 FF 23 #
oD CR 24 $
OE SO 25 %
OF Sl 26 &
10 DLE 27 '
11 DC1 28 (
12 DC2 29)
13 DC3 2A *
14 DC4 2B +
15 NAK 2C '
16 SYN 2D -
continued

ASM386 Assembly Language Reference Appendix D 655

Table D-1 ASCII Collating Sequence (continued)

Hex ASCII Hex ASCII
Value Character Value Character
2E . 57 w
2F / 58 X
30 0 59 Y
31 1 5A Z
32 2 5B [
33 3 5C \
34 4 5D |
35 5 5E +
36 6 5F
37 7 60
38 8 61 a
39 9 62 b
3A : 63 c
3B ; 64 d
3C < 65 e
3D = 66 f
3E > 67 g
3F ? 68 h
40 @ 69 i
41 A 6A j
42 B 6B k
43 C 6C I
44 D 6D m
45 E 6E n
46 F 6F 0]
47 G 70 p
48 H 71 q
49 I 72 r
4A J 73 S
4B K 74 t
4C L 75 u
4D M 76 v
4E N 77 w
4F (@) 78 X
50 P 79 y
51 Q 7A z
52 R 7B {
53 S 7C |
54 T 7D }
55 U 7E [degree]
56 \ 7F DEL

656 Appendix D ASCII Tables

Table D-2. ASCII Non-Printable Characters

Hex Value Abbreviation Meaning
00 NUL NULL Character
01 SOH Start of Heading
02 STX Start of Text
03 ETX End of Text
04 EOT End of Transmission
05 ENQ Enquiry
06 ACK Acknowledge
07 BEL Bell
08 BS Backspace
09 HT Horizontal Tabulation
0A LF Line Feed
0B VT Vertical Tabulation
oC FF Form Feed
oD CR Carriage Return
OE SO Shift Out
OF Sl Shift In
10 DLE Data Link Escape
11 DC1 Device Control 1
12 DC2 Device Control 2
13 DC3 Device Control 3
14 DC4 Device Control 4
15 NAK Negative Acknowledge
16 SYN Synchronous Idle
17 ETB End of Transmission Block
18 CAN Cancel
19 EM End of Medium
1A SUB Substitute
1B ESC Escape
1C FS File Separator
1D GS Group Separator
1E RS Record Separator
1F us Unit Separator
20 SP Space
7F DEL Delete
[|

ASM386 Assembly Language Reference Appendix D

657

Differences Between
ASM386 and ASM286

This appendix summarizes the major differences between the ASM386 and
ASM286 assembly languages.

New Processor Registers

The following processor registers are not part of the Intel286 processor register set:

The 32-bit general registers -- EAX, ECX, EDX, EBX, EBP, ESI, EDI, and
ESP

The two "extra" segment registers, FS and GS

The 32-bit instruction pointer register, EIP

The 32-bit flag register, EFLAGS

The control registers, CRO, CR1 (reserved), CR2, CR3 (PDBR)

The debug and test registers, DRO, DR1, DR2, DR3, DR6, DR7, TR6, TR7

New Instructions

The processor instruction set contains the following instructions that are not part of
the Intel286 processor instruction set:

BSF, BSR, BT, BTC, BTR, BTS, CDQ, CMPSD, CWDE, INSD, IRETD,

JECXZ, LFS, LGDTD, LGDTW, LGS, LIDTD, LIDTW, LODSD, LSS, MOVSD,
MOVSX, MOVZX, OUTSD, POPAD, POPFD, PUSHAD, PUSHFD, SCASD, SET,
SETAE, SETB, SETC, SETE, SETG, SETGE, SETL, SETLE, SETNA,

SETNAE, SETNB, SEGNBE, SETNC, SETNE, SETNG, SETNGE, SETNL,
SETNLE, SETNO, SETNP, SETNS, SETNZ, SETO, SETP, SETPO, SETPE,
SETS, SETZ, SGDTD, SGDTW, SHLD, SIDTD, SIDTW, SHRD, STOSD

See also: Processor instructions, Chapter 6

ASM386 Assembly Language Reference Appendix E 659

The floating-point coprocessor instruction set contains the following instructions
that are not part of the Intel287 coprocessor (and the ASM286) instruction set:

FCOS, FPREM1, FUCOM, FUCOMP, FUCOMPP, FSIN, FSINCOS
The Intel287 coprocessBBETPMinstruction is an Intel387 coprocessotOP

See also: Floating-point coprocessor instruction set, Chapter 7

Processor Paging Mechanism

The processor has a paging mechanism, an optional addressing structure that can
used in protected mode and virtual 8086 mode, but not in real address mode.

See also: Pagin@0386 Programmer's Reference Manual

Addressing Differences

* The processor and ASM386 allow both 16-bit and 32-bit addressing. Each
ASM386 segment is given a use attributésSE32 specifies that the assembler
should generate 32-bit offsets for logical addresses in the segmeausanél
specifies that the assembler should generate 16-bit offsets. The default is
USE32 but 32-bit addressing can be used to access 16-bit logical addresses an
vice versa. Th&/SE32default can be overridden by specifyld§E16in a
segment definition or for the whole module with an assembler control.

e The processor and assembler allow you to use any general register as a base c
index register (except ESP). This differs from the Intel286 processor and
ASM286, for which only the registers BX, BP, Sl, or DI could be used as base
or index registers.

e The processor and assembler permit index scaling, in which the contents of an
index register can be multiplied by a factor of 1, 2, 4, or 8. Scaling is not
available in ASM286.

e TheEVENassembler directive aligns to dword boundarie$S&32 segments.
In USE16 segmentsiVENaligns to word boundaries as it does in ASM286.

See also: Addressing information, Chapter 5
index registers, Chapter 5

660 Appendix E Differences Between ASM386 and ASM286

Data Types

Two new data types are available in the assembler that are not available in
ASM286 -- theBIT andPWORMData types. These are defined with the assembler
directives DBIT and DP, respectively.

See also: Data types, Chapter 4

Bit Manipulation

TheBIT data type allows programmers to directly access and change individual
bits, a feature that is not available with ASM286 and the Intel286 processor.
However, you need not declare data as type BIT in order to use the processor bit
instructions (BT, BTS, BTR, BTC, BSF, and BSR). These instructions provide
direct control over individual bits in bit strings. TBEOFFSET operator can

return the offset of a structure field of type .

See also: BITOFFSET operator, Chapter 5

Assembler Directives

The assembler includes th®MMirective for variables and labels shared across
modules. This directive supports the assembler interface to C language programs.

See also: COMMlirective, Chapter 3

ASM386 includes thaLIGN directive to set the location counter to a value that is
evenly divisible by the specified number for alignment of subsequent code or data.

Assembler Operators
The following assembler operators are not part of ASM286:

e HIGHWandLOWwWeturn the high-or low-order word of a dword operand,
respectively.

e BITOFFSET returns the bit offset from the nearest lower byte address of a
structure field of typ®IT .

ASM386 Assembly Language Reference Appendix E 661

Assembler Arithmetic

The assembler evaluates expressions in 64-bit two's complement integer arithmetic

ASM286 evaluates expressions with 17-bit arithmetic and truncates fractions to
zero.

Prefix66 and Prefix67 Codemacro Directives

662

Assembler codemacro definitions may include two new directives:
PREFIX66 tells the assembler to generate operand size prefix bytes, if necessary.
PREFIX67 tells the assembler to generate address size prefix bytes, if necessary.

PREFIX66 allows codemacros to reference operands whose type implies a different
USEattribute than the segment of the codemacro EREFIX67 allows

codemacros to reference operands whose defining segment has a difg&ent
attribute than the segment of the codemacro call.

Appendix E Differences Between ASM386 and ASM286

Differences Between the
Intel386 [0 and 376 Processors

The 376 processor is a member of the Intel386 Family of Microprocessors. It has
been streamlined for use in embedded applications.

The 376 processor can execute all 32-bit programs for the Intel386 processor that
do not depend on paging or Virtual-86 mode.

The main differences between the Intel386 and 376 processors are summarized in
the following chart:

Differences Intel386 Processor 376 Processor
Speed 16-25 MHz 16 MHz
Physical address size 4 Gigabytes 16 Megabytes
Bus size 32-bit data 16-bit data
32-bit addr 24-bit addr
Modes of Operation real/VM86/paging/ protected (32-bit)
protected mode mode
Reset state real mode protected (32-bit)
mode
Memory Management segments/pages/flat segments/flat
Pipelining 32-bit bus cycles any bus cycle
Coprocessor 387 Processor 387SX Processor
Package 132-pin PGA 100-pin PQFP
88-pin PGA

The following text explains these differences in more detail.

e The 376 processor starts executing code in protected mode. The Intel386
processor starts execution in real mode, which is then used to enter protected
mode.

* The Intel386 processor can execute from 16-bit code segnsEs) or
32-bit code segmentgISE32). The 376 processor can only execute from 32-bit
code segments and does not allow 16-bit code segments.

ASM386 Assembly Language Reference Appendix F 663

* The Intel386 processor allows both 16-bit stack segmestsi) and 32-bit
stack segments. The 376 processor allows only 32-bit stack segment.

* The Intel386 processor prefetch unit fetches code in 4-byte units. The 376
processor prefetch unit reads two bytes as one unit (like the 286 processor). In
BS16 mode, the Intel386 processor takes two consecutive bus cycles to
complete a prefetch request. If there is a data read or write request after the
prefetch starts, the Intel386 processor will fetch all four bytes before
addressing a new request.

e The Intel386 processor has a Virtual-86 mode so that real mode 8086 program:
can execute as a task in protected mode. The 376 processor has no Virtual-86
mode.

e The Intel386 processor supports 286 processor call gates, interrupt gates, trap
gates, and task state segments. The 376 processor does not support these 28€
processor features.

e The Intel386 processor maps a 48-bit logical address into a 32-bit physical
address by segmentation and paging. The 376 processor has no paging
mechanism. The 376 processor maps its 48-bit logical address into a 24-bit
physical address by segmentation only.

e The 376 processor 24-bit address bus limits segment size to 16 megabytes
(224-1) for 376 processor stack and code segments. The segment size for the
Intel386 processor, as determined by its 32-bit address bus, is 4 gigabytes
(2321).

* The 376 processor has no bus-sizing option for data. The Intel386 processor
can select either a 32-bit data bus or a 16-bit data bus by use of the BS16#
input. The 376 processor has a 16-bit data bus size.

e The 376 processor generates byte select signals on BHE# and BLE# (like the
8086 and the 286 processors) to distinguish upper and lower bytes on its 16-bit
data bus. The Intel386 processor uses four, byte-select signals, BEO# through
BE3#, to distinguish between the different bytes on its 32-bit bus.

e The contents of all 376 processor registers at reset are identical to the contents
of the Intel386 processor registers at reset, except the DX register. The DX
register contains a stepping identifier at reset. The following chart summarizes
the value in the DX register after reset.

Processor DH DL
Intel386 Processor 3 revision number
376 Processor 33H revision number

664 Appendix F Differences Between the Intel386 and 376 Processors

e The 376 processor uses the Intel387 SX processor floating-point coprocessor
for floating-point operations, while the Intel386 processor uses the 387
floating-point coprocessor.

* The Intel386 processor uses thg and M/IO# pins to select its floating-point
coprocessor. The 376 processor uses thard M/IO# pins to select its
floating-point coprocessor.

« The NA# pin operation in the 376 processor is identical to that of the NA# pin
on the Intel386 processor with one exception: the Intel386 processor's NA# pin
cannot be activated on 16-bit bus cycles (where BS16# is LOW in the Intel386
processor case). The NA# pin can be activated on any 376 processor bus cycle.

ASM386 Assembly Language Reference Appendix F 665

Differences Between the
Intel386 and Intel486 [0 Processors

This appendix summarizes the major differences between the Intel386 and Intel486
processors.

The Intel486 processor is a member of the 32-bit 80x86 family of microprocessors.
The Intel486 processor object code is compatible with all previous 80x86 chips,
including the 8086, 186, 286, 376, and Intel386 processors. The Intel486 processor
instruction set is fully compatible with the Intel386 processor instruction set. All
programs written for the Intel386 processor can run without modification on the
Intel486 processor. However, new features have been added to the Intel486
processor to increase performance and capabilities.

The major differences between the Intel386 and Intel486 processors are
summarized below.

e The Intel486 processor integrates a number of architectural features which
were formerly implemented with optional components:

— A 387 numerics coprocessor compatible floating-point unit is added. All
assembler floating-point instructions are accepted by the floating-point
unit.

— A data cache is implemented. The cache is transparent to software and
keeps cache contents coherent with main memory.

« New cache control instructions are added to support the architectural features
of the Intel486 processor:

— INVD (invalidate data cache) ameBINVD(write back and invalidate data
cache) allow a systems programmer to flush the data cache either
destructively or with a write-back operation to main memory.

— INVLPG (invalidate paging cache entry) allows a systems programmer to
flush a single entry from the page translation cache (translation lookaside
buffer).

e The following new instructions are added to aid the programmer.

— BSWARHRbyte swap) supports fast translation between "big endian” (highest
order byte at lowest address) and "little endian" (highest order byte at
highest address) data for compatibility with other data storage methods.

ASM386 Assembly Language Reference Appendix G 667

668

CMPXCH@ompare exchange) is useful in multi-processor systems (with
the LOCKprefix) to let the programmer indivisibly acquire a semaphore
and identify its owner.

XADD(exchange add) is useful (with th@CKprefix) in multi-processor
systems that partition algorithms across several processors.

There are three new test registers for systems programming: TR3, TR4, and
TR5. A privileged form of thé1OVinstruction enables systems programmers to
access the new registers.

The CRO register (Control Register 0) contains five new bits. All bits are zero
at reset and are so defined for Intel386 processor compatibility. Figure G-1
shows the Intel486 processor control registers.

Numeric Error (NE), bit 5. If cleared, user-defined floating-point error
reporting through external interrupts (DOS compatibility) is possible. If
set, standard floating-point error reporting through vector 16 is used.

Write Protect (WP), bit 16. If set, read-only pages are protected from
being written into. If cleared, read-only pages may be written into.

Alignment Mask (AM), bit 18. AM masks the Alignment Check (AC) in
the EFLAGSregister. If set, AC is enabled. If cleared, AC is disabled.

Writes Transparent (WT), bit 29. If cleared, no write-through operation
occurs when a write hits the cache; invalidate cycles are ignored. If set,
write-through operations are enabled; invalidate cycles will remove a line
from the cache.

Cache Enable (CE), bit 30. If cleared, the on-chip cache is disabled by not
filling the cache on cache misses. If set, cache fill operations are enabled.

The CR3 register (control register 3) and the Intel486 processor page
table/directory contain two new bits. Figure G-1 shows the Intel486 processor
control registers. Figure G-2 shows the Intel486 processor page table/directory
format.

Write Through (PWT), bit 3. This bit acts as a status bit that software can

use as a write-back page bit for an external cache. In this implementation,
the bit indicates the current cache write-back policy. This bit is equivalent

to PWT (bit 3) in the Intel486 processor page table/directory entry.

Cache Disable (PCD), bit 4. The Intel486 processor does not perform
cache fill operations to any page in which this bit is set. This bit is
equivalent to PCD (bit 4) in the Intel486 processor page table/directory
entry.

Appendix G Differences Between the Intel386 and Intel486 Processors

31 23 15 7 0
T T T

Page Directory Base Register (PDBR) 0000000 g VTF\)/ 000 | CR3

Page Fault Linear Address CR2

Reserved CR1

(F‘; E’\.AI.I Reserved‘ Q \é/ Reserved II\EI $ g 5' '\PA E CRO
W-3461

Figure G-1. Intel486 Processor Control Registers

31 12 11 0

PP R
Page Frame Address 31 .. 12 AVAIL [0 O |D|A|C|W|/ |/ |P

D|IT|[S|W

P - Present

R/W - Read/Write

u/s - User/Supervisor

A - Accessed

D - Dirty

AVAIL - Available for Systems Programmer Use

PCD - Cache Disable

PWT - Write Through

Note: 0 indicates Intel reserved. Do not define.
W-3462

Figure G-2. Intel486 Processor Page Table/Directory Entry Format

e The Intel486 process@&FLAGSregister contains a new bit. Figure G-3 shows
the Intel486 process@FLAGSregister.

— Alignment Check (AC), bit 18. If set, enables the generation of faults if a
memory reference is to a misaligned address. Alignment faults are
generated only at privilege level 3.

All other Intel486 processor architecture specifications are identical to those of the
Intel386 processor.

See also: Intel386 processor architecture, Appendix A

ASM386 Assembly Language Reference Appendix G 669

16-bit Flags Register

31 23 15 7 0
I I

000O0O0O0OO0OO0O0O0OOOOOOOO

or
=<
n

Alignment Check - X ——
Virtual 8086 Mode - X
Resume Flag - X
Nested Task Flag -
1/0 Privilege Level -
Overflow -
Direction Flag
Interrupt Enable
Trap Flag

Sign Flag

Zero Flag

n nnononxxo0oonux X

Auxiliary Carry
Parity Flag
Carry Flag

S = Status Flag C = Control Flag X = System Flag
Note: 0 or 1 indicates Intel reserved. Do not define.

W-3463

Figure G-3. Intel486 Processor EFLAGS Register

670 Appendix G Differences Between the Intel386 and Intel486 Processors

Index

#DF exception, 626

#GP exception, 611, 629

#MF exception, 631

#NM exception, 626

#NP exception, 627

#PF exception, 630

#SS exception, 628

#TS exception, 627

#UD exception, 625

$, location counter, 30, 113

% macro metacharacter, 521

(E)BP register, 575

(E)DX:(E)AX, 270, 275, 278

* literal character, textmacros, 530, 552

* operator, 134, 138, 528

+ operator, 134, 140, 528

- operator, 134, 140, 528

/ operator, 134, 138, 528

/digit notation, 194

/r notation, 194

< notation, 202

<= notation, 202

= notation, 202

> notation, 202

>= notation, 202

? initial value, 74, 89, 90, 91, 92, 94, 96, 100,
102, 110

? special character, 26

@ character, textmacros, 556

@ special character, 26

[1 pseudocode notation, 201

[regname], addressing, 165

_ special character, 26

16-bit addressing, ModRM byte, 190

16-bit environments, floating-point
coprocessor, 432

16-bit opcode, IP and OP environment,
floating-point coprocessor, 439

#DF exception, 626

ASM386 Assembly Language Reference

32-bit addressing
ModRM byte, 191
SIB byte, 192
376 processor, differences from
Intel386, 663

A

AAA instruction, 33, 176, 179, 212
AAD instruction, 33, 176, 179, 214
AAM instruction, 33, 176, 179, 215
AAS instruction, 33, 176, 179, 216
abort, exception, 618
ABS type constant, 72, 128
access attribute
compatible for segment, 54
segment, 51, 52
stack segment, 57
access rights (AR) byte, 311, 334
access rights byte, descriptor, 602
accessed field, descriptor, 602
accessing segment, ASSUME, 58
ADC instruction, 176, 179, 218, 327
ADD instruction, 176, 179, 212, 220, 267, 327
addition operator, 140
Addr pseudocode function, 202
address expression, 123, 128
structure field type, 131
address size attribute, instructions, 184
address space, 596
address translation, logical to physical, 600
address, symbolic, 78
addressing methods, 163
addressing, bit in string, 170
AddressSize pseudocode notation, 202
ADI register, 260
affine infinity, 445, 478
AH register, 161, 270, 275, 310, 386, 593

Index 671

AL register, 161, 216, 218, 220, 264, 267, 268,

270, 275, 278, 280, 329, 348, 355, 391, 409,
412, 414, 424,593
alias
label, 117
symbol, 123
ALIGN directive, 30, 111, 113, 115
alphanumeric character, 24
AND instruction, 32, 176, 179, 222, 327,
615, 651
AND operator, 123, 134, 142, 528
ANONYMOUS, 41, 68
anonymous reference, 152
assembler-determined type, 130
default segment registers, 169
anonymous reference, codemacro call, 575
AR byte, 311, 334, 602, 605
arctangent, see FPATAN, 487
argument evaluation, nested textmacros, 527
arguments, textmacros, 525, 534
arithmetic, assembler, 83
ARPL instruction, 34,176, 179, 181
array, 79, 85, 109, 149
ASCII character set, 655
ASM286, differences from ASM386, 659
ASM286, base and index registers, 660
ASM386, differences from ASM286, 659
ASSUME CS, NOTHING, 63, 64, 65
ASSUME directive, 29, 44, 50, 59, 145,
153, 575
ASSUME NOTHING, 63
attributes
code segment, 43
data segment, 42
instructions, 183
label, 112
segment, 51
stack or dsc segment, 58
structure field, 104
variable, 86
auxiliary carry flag, 178
auxiliary carry flag (AF), 310, 386, 614, 615
AX register, 46, 161, 214, 215, 218, 220, 252,
270, 275, 278, 280, 329, 348, 355, 363, 369,
391, 393, 409, 412, 414, 433, 592

672 Index

B

balanced text, textmacros, 525, 531
base address, segment, 60
base field, descriptor, 602
base field, SIB byte, 189
base registers, 129, 165, 166
base relocatable expression, 132
based addressing, 166
based indexed addressing, 167, 189
BCD, 80
digits, 214
format, 590
integer, floating-point coprocessor, 442
BH register, 161, 593
binary data, specification rules, 82
bit
string, 80, 87
string, format, 590
variable, 87
bit field, 80
format, 590
structure, 106
Bit Pseudocode function, 203
BIT type, 72, 79, 87, 150, 155, 661
BITOFFSET operator, 135, 147, 661
BL register, 161, 593
blank delimiter, textmacros, 553
BOUND, 226
BOUND instruction, 34, 618
bounds check fault, interrupt, 625
BP register, 46, 129, 161, 165, 273, 319,
363, 369
Bracket macro, 524, 530, 534
brackets
addition operator, 140
addressing, 165
breakpoint, interrupt, 624
BSF instruction, 33, 176, 179, 228
BSR instruction, 33, 176, 179, 230
BSWAP instruction, 177, 232
BT instruction, 33, 170, 176, 179, 233, 327
BTC instruction, 33, 170, 176, 179, 236, 327
BTR instruction, 33, 170, 176, 179, 239, 327
BTS instruction, 33, 170, 176, 179, 242, 327
busy bit, AR byte, 608

BX register, 46, 129, 161, 165, 363, 369,
424,593

byte string, 89

BYTE type, 72, 79, 89, 150, 155

C

call
codemacro, 560
pattern, textmacros, 521, 529, 531
textmacros, 521, 528, 556
call gate, 606
interlevel procedure call, 120
CALL instruction, 34, 48, 111, 117, 119, 180,
245, 298, 384
carry flag, 178, 253, 257
carry flag (CF), 310, 348, 350, 353, 372, 386,
389, 406, 614
CBW instruction, 33, 176, 252
CDQ instruction, 33, 176, 265
CH register, 161, 593
character set, 24, 655
character string, 24, 27, 89, 90, 92, 94,
103, 106
character string, textmacros, 548, 549
Cl macro, 525, 530, 550
CL register, 161, 372, 388, 593
CLC instruction, 32, 175, 253
CLD instruction, 32, 175, 254, 329, 394
CLI instruction, 175, 182, 255
clocking, assumptions, 200
close segment, 54
CLTS instruction, 34, 175, 182, 256
CMC instruction, 32, 176, 257
CMP instruction, 32, 176, 179, 258
CMPS instruction, 33, 176, 179, 260, 378, 576
CMPSB instruction, 260
CMPSD instruction, 260
CMPSW instruction, 260
CMPXCHG instruction, 176, 179, 263
CO macro, 525, 530, 550
code segment, 49
codemacro
call, 579
definition, 566
modifiers, 569, 585
operand, 560

ASM386 Assembly Language Reference

range specifiers, 571, 585, 586

specifiers, 568
CODEMACRO directive, 560, 562, 566
collating sequence, ASCII, 655
combine attribute

segment, 51, 53

stack segment, 58
COMM directive, 29, 72, 74, 661
comment, 26
Comment macro, 524, 530, 537
COMMON attribute, 51, 53
compatible access attributes, 54
compound types, 99
condition bits, floating-point coprocessor, 435
constant

expression, 83, 128

external, 128

global, 71, 123

real, 484
continuation character, 26
control flags, CRO register, 593
control transfers, protected, 603

control word, floating-point coprocessor, 435,
478, 482

coprocessor segment overrun, interrupt, 626
coprocessor synchronization, 418
coprocessors, 443

CPL, 280

CPL field, selector, 605

CRO register, 161, 256, 341, 595, 659

CR2 register, 161, 341, 595, 659

CR3 register, 161, 341, 595, 659

CS register, 44,50, 63, 67, 69, 113, 153, 161,
165, 367, 381, 593

(E)IP initial value, 45, 69
CS:(E)IP register, 250
CWD instruction, 33, 176, 265
CWODE instruction, 33, 176, 252

CX register, 46, 161, 330, 331, 344, 357, 363,
369, 377, 379, 593

Index 673

D

DAA instruction, 33, 176, 179, 267
DAS instruction, 33, 176, 179, 268
data
access, privilege levels, 605
allocation, general syntax, 84
assembler interpretation, 79
formats, floating-point coprocessor, 440
modular programs, 71
segment, 42
segment USE attribute, relocatability, 132
storage formats, floating-point
coprocessor, 588
symbolic, 122
type, 80
type, floating-point coprocessor, 80
values ,defining, 81
data segment, 49
DB directive, 30, 84, 89, 109, 561, 562,
578, 580
DBIT directive, 30, 84, 87, 109, 661
DD directive, 30, 84, 92, 109, 455, 561,
578, 580
debug exceptions, interrupt, 624
debug registers, 594
DEC instruction, 176, 179, 269, 327
decimal data, specification rules, 82
decimal real data, specification, 82
default
EXTRN label type, 72
module name, 68
segment access, 52
segment attributes, 51

descriptor, segment, 601

descriptors, gate, 606

destination operand, 183

DH register, 161, 593

Dl register, 46, 129, 161, 165, 167, 260, 283,
343, 363, 369, 377, 393, 407, 409

direct addressing, 164

direction flag, 254

direction flag (DF), 284, 407, 617

directives, 29

displacement, address, 185

displacement, addressing, 129, 165

DIV instruction, 176, 270

divide error, interrupt, 624

division operator, 138

DL register, 161, 593

dot operator, 85, 105, 107, 108, 580

dot-shift, 563, 580

double precision real, floating-point
coprocessor, 440

DP directive, 30, 84, 94, 109, 561, 578, 661

DPL field, descriptor, 602, 606

DQ directive, 30, 84, 96, 109, 455

DRO register, 341, 659

DR1 register, 341, 659

DR2 register, 341, 659

DR3 register, 341, 659

DR6 register, 341, 659

DRY7 register, 341, 659

DS register, 45, 46, 50, 59, 67, 69, 161, 169,
340, 343, 357, 360, 367, 377, 424, 575, 593

Dsc segment, 58, 69

DT directive, 30, 84, 98, 109, 455

DUP clause, 30, 79, 85, 109

segment registers, indirect addressing, 169 DW directive, 30, 84, 90, 109, 455, 561, 562,

segment USE attribute, 52
DEFINE macro, 530
definitions, codemacros, 566
delimiter, ASM386, 25
delimiters
textmacro call pattern, 531
textmacros, 526, 553
denormalized exception, floating-point
coprocessor, 437
descriptor access, gate, 606
descriptor formats, segments, 602
descriptor tables, 603

674 Index

578, 580

DWORD type, 72,79, 91, 150, 155

DX register, 46, 161, 270, 275, 280, 283, 348,
355, 357, 363, 369, 592

E

EAX register, 129, 161, 165, 218, 220, 252,
270, 275, 278, 280, 329, 348, 355, 363, 369,
391, 393, 409, 412, 414, 592, 659

EBP register, 129, 161, 165, 273, 319, 363,
369, 592, 659

EBX register, 129, 161, 165, 363, 369, 424,
592, 659
ECS register, 329
ECX register, 129, 161, 165, 332, 358, 363,
369, 377, 394, 410, 592, 659
EDI register, 129, 161, 165, 284, 344, 363,
369, 377, 393, 407, 409, 592, 659
EDX register, 129, 161, 165, 270, 275, 348,
369, 592, 659
effective address, 163, 165, 597
EFLAGS register, 365, 371, 593, 612, 659
EIP register, 45, 69, 308, 351, 381, 593, 659
ELSE, textmacro, 541
EM control flag, 595
encoding format, 185
END directive, 29, 44, 58, 69
ENDS, 29, 42,51
ENTER instruction, 32, 178, 272, 319
entry point, program, 44, 69
environment, floating-point
coprocessor, 431, 483
EO access, 52
EQ operator, 134, 141, 528, 541, 543
EQS macro, 524, 530, 541, 543, 546
EQU directive, 30, 71, 123, 144, 651
ER access, 52
error code
exceptions, 623
format, exceptions, 623
ES register, 42, 46, 59, 153, 161, 165, 169,
284, 314, 340, 343, 360, 367, 377, 393, 409,
575, 593
ESC, 182,580
Escape macro, 524, 529, 530, 535
ESI register, 129, 161, 165, 254, 331, 344, 358,
592, 659
ESP register, 42, 45, 69, 129, 152, 161, 165,
177, 273, 361, 368, 369, 371, 575, 592, 659
ET control flag, 595
EVAL macro, 524, 530, 539
evaluation, textmacro calls, 556
EVEN directive, 30, 111, 114, 661
examples, program listing, 633
exceptions, 207, 618
causes, 624
double fault, 626
error code, 623

ASM386 Assembly Language Reference

floating-point coprocessor, 434, 437, 463
floating-point coprocessor, fault, 631
general protection violation, 629
handling, floating-point coprocessor, 445
invalid TSS, 627
no floating-point coprocessor, 626
not present, 627
page fault, 630
priority, 621
stack fault, 628
undefined opcode, 625
EXIT macro, 524, 530, 544, 545
expression evaluation order, 136
expression evaluation, textmacros, 527, 539
expression, assembler evaluation, 83
EXT field, error code, 623
extended precision real, floating-point
coprocessor, 440
external constant, 128
EXTRN, ABS constant, 133
EXTRN directive, 29, 72, 74

F

F2XM1 instruction, 37, 452, 457
FABS instruction, 37, 449, 458

FADD instruction, 37, 459

FADDP instruction, 37, 459

far pointer format, 591

FAR procedure return, 384

FAR PUBLIC, procedures, 119

FAR type, 72,78, 111, 116, 140, 150, 155
fault, exception, 618

FBLD instruction, 36, 446, 460
FBSTP instruction, 36, 446, 461
FCHS instruction, 37, 449, 462
FCLEX instruction, 38, 453, 463
FCOM instruction, 36, 435, 451, 464
FCOMP instruction, 36, 435, 451, 464
FCOMPP instruction, 36, 435, 451, 464
FCOS instruction, 37, 452, 466
FDECSTP instruction, 38, 453, 467
FDISI 8087 instruction, 456

FDIV instruction, 37, 468

FDIVP instruction, 37, 468

FDIVR instruction, 37

FDIVRP instruction, 37, 468

Index 675

FENI 8087 instruction, 456
FFREE instruction, 38, 453, 469
FIADD instruction, 37, 470
FICOM instruction, 36, 451, 471
FICOMP instruction, 36, 451, 471
FIDIV instruction, 37, 473
FIDIVR instruction, 37, 473
FIDVR instruction, 468
field of structure, offset, 131
field, record, 85, 99, 100
field, structure, 85, 99, 104, 106
FILD instruction, 36, 446, 474
FIMUL instruction, 37, 475
FINCSTP instruction, 38, 453, 476
FINIT instruction, 453, 477
FIST instruction, 36, 446, 479
FISTP instruction, 36, 446, 479
FISUB instruction, 37, 480
FISUBR instruction, 37, 480
flag value assignments, 178
flags, 612
FLAGS register, 365, 371, 593
flat address space, 596
FLD instruction, 36, 446, 481
FLD1 instruction, 36, 447, 484
FLDcon instruction, 456, 484
FLDCW instruction, 38, 453, 482
FLDENYV instruction, 38, 431, 439, 453, 483
FLDLZ2E instruction, 36, 447, 484
FLDL2T instruction, 36, 447, 484
FLDLG?2 instruction, 36, 447, 484
FLDLNZ2 instruction, 36, 447, 484
FLDPI instruction, 36, 447, 484
FLDZ instruction, 36, 447, 484
floating-point coprocessor
context switch, 256
control word, 435, 478
data type, 80
double precision real, 82, 96
exceptions, 437, 445
extended precision real, 82, 98
long integer, 82, 96
machine state, 494, 496
packed decimal integer, 82, 98
short integer, 82, 93
single precision real, 82, 93
state after initialization, 478

676 Index

Status word, 432, 478
tag word, 438, 478
word integer, 82
floating-point stack, 430
FMUL instruction, 37, 485
FMULP instruction, 37, 485
FNCLEX instruction, 38, 444, 453, 463
FNDISI 8087 instruction, 456
FNENI 8087 instruction, 456
ENINIT instruction, 38, 444, 453, 477
FNOP instruction, 38, 453, 486
FNSAVE instruction, 38, 444, 453
FNSTCW instruction, 38, 453, 505
FNSTENYV instruction, 38, 444, 453, 506
FNSTSW instruction, 38, 433, 453, 507
formal parameters
codemacros, 560, 568
in textmacro body, 531
textmacro definitions, 530
FPATAN instruction, 37, 452, 487
FPREM instruction, 37, 435, 449, 466, 489,
501, 502, 507
FPREM1 instruction, 37, 435, 449, 466, 489,
501, 502, 507
FPTAN instruction, 37, 452, 492
frame pointer, 273, 319
FRNDINT, 493
FRNDINT instruction, 37, 449, 461
FRSTOR, 494
FRSTOR instruction, 431, 439, 453
FS register, 42, 46, 50, 59, 161, 314, 340, 360,
367, 593, 659
FSAVE instruction, 38, 431, 439, 453,
494, 495
FSCALE instruction, 37, 449, 499
FSETPM instruction, 38, 453, 500
FSIN instruction, 37, 452, 501
FSINCOS instruction, 37, 452, 502
FSQRT instruction, 37, 449, 503
FST instruction, 36, 446, 504
FSTCW instruction, 38, 453, 505
FSTENV instruction, 38, 431, 439, 453,
483, 506
FSTP instruction, 36, 446, 504
FSTSW instruction, 38, 433, 453, 472,
490, 507
FSUB instruction, 37, 508

FSUBP instruction, 37, 508

FSUBR instruction, 37, 508

FSUBRP instruction, 37, 508

FTST instruction, 36, 435, 451, 509

FUCOM instruction, 36, 435, 451, 510

FUCOMP instruction, 36, 435, 451, 510

FUCOMPP instruction, 36, 435, 451, 510

FWAIT instruction, 38, 453, 463, 477, 495,
507, 512

FXAM instruction, 36, 435, 451, 507, 513

FXCH instruction, 36, 446, 514

FXTRACT, 515

FXTRACT instruction, 37, 449

FYL2X instruction, 37, 452, 517

FYL2XP1, 518

FYL2XP1 instruction, 37, 452

G

gate descriptors, 604, 606

GDT, 603

GDTR register, 594, 603

GE operator, 134, 141, 528, 541, 543

general registers, 591

GES macro, 524, 530, 541, 543, 546

global constant, 123

GS register, 42, 46, 50, 59, 161, 314, 340, 360,
367, 593, 659

GT operator, 134, 141, 528, 541, 543

GTS macro, 524, 530, 541, 543, 546

H

hexadecimal data, specification rules, 82
hexadecimal real data, specification, 82
HIGH operator, 134, 137, 528

HIGHW operator, 134, 137, 661

HLT instruction, 34, 181, 182, 274

| field, error code, 623
110
address map, TSS, 610
permission bit map, 280, 284, 355,
358, 610

ASM386 Assembly Language Reference

predefined macros, 550
privilege level (IOPL), 617
ib, iw, id notation, 194
identifier delimiter, textmacros, 555
identifier, ASM386, 26
identifier, textmacro, 527
IDIV instruction, 176, 275
IDT gate, descriptor format, 622
IDT register, 622
IDTR register, 290, 594
IF macro, 528, 530, 541
imm32 notation, 197
imm8, imm16 notation, 196
immediate operand, 162, 185, 197
immediate operand, segment name, 52
implicit operands, 128
implicit reference, register, 48
implied blank, textmacro, 553
IMUL instruction, 176, 179, 277
IN instruction, 31, 173, 181, 280, 611
IN macro, 525, 530, 550
INC instruction, 176, 179, 282, 327
index field, selector, 603
index field, SIB byte, 189, 563
index registers, 129, 165, 167
indexed addressing, 167
indirect addressing, 164
infinite loops, textmacros, 545
infinities, floating-point coprocessor, 445
infinity control (IC), floating-point
coprocessor, 436
initial value
defining, 80
DS register, 69
instruction pointer, 70
stack pointer, 69
initializing
data segment register, 46
stack segment register, 47
input stream, macro processor, 556
INS instruction, 33, 173, 181, 283, 377,
576, 611
INSB instruction, 283
INSD instruction, 283
instruction, type, 150
instruction register, floating-point
coprocessor, 591

Index 677

instructions, floating-point coprocessor, by JC instruction, 299

function, 31 Jcc instruction, 34, 111, 113, 117, 157, 176,

instructions, syntax, 182 180, 259, 299, 415

INSW instruction, 283 JCXZ instruction, 299, 380

INT instruction, 34, 180, 186, 286, 298, 618 JE instruction, 299

integer, 80, 89, 90, 92 JECXZ instruction, 299, 380
floating-point coprocessor, 442 JG instruction, 299
format, 590 JGE instruction, 299

Intel287 floating-point coprocessor JL instruction. 299
long, short, and temporary reals, 440 JLE instruction. 299

Intel386 processor JMP instruction, 34, 111, 113, 117, 157,
differences from 376, 663 180. 304

differences from Intel486, 667
Intel486 processor

differences from Intel386, 667
interlevel procedure call, 119
Interrupt Descriptor Table (IDT), 290

JNA instruction, 299
JNAE instruction, 299
JNB instruction, 299
JNBE instruction, 299

interrupt flag (IF), 255, 617 JINC instruction, 299
interrupt gate, 606 JNE instruction, 299
descriptor, 622 JNG instruction, 299
interrupts, 209, 618, 621 JNGE instruction, 299
causes, 624 JNL instruction, 299, 301
indexing to, 622 JNLE instruction, 299, 301
priority, 621 JNO instruction, 299, 301
reserved, 621 JNP instruction, 299, 301
intersegment jump or call, 113 JNS instruction, 299, 301
INTO instruction, 34, 180, 186, 286, 618 JNZ instruction, 301
INTR# pin, 618 JO instruction, 301
intrasegment jump or call, 112 JP instruction, 301
invalid exception, floating-point JPE instruction, 301
coprocessor, 437 JPO instruction, 301

INVD instruction, 182, 292

INVLPG instruction, 182, 293
IOPermission pseudocode function, 204
IOPL, 255, 284, 298, 355, 358

JS instruction, 301
JZ instruction, 299, 301

IOPL field, 606, 613, 617 K

and 1/O permission, 611
IP register, 45, 69, 351, 381 keywords, 651
IRET instruction, 34, 180, 186, 294, 618
IRETD instruction, 34, 180, 186, 294 L

label, 111

J addressing offset, 129
JA instruction, 299 attributes, 112
JAE instruction, 299 default EXTRN type, 72
JB instruction, 299 FAR, 116
JBE instruction, 299 NEAR, 118

678 Index

relocatable in data segment, 132
shared across modules, 71
simplest definition, 116
LABEL directive, 30, 111, 116
labeled variable, 116
LAHF instruction, 32, 174, 310
LAR instruction, 34, 174, 179, 181, 311
LDS instruction, 31, 174, 314, 417
LDT, 603
LDTR register, 594, 603
LE operator, 134, 141, 528, 541, 543
LEA instruction, 31, 174, 176, 317
LEAVE instruction, 32, 178, 319
LEN macro, 525, 530, 547
LENGTH operator, 135, 149, 151
LES instruction, 31, 174, 314, 417
LES macro, 530, 541, 543, 546
LFS instruction, 31, 174, 314, 417
LGDT instruction, 34, 174, 181, 320
LGDTW/LGDTD instruction, 34, 174,
181, 322
LGS instruction, 31, 174, 314, 417
LIDT instruction, 34, 174, 181, 182, 320, 622
LIDTWI/LIDTD instructions, 34, 174, 181,
182, 322
Limit field, descriptor, 334, 602
literal delimiters, textmacros, 526, 553
literal scanning mode, textmacros, 522, 534,
536, 552
LLDT instruction, 34, 174, 181, 324
LMSW instruction, 34, 174, 182, 326
loading
data segment registers, 46
stack segment register, 47
unnamed segment, 60
LOCAL symbols, textmacros, 530
location counter, 30, 111, 113, 144
LOCK instruction prefix, 35, 182, 186,
327, 567
LODS instruction, 33, 174, 329
LODSB instruction, 329
LODSD instruction, 329
LODSW instruction, 329
logical address, 44, 49, 78, 83, 163, 599
segment, 51
symbolic data, 60
logical delimiter, 24

ASM386 Assembly Language Reference

logical expressions, textmacros, 527
logical segment, 49

definition, 51
logical space, 25
long integer, floating-point coprocessor, 440
long real, Intel287 coprocessor, 440
LOOP instruction, 34, 180, 331, 379
LOOPcond instruction, 34, 176, 180, 331
LOW operator, 134, 137, 528
LOWW operator, 134, 137, 661
LSL instruction, 34, 174, 179, 181, 333
LSS instruction, 31, 174, 314
LT operator, 134, 141, 528, 541, 543
LTR instruction, 34, 174, 182, 336
LTS macro, 524, 530, 543, 546
LTS operator, 541

M

m notation, 196, 201
m14/28by notation, 455
m16&32, m16&16, m32&32 notation, 199
m16:16, m16:32 notation, 199
m16j notation, 455
m2by notation, 455
m32j notation, 455
m32r notation, 455
m64j notation, 455
m64r notation, 455
m80d notation, 455
m80r notation, 455
m94/108by notation, 455
machine state, floating-point coprocessor, 498
macro
body, textmacro definitions, 530
call, 521, 528
call, with local list, 530
call, without arguments, 521
delimiters, 526
identifiers, 527
processor, scanning modes, 522
MASK operator, 85, 135, 159
maskable interrupts, 618
MATCH macro, 525, 530, 549
memory operand, 162
memory organization, 49, 596
METACHAR macro, 524, 530, 538

Index 679

metacharacter, textmacros, 521
mnemonic, 123, 183
mod field, ModRM byte, 188, 563
MOD operator, 134, 138, 528
modifiers, codemacros, 569, 585
ModRM byte, 186, 188, 342, 454, 563, 577
MODRM directive, 561, 563, 577
module, ASM386, 67

combined segments, 53

default name, 68

shared variables or labels, 71
modulo operator, 138
moffs8, moffs16, moffs32 notation, 199
MOV, 182
MOV instruction, 31, 45, 161, 175, 338, 594
MOVS instruction, 33, 175, 343, 378
MOVSB instruction, 343
MQOVSD instruction, 343
MOVSW instruction, 343
MOVSX instruction, 31, 175, 176, 346
MOVZX instruction, 31, 175, 176, 347
MP control flag, 595
MUL instruction, 176, 179, 215, 348
multiplication operator, 138

N

n notation, 201

NAME directive, 41, 67

NE operator, 134, 141, 528, 541, 543
near pointer format, 590

NEAR procedure return, 384

NEAR type, 72,78, 111, 117, 140, 150, 155
NEG instruction, 176, 179, 327, 350
NES macro, 530, 541, 543, 546
nested, task flag (NT), 617

nested DUP clauses, 110

nested macro call, as argument, 527
nested procedure, 119

nested segment, 56

nested task flag (NT), 298

new instructions, 659

NEX macro, 524

NMI, interrupt, 624

non-combinable segment, 44, 51, 53
non-maskable interrupt (NMI), 619, 624
non-printable characters, ASCII, 655

680 Index

non-relocatable address, 63

non-symbolic reference, 44, 63, 64, 575
NOP instruction, 35, 115, 176, 181, 351
normal scanning mode, textmacros, 522, 552
NOSEGFIX directive, 561, 575

NOT instruction, 32, 176, 327, 352, 651

NOT notation, 202

NOT operator, 123, 134, 528, 651

NOTD operator, 142

NOTHING, 59, 63

O

object file, omit symbol information, 125
octal data, specification rules, 82
offset
address, 51, 317
attribute, label, 112
attribute, variable, 86
effective address calculation, 165
relocatable address, data segment, 132
segment, 598
OFFSET operator, 135, 146, 148
opcode format, instructions, 185
operand
$, 113
[regname], 165
codemacros, 560
direct memory addressing, 164
implicit, 128
indirect addressing, 164
instructions, 39, 161, 182
segment name, 52
operand size
attribute, 184, 308
prefix, 186
USE attribute, 52
operands, floating-point instructions, 450
OperandSize pseudocode notation, 202
operation locator formats, floating-point
coprocessor, 439
operators, 134
precedence rules, 136
operators, textmacros, 528
OR instruction, 32, 176, 179, 327, 615, 651
OR operator, 134, 142, 528, 651
ordinal, 80, 89, 90, 92

ORG directive, 30, 111, 114

OUT instruction, 31, 173, 181, 355, 611

OUT macro, 525, 530, 550

output stream, macro processor, 557

OUTS instruction, 33, 173, 181, 357, 377, 611

OUTSB instruction, 357

OUTSD instruction, 357

OUTSW instruction, 357

overflow flag (OF), 348, 353, 375, 389, 437,
614, 616

overflow, interrupt, 625

override byte, 61

P

packed BCD format, 590
paged memory, 599, 660
parameters, stack frame, 272
parity flag, 178
parity flag (PF), 310, 386, 614, 615
partial record, 100
PG control flag, 595
pm= notation, 201
pointer, 93
format, 590
operand, 250
relocatable address, data segment, 132
variable, type, 78
POP instruction, 32, 48, 161, 178, 186, 360
Pop pseudocode function, 203
POPA instruction, 32, 178, 363
POPAD instruction, 32,178, 363
POPF instruction, 32, 178, 365, 618
POPFD instruction, 32, 178, 365
precedence, ASM386 operators, 136
precedence, exceptions and interrupts, 621
precedence, operators in textmacros, 528
precision exception, floating-point
coprocessor, 438
prefix codes, instructions, 186
prefix, instruction, 186
PREFIX66 directive, 561, 562, 572, 662
PREFIX67 directive, 561, 562, 572, 662
present field, descriptor, 602
privilege level, 605
PROC directive, 30, 111, 119

ASM386 Assembly Language Reference

procedure, 119

nested, 119
processor

data formats, 588

exceptions, 207, 618

interrupts, 618

stack, 593
PROCLEN function, 119, 140, 562, 563, 581
program

entry point, 69

general structure, 40

segment, 49

with modules, 67
program example, 633
projective infinity, 445, 478
protected mode, 50
protected mode exceptions, 207
protection checking, privilege levels, 605
protection, descriptors, 604
PTR operator, 44, 72, 130, 135, 155
PTR, codemacros, 573
ptrl6:16, ptrl6:32 notation, 198
PUBLIC attribute, 51, 53
PUBLIC directive, 29, 71, 74, 128
PUBLIC, procedures, 119
PURGE directive, 30, 125, 651
PUSH instruction, 32, 48, 161, 178, 186,

361, 367

Push pseudocode function, 203
PUSHA instruction, 32, 178, 363, 369
PUSHAD instruction, 32, 178, 363, 369
PUSHF instruction, 32, 178, 371
PUSHFD instruction, 32, 178, 371
PWORD type, 72, 79, 94, 150, 155, 661

Q

gbase field, SIB byte, 563
guote character, in strings, 89
QWORD type, 72, 79, 96, 150, 155

R

r/m field, ModRM byte, 188, 563
r/m16, r/m32 notation, 195

r/m8 notation, 195

r8, rl6, r32 notation, 195

Index 681

range specifiers, codemacros, 571, 586
ranges, numeric values, 81
RCL instruction, 32, 177, 179, 372, 615
RCR instruction, 32, 177, 179, 372, 615
real address mode, 50
exceptions, 207
reals, floating-point coprocessor, 442
record
allocation statement, 97, 100
field, 99, 100
field as operator, 135, 160
initialization directive,
codemacros, 561, 579
type, 72, 150
variable, 78, 84, 98, 100, 107
RECORD directive, 30, 84, 99
reference, anonymous, 130
reg field, ModRM byte, 188
reg/opcode field, ModRM byte, 563
register addressing, assumptions, 168
register expression, 129, 130, 165
register indirect, addressing, 166
rel8, rell6, rel32 notation, 198
RELB directive, 561, 582
RELD directive, 561, 582
relocatable address, 129
code segment, 65
data segment, 65
relocatable expressions, 132
relocatable segment, 60
relocatable symbol
code segment, 63, 64
data segment, 64, 132
RELW directive, 561, 582
reopen segment, 54
reopened segment
access, 52
restriction, 54
REP instruction, 376
REP instruction prefix, 35, 186, 284, 330, 344,
358, 567
REPE instruction, 376, 394
REPE instruction prefix, 186, 261
REPEAT macro, 524, 530, 544
REPNE instruction, 376, 394
REPNE instruction prefix, 186, 261
REPNZ instruction, 376

682 Index

REPNZ instruction prefix, 186
REPZ instruction, 376
REPZ instruction prefix, 186
reserved words, 125, 651
RESET floating-point coprocessor, 477
RESET, coprocessor, 500
restrictions
* in textmacro calls, 534, 536, 537
ASSUME CS, 60
ASSUME data segment register, 62
ASSUME SS, 61
codemacro definition, 54
COMM variables, 74
data/stack combined (dsc) segment
attributes, 58
DEFINE in macro body, 530
FAR labels, 116
index register, 167
initialize segment registers, 45
LOCAL textmacro identifier, 531
macro call delimiters, 553
macro symbol access, 522
numbers in textmacros, 528
procedure definition, 54
PURGE, 125
record field initialization,
codemacros, 579
reopened segment, 54
segment override, 153, 165, 424
structure definition, 54
structure field defaults, 106
textmacro ldentifiers, 527
unique identifier, 26
resume flag (RF), 618
RET instruction, 34, 117, 119, 180, 319, 381
RO access, 52
ROL instruction, 32, 177, 179, 372, 615
ROR instruction, 32, 177, 179, 372, 615
rounding, floating-point coprocessor, 444
RPL, 295
RPL field adjustment, 224
RPL field, selector, 603
RW access, 52

S

SAHF instruction, 32, 174, 386
SAL instruction, 32, 177, 179, 387
SAR instruction, 32, 177, 179, 387
SBB instruction, 176, 179, 327, 391
scale factor

addressing, 168

based indexed addressing, 167

indexed addressing, 129
scale factor field, SIB byte, 189
scaled addressing, 129, 165
scaled indexed addressing, 189
scanning modes, macro processor, 552
SCAS instruction, 33, 176, 179, 393, 576
SCASB instruction, 393
SCASD instruction, 393
SCASW instruction, 393
SEG operator, 46, 59, 75, 135, 145
SEGFIX, 561
SEGFIX directive, 562, 574
segment

accessing, 58

address, 597

attribute, label, 112

attribute, variable, 86

close and reopen, 54

defining, 51

descriptor, 601, 602

modular programs, 53

name, operand, 161

nested, 56

non-combinable, 51, 53

relocatable, 60, 132
SEGMENT directive, 29, 42, 51
segment override

operators, 44, 60, 63, 134, 135, 153,

169, 409

prefix byte, 61, 574

prefix generation, 61

prefixes, 186
segment register, 593

cache, 601

initialization, 45, 69
segmented address space, 597

ASM386 Assembly Language Reference

selector
ASSUME, 60
segment, 59
selector format, 603
selector, SEG, 145
selector, segment, 45, 593
separator, 24
SET cc instruction, 395
SET macro, 524, 530, 540
SETcc instruction, 32, 176, 180, 259, 415
SF field, SIB byte, 563
SGDT instruction, 34, 174, 181, 321, 397
SGDTW/SGDTD instructions, 34, 174,
181, 399
shift
count, 389
count, record field, 135, 160, 580
SHL instruction, 32, 177, 179, 387, 651
SHL operator, 123, 134, 139, 528, 651
SHLD, 400
SHLD instruction, 32, 177, 179
short integer, floating-point coprocessor, 440
SHORT operator, 135, 157
short real, coprocessor, 440
SHR instruction, 32, 177, 179, 387, 651
SHR operator, 123, 134, 139, 528, 651
SHRD instruction, 32, 177, 179, 402
Sl register, 46, 129, 161, 165, 168, 260, 329,
343, 357, 363, 369, 407
SIB byte, 186, 188, 563, 577
SIDT instruction, 34, 174, 181, 182, 321, 397
SIDTW/SIDTD instructions, 34, 174, 181,
182, 399
sign flag, 178
sign flag (SF), 310, 386, 614, 615
SignExten pseudocode function, 202
single precision real, floating-point
coprocessor, 440
SIZE operator, 85, 135, 151
size segment, maximum, 49
SLDT instruction, 34, 174, 181, 404
SMSW instruction, 34, 174, 182, 405
software interrupts, 618
source operand, 183
SP register, 42, 45, 152, 161, 177, 185, 273,
319, 361, 368, 369, 371
spaces, logical, 25

Index 683

special characters, 24, 27 structure field, 104

specifications, data, 82 BITOFFSET, 147
specifiers, codemacros, 568, 585 displacement, 131
Sreg notation, 199 type, 131
SS register, 47, 50, 59, 67, 69, 153, 161, 165, SUB instruction, 176, 179, 216, 327, 412
169, 314, 340, 360, 367, 575, 593 SUBSTR macro, 525, 530, 548
(E)SP, initializing, 47, 69 subtraction operator, 140
SS:(E)SP, initialize, 58 SwitchTasks pseudocode function, 204
ST(i) notation, 455 symbolic reference, 44, 63
stack, 152, 593 symbolic reference, codemacro call, 575
fields, floating-point coprocessor, 430 symbolic value, in macro symbol
frame, 593 table, 540, 549
frame base pointer register, 48 symbols, 122
pointer register, 48 PUBLIC, 71
segment, 49 PURGE restrictions, 125
size attribute, 185 relocatable, 132
stack pointer, 273, 319 syntax, instruction statements, 182
initialization, 152 system control flags, 616
STACKSEG directive, 29, 42, 57, 152 system registers, 594
STACKSTART operator, 47, 58, 135, 152
statement, 29 T
general syntax, 38
status flags format, 613 tag word, floating-point coprocessor, 438,
status flags, assignments, 178 478, 506
status word, floating-point coprocessor, 433, task, switches, 604
477, 506, 507 task gate, 606
STC instruction, 32, 175, 406 descriptor, 607
STD instruction, 32, 175, 329, 394, 407, 410 task switched flag (TS), 256
STl instruction, 32, 175, 182, 408 TBYTE type, 72, 79, 98, 150, 155
storage allocation statement, 84 tempreal, coprocessor, 440
storage format, 83 TEST instruction, 32, 176, 179, 414
STOS instruction, 33, 174, 378, 409, 576 THIS operator, 135, 144
STOSB instruction, 409 Tl field, selector, 603
STOSD instruction, 409 token, 24
STOSW instruction, 409 TOP, floating-point coprocessor, 435
STR instruction, 34, 174, 182, 411 TR register, 411, 608
string TR3 register, 161
access, 80 TRA4 register, 161
format, 590 TR5 register, 161
operations, override restrictions, 153, 165, TR6 register, 161, 341, 659
169 TR7 register, 161, 341, 659
STRUC directive, 30, 85, 99, 104 trap flag (TF), 617
structure trap gate, 606
allocation statement, 99, 106 trap, exception, 618
BIT-type fields, 87, 104 Truncate pseudocode function, 202
type, 72 TS control flag, 595
variable, 79, 84, 98, 104, 107 TSS descriptor, 336, 607

684 Index

TSS fields, 610
TSS layout, 608
type attribute

label, 112

variable, 84
type field, descriptor, 604
TYPE operator, 135, 149, 150
types, variables and labels, 78

U

underflow exception, floating-point
coprocessor, 437
USE attribute, 184, 308
label, 112
segment, 49, 51, 52
stack segment, 45, 57, 185
variable, 86
USE16, 49, 51, 52, 72, 146, 361, 368, 483,
495, 506
USE16 instruction, 431
USE32, 49, 51, 52, 72, 146, 361, 368, 483,
495, 506
USE32 instruction, 431

Vv

value
external constant, 133
register expression, 130
value, ASSUME CS
NOTHING, 63
values, hexadecimal to ASCII, 655
values, privilege level, 605
variable
addressing offset, 128, 129
attributes, 86
byte string, 89
compound type, 78, 99
EXTRN placement in code, 73
global, 74

ASM386 Assembly Language Reference

initialization, 83
labeled, 116
relocatable in data segment, 132
shared across modules, 71
uninitialized storage, 74, 89, 90, 91, 92,
94, 97, 110
VERR instruction, 34, 176, 179, 181, 416
VERW instruction, 34, 176, 179, 181, 416
Virtual 8086 mode exceptions, 208
virtual mode flag (VM), 617

w

WAIT instruction, 34, 181, 182, 418
WARNING directive, 561, 576
WBINVD instruction, 182, 419
WHILE macro, 524, 527, 530, 543
WIDTH operator, 85, 135, 158
WORD type, 72,79, 90, 150, 155

X

XADD instruction, 176, 179, 420

XCHG instruction, 31, 175, 327, 351, 422

XLAT instruction, 31, 424

XLATB instruction, 31, 424

XOR instruction, 32, 176, 179, 327, 426,
615, 651

XOR operator, 123, 134, 142, 528, 651

Z

zero flag, 178

zero flag (ZF), 310, 331, 334, 379, 386, 416,
614, 615

zerodivide exception, floating-point
coprocessor, 437

ZeroExtend pseudocode function, 202

Index 685

ASM386 Macro Assembler Operating Instructions
ASM386 Assembly Language Reference

469165-003

WE'D LIKE YOUR OPINION

Please rate the following: Excellent Good Fair Poor

»« Manual organization O O O O

» Technical accuracy 0 O O O

» Completeness 0 O O O

» Clarity of concepts and wording O O O O

» Quality of examples and illustrations O O O O

» Overall ease of use O O O O

Comments:

Please list any errors you found (include page number):

Name

Company Name

Address

May we contact you? Phone

Thank you for taking the time to fill out this form.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

POSTAGE WILL BE PAID BY ADDRESSEE

OPD Technical Publications, HF2-72
Intel Corporation

5200 NE Elam Y oung Parkway
Hillsboro, OR 97124-9978

Please fold here and close the card with tape. Do not staple.

WE'D LIKE YOUR COMMENTS....

This document is one of a series describing Intel products. Your
comments on the other side of this form will help us produce better
manuals. Each reply will be reviewed. All comments and suggestions
become the property of Intel Corporation.

If you are in the United States and are sending only this card, postage
is prepaid.

If you are sending additional material or if you are outside the United
States, please insert this card and any enclosures in an envelope. Send
the envelope to the above address, adding "United States of America" if
you are outside the United States.

Thanks for your comments.

International Sales Offices

AUSTRALIA

Intel Australia Pty. Ltd.

Unit 1A

2 Aquatic Drive

Frenchs Forest, NSW, 2086
Sydney

Intel Australia Pty. Ltd.
711 High Street

1st Floor

East Kw. Vic., 3102
Melbourne

BRAZIL

Intel Semiconductores do Brazil LTDA
Avenida Paulista, 1159-CJS 404/405
CEP 01311-Sao Paulo - S.P.

CANADA

Intel Semiconductor of Canada, Ltd.
999 Canada Place

Suite 404, #11

Vancouver V6C 3E2

British Columbia

Intel Semiconductor of Canada, Ltd.
2650 Queensview Drive

Suite 250

Ottawa K2B 8H6

Ontario

Intel Semiconductor of Canada, Ltd.
190 Attwell Drive

Suite 500

Rexdale MOW 6H8

Ontario

Intel Semiconductor of Canada, Ltd.
1 Rue Holiday

Suite 115

Tour East

Pt. Claire H9R 5N3

Quebec

CHINA/HONG KONG

Intel PRC Corporation

China World Tower, Room 517-518
1 Jian Guo Men Wai Avenue
Beijing, 100004

Republic of China

Intel Semiconductor Ltd.
32/F Two Pacific Place
88 Queensway

Central

Hong Kong

FINLAND

Intel Finland OY
Ruosilantie 2
00390 Helsinki

FRANCE

Intel Corporation S.A.R.L.

1, Rue Edison-BP 303

78054 St. Quentin-en-Yvelines
Cedex

GERMANY

Intel GmbH

Dornacher Strasse 1

85622 Feldkirchen bei Muenchen
Germany

INDIA

Intel Asia Electronics, Inc.
4/2, Samrah Plaza

St. Mark's Road
Bangalore 560001

ISRAEL

Intel Semiconductor Ltd.

Atidim Industrial Park-Neve Sharet
P.O. Box 43202

Tel-Aviv 61430

ITALY

Intel Corporation Italia S.p.A.
Milanofiori Palazzo E

20094 Assago

Milano

JAPAN

Intel Japan K.K.

5-6 Tokodai, Tsukuba-shi
Ibaraki, 300-26

Intel Japan K.K.
Hachioji ON Bldg.
4-7-14 Myojin-machi
Hachioji-shi, Tokyo 192

Intel Japan K.K.

Bldg. Kumagaya

2-69 Hon-cho
Kumagaya-shi, Saitama 360

Intel Japan K.K.
Kawa-asa Bldg.

2-11-5 Shin-Yokohama
Kohoku-ku, Yokohama-shi
Kanagawa, 222

Intel Japan K.K.
Ryokuchi-Eki Bldg.

2-4-1 Terauchi
Toyonaka-shi, Osaka 560

Intel Japan K.K.
Shinmaru Bldg.

1-5-1 Marunouchi
Chiyoda-ku, Tokyo 100

Intel Japan K.K.
Green Bldg.

1-16-20 Nishiki
Naka-ku, Nagoya-shi
Aichi 460

KOREA

Intel Korea, Ltd.

16th Floor, Life Bldg.

61 Yoido-dong, Youngdeungpo-
Ku

Seoul 150-010

MEXICO

Intel Technologica de Mexico
S.A.de C.V.

Av. Mexico No. 2798-9B, S.H.
44620 Guadalajara, Jal.,

NETHERLANDS

Intel Semiconductor B.V.
Postbus 84130

3009 CC Rotterdam

RUSSIA

Intel Technologies, Inc.
Kremenchugskaya 6/7
121357 Moscow

SINGAPORE

Intel Singapore Technology, Ltd.
101 Thomson Road #08-03/06
United Square

Singapore 1130

SPAIN

Intel Iberia S.A.
Zurbaran, 28
28010 Madrid

SWEDEN

Intel Sweden A.B.
Dalvagen 24

171 36 Solna

TAIWAN

Intel Technology Far East Ltd.
Taiwan Branch Office

8th Floor, No. 205

Bank Tower Bldg.

Tung Hua N. Road

Taipei

UNITED KINGDOM

Intel Corporation (U.K.) Ltd.
Pipers Way

Swindon, Wiltshire SN3 1RJ

If you need to contact Intel Customer Support

Contacting us is easy. Be sure that you have the following information available:

or software config

Your phone and FAX numbers ready
Complete description of your hardware o

Your

uration(s) Com

product’s product code

Current version of all software you use

plete problem description

Type of Service

How to contact us

FaxBACK*

Using any touch-tone phone,

U.S. and Canada: (800) 628-2283

fax-on-demand system have technical documents sentfto (916) 356-3105
your fax machine. Know your

24 hrs a day, 7 days a wee¢kax number before calling. Europe: +44-1793-496644

Intel PC and LAN Information on products, U.S and Canada: (503) 264-7999

Enhancement Support documentation, software driversEurope: +44-1793-432954

BBS

24 hrs a day, 7 days a wet

firmware upgrades, tools,
presentations, troubleshooting.
2k

Autobaud detect
8 data bits, no parity, 1 stop

CompuServe*
Information Service

24 hrs a day, 7 days a wet

Worldwide customer support:
information and technical
support for designers, engineer
and users of 32-bit iRMX OS
cland Multibus product families.

Worldwide Locations:

(check your local listing)
Sl
Type: GO INTELC once online.

Customer Support

Intel Multibus Support engineer
offering technical advice and
troubleshooting information on
the latest Multibus products.

sU.S. and Canada: (800) 257-5404
(503) 696-5025
FAX: (503) 681-8497
Hrs: M-F; 8-5 PST
Europe: +44-1793-641464
FAX: +44-1793-496385

Hrs: M-F; 9-5:30 GMT

Hardware Repair

Multibus board and system
repair.

U.S. and Canada: (800) 628-8686
(602) 554-4904
FAX: (602) 554-6653
Hrs: M-F; 7-5 PST
Europe: +44-1793-40352(
FAX: +44-1793-496156
Hrs: M-F; 9-5:30 GMT

Sales Intel Sales engineers offering | Worldwide: Contact your local Intel
information on the latest iRMX office or distributor
and Multibus products and theif U.S. and Canada: (800) 438-4769
availability. (503) 696-5025
FAX: (503) 681-8497
Hrs: M-F; 8-5 PST
Correspondence Worldwide: Europe:

Mail letters to:

Intel Customer Support
Mailstop HF3-55

5200 NE Elam Young Parkway
Hillsboro, Oregon 97124-6497

European Application Support
Intel Corporation (UK) Ltd.
Pipers Way

Swindon, Wiltshire

England SN3 1RJ

* Third-party trademarks are the property of their respective owners.

	Other iRMX Manuals
	ASM386 Assembly Language Reference
	Quick Contents
	Contents
	1. Introduction
	About This Manual
	About This Chapter
	Lexical Elements
	Character Set
	Tokens and Separators
	Identifiers
	Continued Statements and Comments

	Assembler Statements
	Assembler Directives
	Assembler Instructions
	Specifying Assembler Statements

	Assembler Program Structure
	NAME Directive
	STACKSEG Directive
	SEGMENT Directive for Data Segments
	SEGMENT Directive for the Code Segment
	ASSUME Directive
	END Directive
	Initializing Segment Registers with Instructions

	2. Segmentation
	Overview of Segmentation
	Defining Code, Data, and Stack Segments
	SEGMENT..ENDS Directive
	Specifying EO, ER, RO, or RW Access
	Specifying USE32 or USE16
	Specifying PUBLIC or COMMON
	Multiple Definitions for a Segment
	Lexically Nested or Embedded Segment Definitions

	STACKSEG Directive
	Combining Stack and Data Segments

	Assuming Segment Access
	ASSUME Directive
	Specifying Segment Selectors with ASSUME
	Specifying ASSUME NOTHING and ASSUME CS:NOTHING

	3. Program Linkage Directives
	Modular Programming with NAME and END
	NAME Directive
	END Directive

	Defining Shared Data with PUBLIC, EXTRN, and COMM
	PUBLIC Directive
	EXTRN Directive
	Placement of EXTRN

	COMM Directive

	4. Defining And Initializing Data
	Overview of Assembler Labels and Variables
	Assembler Label and Variable Types
	Assembler Data Values
	Data Types
	Numeric Data Value Ranges

	Specifying Assembler Data Values
	Initializing Variables
	How the Assembler Evaluates Constant Expressions

	Variables
	Simple Data Allocations
	Variable Attributes
	Defining and Initializing Variables of a Simple Type
	DBIT Directive
	DB Directive
	DW Directive
	DD Directive
	DP Directive
	DQ Directive
	DT Directive
	Defining Compound Types and Their Variables
	RECORD Directive
	Record Allocation Statement
	STRUC Directive
	Structure Allocation Statement
	DUP Clause

	Labels
	Label Attributes
	The Location Counter
	ORG Directive
	EVEN Directive
	ALIGN Directive
	LABEL Directive
	Defining Implicit NEAR Labels
	PROC Directive

	Using Symbolic Data
	EQU Directive
	PURGE Directive

	5. Accessing Data
	Overview of Assembler Expressions
	Constant Expressions
	Address Expressions
	Variable and Label Names as Address Expressions
	Register Expressions
	Combining Simple Address and Register Expressions
	Structure Fields in Address Expressions
	Relocatable Expressions

	Operators
	Operator Precedence
	Isolation Operators
	Multiplication and Division Operators
	Shift Operators
	Addition and Subtraction Operators
	Relational Operators
	Logical Operators
	Attribute Value Operators
	THIS Operator
	SEG Operator
	OFFSET Operator
	BITOFFSET Operator
	LENGTH Operator
	TYPE Operator
	SIZE Operator
	STACKSTART Operator

	Attribute Override Operators
	Segment Override Operator
	PTR Operator
	SHORT Operator

	Record Specific Operators
	WIDTH Operator
	MASK Operator
	Using Field Names as Shift Counts

	Instruction Operands
	Register Operands
	Immediate Operands
	Memory Operands

	Memory Addressing Methods
	Direct Memory Addressing
	Indirect Memory Addressing
	Register Indirect Addressing
	Based Addressing
	Based Indexed Addressing
	Indexed Addressing
	Scaling
	Default Segment Registers and Anonymous References

	Bit Addressing

	6. Processor Instructions
	Overview of the Processor Instruction Set
	Data Transfer Instructions
	Instructions That Assign Data Values
	Instructions That Adjust Data
	Instructions That Make Stack Transfers
	Instructions That Yield Definitive Flag Values
	Conditional Instructions That Test Flag Values

	Control Instructions
	System Instructions

	Instruction Statements
	Instruction Statement Syntax
	Instruction Attributes
	Address Size Attribute
	Operand Size Attribute
	Stack Size Attribute

	Instruction Encoding Format
	Instruction Prefix Codes
	ModRM and SIB Bytes

	Processor Instruction Set Reference
	How to Read the Instruction Set Reference Pages
	Opcode Column
	Instruction Column
	Clocks Column
	Description Column
	Operation Section
	Discussion Section
	Flags Affected Section
	Exceptions by Mode Section

	How to Look Up an Instruction
	Processor Instructions
	AAA ASCII Adjust after Addition
	AAD ASCII Adjust AX before Division
	AAM ASCII Adjust AX after Multiply
	AAS ASCII Adjust AL after Subtraction
	ADC Add with Carry
	ADD (Integer) Add
	AND Logical AND
	ARPL Adjust RPL Field of Selector
	BOUND Check Array Index Against Bounds
	BSF Bit Scan Forward
	BSR Bit Scan Reverse
	BSWAP Byte Swap
	BT Bit Test
	BTC Bit Test and Complement
	BTR Bit Test and Reset
	BTS Bit Test and Set
	CALL Call Procedure
	CBW/CWDE Convert Byte to Word/Convert Word to Dword
	CLC Clear Carry Flag
	CLD Clear Direction Flag
	CLI Clear Interrupt Flag
	CLTS Clear Task Switched Flag in CR0
	CMC Complement Carry Flag
	CMP Compare Two Operands
	CMPS/CMPSB/CMPSW/CMPSD Compare String Operands
	CMPXCHG Compare Exchange
	CWD/CDQ Convert Word to Dword/Convert Dword to Qword
	DAA Decimal Adjust AL after Addition
	DAS Decimal Adjust AL after Subtraction
	DEC Decrement by 1
	DIV Unsigned Divide
	ENTER Make Stack Frame for Procedure Parameters
	HLT Halt
	IDIV Signed Divide
	IMUL Signed Multiply
	IN Input from Port
	INC Increment by 1
	INS/INSB/INSW/INSD Input from Port to String
	INT/INTO Transfer Control to Interrupt Procedure
	INVD Invalidate Data Cache
	INVLPG Invalidate Paging Cache Entry
	IRET/IRETD Interrupt Return
	Jcc Jump if Condition is Met
	JMP Jump
	LAHF Load Flags into AH Register
	LAR Load Access Rights
	LDS/LES/LFS/LGS/LSS Load Full Pointer
	LEA Load Effective Address
	LEAVE High Level Procedure Exit
	LGDT/LIDT Load Global/Interrupt Descriptor Table Register
	LGDTW/LGDTD/LIDTW/LIDTD Load Global/Interrupt Descriptor Table Register with WORD/DWORD Operand
	LLDT Load Local Descriptor Table Register
	LMSW Load Machine Status Word
	LOCK Assert Bus LOCK# Signal Prefix
	LODS/LODSB/LODSW/LODSD Load String Operand
	LOOP/LOOPcond Loop Control with (E)CX Counter
	LSL Load Segment Limit
	LTR Load Task Register
	MOV Move Data
	MOV Move to/from Special Registers
	MOVS/MOVSB/MOVSW/MOVSD Move String to String
	MOVSX Move with Sign-Extend
	MOVZX Move with Zero-Extend
	MUL Unsigned Multiplication of AL, AX or EAX
	NEG Two's Complement Negation
	NOP No Operation
	NOT One’s Complement Negation
	OR Logical Inclusive OR
	OUT Output to Port
	OUTS/OUTSB/OUTSW/OUTSD Output String to Port
	POP Pop Stack Top
	POPA/POPAD Pop All General Registers
	POPF/POPFD Pop Stack into FLAGS or EFLAGS Register
	PUSH Push Operand onto the Stack
	PUSHA/PUSHAD Push all General Registers
	PUSHF/PUSHFD Push Flags Register onto the Stack
	RCL/RCR/ROL/ROR Rotate
	REP/REPE/REPZ/REPNE/REPNZ Repeat String Operation
	RET Return from Procedure
	SAHF Store AH into Flags
	SAL/SAR/SHL/SHR Shift
	SBB Integer Subtraction with Borrow
	SCAS/SCASB/SCASW/SCASD Compare String Data
	SETcc Byte Set on Condition
	SGDT/SIDT Store Global/Interrupt Descriptor Table Register
	SGDTW/SGDTD/SIDTW/SIDTD Store Global/Interrupt Descriptor Table Register with WORD/DWORD Operand
	SHLD Double Precision Shift Left
	SHRD Double Precision Shift Right
	SLDT Store Local Descriptor Table Register
	SMSW Store Machine Status Word
	STC Set Carry Flag
	STD Set Direction Flag
	STI Set Interrupt Flag
	STOS/STOSB/STOSW/STOSD Store String Data
	STR Store Task Register
	SUB Integer Subtraction
	TEST Logical Compare
	VERR/VERW Verify a Segment for Reading or Writing
	WAIT Wait until BUSY# Pin is Inactive (HIGH)
	WBINVD Write Back And Invalidate Data Cache
	XADD Exchange Add
	XCHG Exchange Register/Memory with Register
	XLAT/XLATB Table Look-up Translation
	XOR Logical Exclusive OR

	7. Floating-Point Instructions
	Floating-point Coprocessor Architecture
	Floating-point Stack
	Environment
	Status Word
	Control Word
	Tag Word
	Operation Locator Formats

	Floating-point Coprocessor Data Formats

	Coprocessor Operation
	Numeric Processing

	Overview of the Floating-point Coprocessor Instruction Set
	Data Transfer Instructions
	Constant Instructions
	Algebraic Instructions
	Comparison Instructions
	Transcendental Instructions
	Coprocessor Control Instructions

	Floating-point Coprocessor Instruction Set Reference
	How to Read the Instruction Set Reference Pages
	Opcode Column
	Instruction Column
	Clocks Columns
	Description Column
	Discussion Section
	Exceptions Section

	How to Look Up an Instruction
	F2XM1 Compute Y = 2 x - 1
	FABS Absolute Value
	FADD/FADDP Real Addition
	FBLD BCD Load to Real
	FBSTP BCD Store and Pop
	FCHS Change Sign of Real Number
	FCLEX/FNCLEX Clear Floating-point Coprocessor Exceptions
	FCOM/FCOMP/FCOMPP Compare Real Numbers
	FCOS Compute Y = Cos(X)
	FDECSTP Decrement Floating-point Stack Pointer
	FDIV/FDIVP/FDIVR/FDIVRP Real Divide/Real Reverse Divide
	FFREE Free Floating-point Stack Entry
	FIADD Integer Add to Real
	FICOM/FICOMP Integer Compare with Real
	FIDIV/FIDIVR Integer Divide into Real
	FILD Integer Load into Real
	FIMUL Integer Multiply with Real
	FINCSTP Increment Floating-point Stack Pointer
	FINIT/FNINIT Initialize Floating-point Coprocessor
	FIST/FISTP Integer Store from Real
	FISUB/FISUBR Integer Subtract from Real
	FLD Load Real
	FLDCW Load Floating-point Coprocessor Control Word
	FLDENV Load Floating-point Coprocessor Environment
	FLDcon Load Real Constant
	FMUL/FMULP Multiply Real
	FNOP No Operation
	FPATAN Compute R = Partial Arctangent
	FPREM/FPREM1 Partial Remainder
	FPTAN Compute Y = Partial Tan(X)
	FRNDINT Round to Integer
	FRSTOR Restore Floating-point Coprocessor Machine State
	FSAVE/FNSAVE Save Floating-point Coprocessor Machine State
	FSCALE Scale Exponent of Real
	FSETPM Set Protected Mode
	FSIN Compute Y = Sin(X)
	FSINCOS Compute Y = Sin(X) and Y = Cos(X)
	FSQRT Square Root
	FST/FSTP Store Real/Store Real and Pop
	FSTCW/FNSTCW Store Floating-point Coprocessor Control Word
	FSTENV/FNSTENV Store Floating-point Coprocessor Environment
	FSTSW/FNSTSW Store Floating-point Coprocessor Status Word
	FSUB/FSUBP/FSUBR/FSUBRP Subtract Real
	FTST Test Real (Compare to Zero)
	FUCOM/FUCOMP/FUCOMPP Unordered Comparison of Real Numbers
	FWAIT Wait for Floating-point Operation Complete
	FXAM Examine Floating-point Stack Top
	FXCH Exchange Real Numbers in Stack
	FXTRACT Extract Exponent and Significand of Real
	FYL2X Compute Y * log 2 X
	FYL2XP1 Compute Y * log 2 (X + 1)

	8. Textmacros
	Overview
	Macro Processing
	Macro Calls and Call Patterns
	Macro Processor Scanning Modes and Macro Expansions
	Predefined Macros
	Macro Arguments
	Balanced Text
	Delimiters in Call Patterns
	Identifiers
	Expressions
	Argument Evaluations

	Predefined Macro Reference
	DEFINE Macro
	Bracket Macro
	Escape Macro
	Comment Macro
	METACHAR Macro
	EVAL Macro
	SET Macro
	IF Macro
	WHILE Macro
	REPEAT Macro
	EXIT Macro
	String Comparison Macros
	LEN Macro
	SUBSTR Macro
	MATCH Macro
	Console I/O Macros

	Scanning Modes, Delimiters, and Macro Expansions
	Normal and Literal Scanning Modes
	Macro Delimiters
	Literal Delimiters
	Implied Blank Delimiters
	Identifier Delimiters

	Algorithm for Evaluating Macro Calls

	9. Codemacros
	Overview
	Codemacro Definitions and Calls
	Processor Instruction Format

	Codemacro Reference
	CODEMACRO Directive
	Formal Parameters and Specifiers
	Formal Parameter Modifiers
	Formal Parameter Range Specifiers
	PREFIX67 Directive
	PREFIX66 Directive
	SEGFIX Directive
	NOSEGFIX Directive
	WARNING Directive
	MODRM Directive
	Data Initialization Directives
	Record Initialization Directive
	Using the Dot Operator to Shift Parameters
	PROCLEN Function
	Relative Displacement Directives

	Matching Codemacro Calls to Their Definitions

	A. Processor Architecture Summary
	Basic Processor Formats
	Data Type Formats
	Processor Registers
	General, Segment, Status and Instruction Registers
	System Registers

	Processor Memory Organization
	Segment Selection and Effective Address Computation
	Segmented Memory Management
	Segment Descriptors
	Descriptor Address Translation Fields
	Descriptor Access Rights (AR)

	Descriptor Tables and Selector Format
	Processor Protection, Gate Descriptors, and Task Switches
	Protection and Privilege Levels
	Protected Control Transfers Use Gate Descriptors
	Call Gate Descriptor Format
	Task Gate, TSS Descriptor, and TSS Format
	I/O Permission Bit Map

	Processor Flags
	Status Flags
	Carry Flag
	Parity Flag
	Auxiliary Carry Flag
	Zero Flag
	Sign Flag
	Overflow Flag

	Control and System Control Flags

	Processor Exceptions and Interrupts
	Identifying Interrupts
	Simultaneous Exceptions and Interrupts
	Interrupt Descriptor Table
	Error Codes for Exceptions
	Processor Exception Conditions
	Interrupt 0 -- Divide Error
	Interrupt 1 -- Debug Exceptions
	Interrupt 2 -- NMI
	Interrupt 3 -- Breakpoint
	Interrupt 4 -- Overflow
	Interrupt 5 -- Bounds Check
	#UD 6 -- Undefined Opcode (No Error Code)
	#NM 7 -- No Math Unit Available (No Error Code)
	#DF 8 -- Double Fault (Zero Error Code)
	Interrupt 9 -- Coprocessor Segment Overrun
	#TS 10 -- Invalid Task State Segment (Selector Error Code)
	#NP 11 -- Not Present (Selector Error Code)
	#SS 12 -- Stack Fault (Selector or Zero Error Code)
	#GP 13 -- General Protection (Selector or Zero Error Code)
	#PF 14 -- Page Fault (Type of Fault)
	#MF 16 -- Math Fault (No Error Code)

	B. Sample Program
	Sample Source Code
	Sample Listing

	C. Keywords And Reserved Words
	D. ASCII Tables
	E. Differences Between ASM386 and ASM286
	New Processor Registers
	New Instructions
	Processor Paging Mechanism
	Addressing Differences
	Data Types
	Bit Manipulation
	Assembler Directives
	Assembler Operators
	Assembler Arithmetic
	Prefix66 and Prefix67 Codemacro Directives

	F. Differences Between the Intel386 and 376 Processors
	G. Differences Between the Intel386 and Intel486 Processors
	Index
	Service Information

